JPS6032163B2 - Manufacturing method for cores in plastic optical connector plugs - Google Patents

Manufacturing method for cores in plastic optical connector plugs

Info

Publication number
JPS6032163B2
JPS6032163B2 JP9373181A JP9373181A JPS6032163B2 JP S6032163 B2 JPS6032163 B2 JP S6032163B2 JP 9373181 A JP9373181 A JP 9373181A JP 9373181 A JP9373181 A JP 9373181A JP S6032163 B2 JPS6032163 B2 JP S6032163B2
Authority
JP
Japan
Prior art keywords
core
rod
mold
sleeve
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9373181A
Other languages
Japanese (ja)
Other versions
JPS57208521A (en
Inventor
隆志 黒川
鉄夫 吉沢
茂男 奈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9373181A priority Critical patent/JPS6032163B2/en
Priority to GB8210456A priority patent/GB2097021B/en
Priority to US06/368,028 priority patent/US4479910A/en
Priority to FR8206733A priority patent/FR2504692A1/en
Priority to KR8201747A priority patent/KR850001619B1/en
Priority to CA000401374A priority patent/CA1187274A/en
Priority to DE3215090A priority patent/DE3215090C2/en
Priority to NLAANVRAGE8201676,A priority patent/NL186039C/en
Publication of JPS57208521A publication Critical patent/JPS57208521A/en
Priority to SG823/84A priority patent/SG82384G/en
Priority to HK124/85A priority patent/HK12485A/en
Publication of JPS6032163B2 publication Critical patent/JPS6032163B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3865Details of mounting fibres in ferrules; Assembly methods; Manufacture fabricated by using moulding techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3854Ferrules characterised by materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Description

【発明の詳細な説明】 本発明は寸法精度が高く、量産性に優れたプラスチック
光コネクタ用プラグにおける中子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a core for a plug for a plastic optical connector, which has high dimensional accuracy and is excellent in mass productivity.

第1図は従来のこの種のプラスチック光コネクタの概略
構成図で、これを同図において説明すると、全体を符号
1で示すプラスチック光コネクタは、一対のプラグ2と
、これら一対のプラグ2が両端部に螺合連結されるソケ
ット3によって構成される。プラグ2としては光フアィ
バ(図示せず)の端部が挿入固定される中子4と、この
中子4が挿通される袋ナット5とを備えている。前記中
子4の外周面には鍔部4aが一体に形成され、袋ナット
5の内孔で、かつソケット3側内周面にはめねじ6が形
成されている。一方、ソケット3は前記一対のプラグ2
の夫々の中子4が挿入されるスリーブ7と、このスリー
ブ7の外周に欧合固定され、両端部外周面にはおねじ8
が形成されて前記袋ナット5のめねじ6が螺合するスリ
ーブホルダ9とで構成されている。ところで、プラグ2
の中子4は一般に金属の切削加工によって製作されてい
るので、その製作には多くの加工工程と加工時間および
高価な工作機械と高度な切削技術を要し、製造コストと
量産性に問題があった。
FIG. 1 is a schematic configuration diagram of a conventional plastic optical connector of this type. To explain this with reference to the same figure, the plastic optical connector, designated as a whole by reference numeral 1, has a pair of plugs 2, and a pair of plugs 2 at both ends. It is constituted by a socket 3 which is threadedly connected to the section. The plug 2 includes a core 4 into which an end of an optical fiber (not shown) is inserted and fixed, and a cap nut 5 into which the core 4 is inserted. A flange 4a is integrally formed on the outer peripheral surface of the core 4, and a female thread 6 is formed in the inner hole of the cap nut 5 and on the inner peripheral surface on the socket 3 side. On the other hand, the socket 3 is connected to the pair of plugs 2
A sleeve 7 into which each core 4 is inserted is fixed to the outer periphery of this sleeve 7, and a male thread 8 is provided on the outer periphery of both ends.
and a sleeve holder 9, into which the female thread 6 of the cap nut 5 is screwed. By the way, plug 2
The core 4 is generally manufactured by cutting metal, so its manufacture requires many processing steps and processing time, expensive machine tools, and advanced cutting technology, which poses problems in manufacturing cost and mass productivity. there were.

また、夫々のプラグ2に固定された微細寸法の光フアィ
バの端面同士を正確に対俵ざせるために、特に中子4の
加工において高精度な加工が要求されるにも拘らず、光
フアィバ素線が挿入される円孔10の中子外周に対する
偏心量を1〜2山肌以内に押えることが困難で、高度の
熟練が要求されるという不都合があった。また、中子4
のセラミック又はセラミックと金種との複合体で形成し
たものも知られているが、このようなものにおいては加
工に非常に多くの時間と特殊研磨技術を要するので、高
精度加工はできるものの、量産性に欠け、製造コストが
高くなるという欠点があった。この他、第1図に示す構
造のコネクタ1をプラスチックで製作したものも知られ
ているが、この場合には前述した通り高精度を要求され
る中子4の成形金型を切削加工により製作しているので
、円孔10の偏心量はたかだか4〜5ムのが限度で、軸
ずれが大きいほかスリーブ7とギャップによるずれも加
わり、光フアィバの接続損失が増大するという大きな欠
点があった。
In addition, in order to accurately align the end faces of the optical fibers with minute dimensions fixed to each plug 2, high precision processing is required especially in the processing of the core 4; It is difficult to suppress the eccentricity of the circular hole 10 into which the strands are inserted with respect to the outer periphery of the core to within 1 to 2 peaks, and a high degree of skill is required. Also, core 4
It is also known to be made of ceramic or a composite of ceramic and gold, but these require a lot of time and special polishing techniques to process, so although high-precision processing is possible, The drawbacks were that it lacked mass productivity and increased manufacturing costs. In addition, it is known that the connector 1 having the structure shown in Fig. 1 is made of plastic, but in this case, as mentioned above, the mold for the core 4, which requires high precision, is manufactured by cutting. Therefore, the eccentricity of the circular hole 10 is limited to 4 to 5 mm at most, and there is a large axis misalignment as well as misalignment due to the sleeve 7 and the gap, which has the major disadvantage of increasing the optical fiber connection loss. .

さらに、プラスチック製のコネクタ1においては、中子
4とスリーブ7とのギャップによるずれを無くすため、
スリーブ7として金属製の割りスリーブも用いられてい
るが、このような割りスリーブは高価で、プラスチック
化によるコスト低減を達成できない、などの不都合があ
った。本発明は上述したような点に鑑みてなされたもの
で、量産性に殴れ、低価格で、高精度に製作し得るよう
にしたプラスチック光コネクタ用プラグにおける中子の
製造方法を提供するものであり、その特徴とするところ
は、ロッドの一端面中央部に光フアィバ素線とほぼ同径
の円孔を設け、この円孔に小ロッドを差し込み、このロ
ッドをマスタ型としてこれにニッケル電鏡を施した所定
の厚さの露錠層を形成し、この電銭層から小ロッドを残
してロッドを抜き出して電鏡金型とし、この霞銭金型と
一対の金型およびこれらの金型に挿入されて形成される
べき中子の内孔を形成するパイプとで中子成形用金型を
形成し、この金型のキャビティ内にプラスチックを射出
充填することにより中子を形成するようにしたことにあ
る。
Furthermore, in the plastic connector 1, in order to eliminate misalignment due to the gap between the core 4 and the sleeve 7,
A split sleeve made of metal has also been used as the sleeve 7, but such a split sleeve is expensive and has disadvantages such as the inability to achieve cost reduction by using plastic. The present invention has been made in view of the above-mentioned points, and provides a method for manufacturing a core for a plug for a plastic optical connector, which is suitable for mass production, and can be manufactured at low cost and with high precision. The feature is that a circular hole with approximately the same diameter as the optical fiber is provided in the center of one end of the rod, a small rod is inserted into this circular hole, and this rod is used as a master mold to attach a nickel electromagnetic mirror to it. A dewlock layer with a predetermined thickness is formed, and the rod is extracted from this coin layer, leaving a small rod, to form an electromagnetic mold, which is then inserted into a pair of molds and these molds. A mold for molding the core is formed with a pipe that forms the inner hole of the core to be formed, and the core is formed by injecting and filling the cavity of this mold with plastic. It is in.

以下、本発明を図面に基づいて詳細に説明する。Hereinafter, the present invention will be explained in detail based on the drawings.

第2図は本発明によって製造された中子をその中心線に
沿って破断した斜視図である。
FIG. 2 is a perspective view of a core manufactured according to the present invention cut along its center line.

同図において、中子20は合成樹脂によって一体に形成
されるもので、光フアィバ心線が挿入される円筒板20
Aと、この円筒体20Aの外周面中間部に一体に設けら
れた金言部20Bとで構成され、前記円筒体20Aの内
孔21の一端部には内径が小さく設定されることにより
光フアイバ素線が挿入される挿入円孔22が設けられ、
また前記金号部20Bの外周には位置決め用切欠き23
が軸方向に沿って形成されている。この切欠き23は中
子成形時における樹脂の流れ、硬イQ伏態などの不均一
性によって生じ得る挿入円孔22の偏心方向と同一方向
に設けられる。次に、上記礎成による中子20の製造方
法を第3図および第4図に基づいて説明する。
In the figure, a core 20 is integrally formed of synthetic resin, and includes a cylindrical plate 20 into which the optical fiber core wire is inserted.
A, and a metal part 20B integrally provided at the middle part of the outer circumferential surface of the cylindrical body 20A, and one end of the inner hole 21 of the cylindrical body 20A has a small inner diameter so that an optical fiber element is formed. An insertion circular hole 22 into which the wire is inserted is provided,
Furthermore, a positioning notch 23 is provided on the outer periphery of the metal number part 20B.
is formed along the axial direction. This notch 23 is provided in the same direction as the eccentric direction of the insertion circular hole 22, which may occur due to non-uniformity such as the flow of resin during core molding or the state of hard Q depression. Next, a method for manufacturing the core 20 using the above-mentioned foundation will be explained based on FIGS. 3 and 4.

先ず第3図aに示すように金属、セラミックまたはこれ
らの複合体からなる円柱状のロッド25が形成される。
First, as shown in FIG. 3a, a cylindrical rod 25 made of metal, ceramic, or a composite thereof is formed.

このロッド25は前記円筒体20Aの外径と同じ外径を
有して滑らかな表面を持ち、その一端面中央部には光フ
アィバ秦線とほぼ同径で、かつロッド25の外径に対し
て偏心がほとんどない円孔26が形成される。そして、
この円孔26には光フアィバ素線とほぼ同径で、かつ剛
性の大きな材料(例えば焼入鋼、タングステン合金など
)からなる真直ぐな小ロッド27の一端が所定の深さま
で挿入される。第3図bはこの状態を示す。なお、小ロ
ッド27の他端には後述する電鏡金型からの抜けを防止
する係止部28が設けられている。小ロッド27が円孔
26に差し込まれたロッド25は、該ロッド25を金属
で構成した場合、そのま)マスタ型として第3図cに示
すニッケル電錆浴槽29に浸潰され、ニッケル電銃が施
される。一方、ロッド25がセラミックで構成される場
合には、表面にクロム−金の蒸着を行った後、ニッケル
電銭浴槽29は浸潰される。なお、30は電源、31は
ニッケル電極である。ニッケル電銭によって前記ロッド
25および小ロッド26の外周面に所定の厚さに成長し
た亀銭層32が形成されると、これをニッケル電鏡浴槽
29から取り出してロッド25を電銭層32から抜き取
ると、第3図dに示す中空状の蚕銭金型33が得られる
。この場合、小ロッド27は係止部28によって露鋳金
型33内に残され、ロッド25の円孔26に挿入されて
いた挿入端部が今度は亀鏡金型33の内孔34内に突出
し、突出端部27aを構成する。この突出端部27aは
第2図に示した中子20の挿入円孔22を形成するため
に用いられる。前記内孔34の孔径はロッド25の外径
と同一寸法で、該内孔34に対する前記突出端部27a
の偏心はほとんど無い。このようにして形成された電銭
金型33は第4図に示す一対の金型35A,35Bおよ
びパイプ40と共に中予成形用金型35を形成する。
This rod 25 has a smooth surface with the same outer diameter as the outer diameter of the cylindrical body 20A, and a center portion of one end surface has a diameter that is approximately the same as that of the optical fiber Qin wire, and which is relative to the outer diameter of the rod 25. A circular hole 26 with almost no eccentricity is formed. and,
One end of a small straight rod 27, which has approximately the same diameter as the optical fiber wire and is made of a highly rigid material (for example, hardened steel, tungsten alloy, etc.), is inserted into the circular hole 26 to a predetermined depth. Figure 3b shows this situation. Note that the other end of the small rod 27 is provided with a locking portion 28 that prevents it from coming off from the electric mirror mold, which will be described later. If the rod 25 is made of metal, the rod 25 with the small rod 27 inserted into the circular hole 26 is immersed as a master mold in a nickel electrorusting bath 29 shown in FIG. will be applied. On the other hand, when the rod 25 is made of ceramic, the nickel money bath 29 is immersed after chromium-gold is deposited on the surface. Note that 30 is a power source and 31 is a nickel electrode. When a coin layer 32 that has grown to a predetermined thickness is formed on the outer circumferential surface of the rod 25 and small rod 26 by the nickel coins, the coin layer 32 is removed from the nickel electric bathtub 29 and the rod 25 is pulled out from the coin layer 32. Then, a hollow silk coin mold 33 shown in FIG. 3d is obtained. In this case, the small rod 27 is left in the open casting mold 33 by the locking part 28, and the insertion end that was inserted into the circular hole 26 of the rod 25 now protrudes into the inner hole 34 of the turtle mirror mold 33. , forming the protruding end portion 27a. This projecting end 27a is used to form the circular hole 22 for inserting the core 20 shown in FIG. The diameter of the inner hole 34 is the same as the outer diameter of the rod 25, and the protruding end 27a with respect to the inner hole 34 is the same size as the outer diameter of the rod 25.
There is almost no eccentricity. The money mold 33 thus formed forms a medium preforming mold 35 together with a pair of molds 35A, 35B and a pipe 40 shown in FIG.

この場合、図において上方の金型35Aには形成すべき
中子20の鍔部20Bと円筒体20Aを形成するための
凹部37(キャピテイ36の一部を構成)が形成され、
下方の金型35Bには前記電銭金型33の校合孔38が
形成される。また、金型35Aの前記凹部37の内壁面
所定箇所には中子20の鍔部20Bに設けられる位置決
め用切欠き23を形成するための突起39が形成される
。前記キャピティ36には中子20の内孔21を形成す
るためのパイプ40が同軸的に挿入され、その挿入端と
前記4・ロッド28の突出端部27aとの間には空気抜
き用の隙間が設けられる。こうすることにより、金型3
5B内のガス抜きを十分に行うことができ、成形品の歩
蟹りを99%以上にすることができる。また、小ロッド
27は競入鋼、タングステン合金等の金属材料によって
製作されているため、強じんで数万ショットでも破損す
ることはない。そして、金型35Aの適宜箇所にはスプ
ルー、ランナ、ゲート(図示せず)が設けられ、これら
を通って加熱溶融したガラス繊維入りフェノール樹脂等
のプラスチックをキヤビテイ36に射出充填することに
より第2図に示した中子20が成形される。実際の中子
製作にあたっては、直径2.499側、長さ15肋、先
端部円孔26の孔径0.125肌、深さ1側外径に対す
る偏心が±0.5仏机のセラミック製ロッド25と、前
記円孔26に差し込まれた直径0.124側の焼入れ鋼
からなる小ロッド27とを用い、表面にクロム−金の蒸
着を行った後、ニッケル電銭法により電鏡金型33を形
成した。
In this case, a recess 37 (constituting a part of the cavity 36) for forming the flange 20B of the core 20 to be formed and the cylindrical body 20A is formed in the upper mold 35A in the figure.
A matching hole 38 for the money mold 33 is formed in the lower mold 35B. Further, a projection 39 for forming a positioning notch 23 provided in the flange 20B of the core 20 is formed at a predetermined location on the inner wall surface of the recess 37 of the mold 35A. A pipe 40 for forming the inner hole 21 of the core 20 is inserted coaxially into the cavity 36, and a gap for air venting is provided between the insertion end of the pipe 40 and the protruding end 27a of the rod 28. provided. By doing this, mold 3
The gas inside 5B can be sufficiently vented, and the molded product can have a cracking rate of 99% or more. Furthermore, since the small rod 27 is made of a metal material such as steel or tungsten alloy, it is strong and will not break even after tens of thousands of shots. Then, sprues, runners, and gates (not shown) are provided at appropriate locations on the mold 35A, and a plastic such as heated and melted phenolic resin containing glass fiber is injected and filled into the cavity 36 through these sprues, runners, and gates (not shown). The core 20 shown in the figure is molded. In actual core manufacturing, a ceramic rod with a diameter of 2.499 mm, a length of 15 ribs, a hole diameter of 0.125 mm for the circular hole 26 at the tip, and an eccentricity of ±0.5 mm with respect to the outer diameter of the depth 1 side. 25 and a small rod 27 made of hardened steel with a diameter of 0.124 inserted into the circular hole 26, chromium-gold is deposited on the surface, and then an electric mirror mold 33 is formed by the nickel method. Formed.

そして、ガラス繊維入りフェノール樹脂によって中子2
0を成形した。得られた中子2川ま円筒体20Aの外径
が2.488帆、挿入円孔22の孔径0.125肋、真
円度lAm、そして偏心が2ムのであった。第5図は上
記製造方法によって製造された中子20を備えたプラグ
の一実施例を示す断面図である。
Then, the core 2 is made of glass fiber-containing phenolic resin.
0 was molded. The outer diameter of the obtained core cylindrical body 20A was 2.488mm, the hole diameter of the insertion hole 22 was 0.125mm, the roundness was 1Am, and the eccentricity was 2mm. FIG. 5 is a sectional view showing an embodiment of a plug equipped with a core 20 manufactured by the above manufacturing method.

プラグ45は、中子20の一端部外周面に鉄装され、一
対の中子を後述するソケットのスリーブ内で突き合わせ
た時、一定圧で相互に押圧するためのコイルばね46と
、前記中子20がコイルばね46と共に挿入され、外周
面および内周面には中子20の偏心方向の位置決めを行
うための突起47,48がそれぞれ突起されたガイドパ
イプ49と、このガイドパイプ49の内孔に一端部が鉄
合固定されて中子20の移動距離を規制すると共に前記
ガイドパイプ49の外周面に鮫合されたカップ50の抜
けを規制し、かつ光ファイバケーブル内にテンションメ
ンバ(図示せず)をプラグ45に固定するサポート51
と、このサポート51の外周面に隣合固定され、前記テ
ンションメンバの固定(接着による)を確実にするカッ
プリング52およびこのカップリング52の外周面に競
合され、光ファイバケーブルの曲げ損失を防ぐ弾性体か
らなる保護リング53とで構成されている。前記ガイド
パイプ49の内周面に形成された突起48は中子20の
位置決め用切欠き23に鉄入係合され、これによって中
子20の挿入円孔22のずれを最小に抑え、接続損失を
少なくしている。前記カップ50の内孔でかつソケット
側内周面にはめねじ54が形成されている。コイルばね
46は直径0.4肋のステンレスワイヤで形成され、ま
た保護リング53はウレタンェラストマーで成形されて
いる。前記ガイドパイプ49、カップ50サポート51
およびカップリング52はそれぞれプラスチックによっ
て形成され、前記コイルばね46並びに保護リング53
と共に中子ホルダを構成している。第6図は前記プラグ
45が接続されるソケットの断面図である。
The plug 45 is iron-plated on the outer circumferential surface of one end of the core 20, and includes a coil spring 46 and a coil spring 46 for pressing each other with a constant pressure when the pair of cores are butted together in a socket sleeve (to be described later). 20 is inserted together with a coil spring 46, and a guide pipe 49 has protrusions 47 and 48 on the outer and inner circumferential surfaces thereof for positioning the core 20 in an eccentric direction, and an inner hole of the guide pipe 49. One end of the optical fiber cable is fixed with iron to restrict the moving distance of the core 20, and also to prevent the cup 50, which is fitted onto the outer peripheral surface of the guide pipe 49, from coming off. ) to the plug 45
and a coupling 52 which is fixed adjacent to the outer circumferential surface of this support 51 to ensure the fixation (by adhesion) of the tension member, and which competes with the outer circumferential surface of this coupling 52 to prevent bending loss of the optical fiber cable. The protective ring 53 is made of an elastic body. The protrusion 48 formed on the inner peripheral surface of the guide pipe 49 is engaged with the positioning notch 23 of the core 20, thereby minimizing the displacement of the insertion hole 22 of the core 20 and reducing connection loss. is decreasing. A female thread 54 is formed in the inner hole of the cup 50 and on the inner peripheral surface on the socket side. The coil spring 46 is made of stainless steel wire with a diameter of 0.4 ribs, and the protective ring 53 is made of urethane elastomer. The guide pipe 49, cup 50 support 51
and the coupling 52 are each made of plastic, and the coil spring 46 and the protective ring 53
Together, they constitute a core holder. FIG. 6 is a sectional view of a socket to which the plug 45 is connected.

このソケット55はスリーブ56と、このスリーブ56
の外周面に鉄合固定される同形に形成された左右一対の
スリーブホルダ57とで構成される。スリーブホルダ5
7の外周面には前記カップ50のめねじ54が螺合する
おねじ58が形成されると共に、ガイドパイプ49の突
起47が鉄入係合する切欠き59が形成されている。前
記スリーブ56としてはその孔径の寸法精度が重要であ
り、第7図a,bに示す円筒形スリ−ブ56の場合には
中子20が隙間なくかつ着脱可能に挿入されるように中
子成形用電銭金型33の製作時に用いたロッド25(第
3図参照)がそのまま使用される。
This socket 55 has a sleeve 56 and a sleeve 56.
It is composed of a pair of left and right sleeve holders 57 formed in the same shape and fixed to the outer circumferential surface of the sleeve holders 57 by iron fittings. Sleeve holder 5
A male thread 58 into which the female thread 54 of the cup 50 is screwed is formed on the outer peripheral surface of the cup 7, and a notch 59 into which the protrusion 47 of the guide pipe 49 is engaged is formed. The dimensional accuracy of the hole diameter of the sleeve 56 is important, and in the case of the cylindrical sleeve 56 shown in FIGS. The rod 25 (see FIG. 3) used when manufacturing the electric money mold 33 for molding is used as is.

第8図はこの〇ツド25を用いたスリーブ成形用金型6
0の一例を示すもので、該金型60に適当なスプル−、
ランナ、ゲート(図示せず)を設けて中子20と同一の
ブラスチックを射出充填することにより、第7図a,b
に示す如く中子20が隙間なく挿入され得る内孔61を
有するスリーブ56が形成される。一方、第7図cに示
す割りスリーブ56Aの場合には、ロッドよりも僅かに
外径の小さいロッドを第8図の成形金型601こ組込ん
で円筒形スリーブを成形した後、切断器によって長手方
向に割り62を形成し、最終的に第7図cの割りスリー
ブ56Aが得られる。
Figure 8 shows a sleeve molding die 6 using this ○piece 25.
This shows an example of the sprue suitable for the mold 60.
By providing a runner and a gate (not shown) and injecting and filling the same plastic as the core 20, as shown in FIGS.
As shown in FIG. 2, a sleeve 56 is formed which has an inner hole 61 into which the core 20 can be inserted without any gap. On the other hand, in the case of the split sleeve 56A shown in FIG. 7c, a rod having a slightly smaller outer diameter than the rod is inserted into the molding die 601 shown in FIG. 8 to form a cylindrical sleeve, and then a cutter is used to Splits 62 are formed in the longitudinal direction, and finally the split sleeve 56A shown in FIG. 7c is obtained.

この場合、割りスリーブ56Aに対しては直径2.48
7帆のロッドが用いられ、孔径2.478側のスリーブ
が得られた。そして、このスリーブに対して割り62を
入れるため厚さ0.2側のダイヤモンド回転カッタが用
いられた。このような構成からなるソケット55に対し
て一対のプラグ45が接続される。この時、各プラグ4
5の中子20がそれぞれスリーブ56の内孔61に挿入
されてその端面が互いに当俵し、カップ50がスリーブ
ホルダ57に螺合される。この場合、中子20の鍔部2
08には挿入円孔22の偏心方向と同一方向に位置決め
用切欠き23が設けられているので、スリーブ56内に
一対の中子20を切欠き位置をそろえて挿入した時の挿
入円孔22のずれ量はlrのであった。なお、ホルダ4
5は中子ホルダとスリーブホルダ57については厳密な
寸法精度を要求されないため、ガイドパイプ49、カッ
プ50、サポート51、カップリング52およびスリー
ブホルダ57をそれぞれ切削加工によって製作した金型
にABS樹脂を射出充填して形成しているが、信頼性良
く着脱できる構造のものが要求される。
In this case, the diameter is 2.48 mm for the split sleeve 56A.
A 7 sail rod was used and a sleeve with a hole diameter of 2.478 was obtained. A diamond rotary cutter with a thickness of 0.2 was used to cut the sleeve 62 into the sleeve. A pair of plugs 45 are connected to the socket 55 having such a configuration. At this time, each plug 4
The cores 20 of 5 are each inserted into the inner hole 61 of the sleeve 56 so that their end surfaces abut each other, and the cup 50 is screwed into the sleeve holder 57. In this case, the flange 2 of the core 20
08 is provided with a positioning notch 23 in the same direction as the eccentric direction of the insertion circular hole 22, so when the pair of cores 20 are inserted into the sleeve 56 with the notch positions aligned, the insertion circular hole 22 The amount of deviation was lr. In addition, holder 4
5, since strict dimensional accuracy is not required for the core holder and sleeve holder 57, ABS resin is applied to the molds in which the guide pipe 49, cup 50, support 51, coupling 52, and sleeve holder 57 are made by cutting. Although it is formed by injection filling, it is required to have a structure that can be reliably attached and detached.

接続検討には、外径125仏の、コア蓬50ム肌の石英
製のグレーデツトィンデックスフアィバを素線とし、テ
ンションメンバとしてアラミッド繊維を用い、最外層を
塩化ビニルの被覆を施した光ファイバケーブルを使用し
た。この場合、フアィバの中子20への装着は、フアィ
バ素線が約3肋突出したフアィバ心線を中子20の内孔
21に挿入してフアィバ素線を挿入円孔22から突出さ
せた状態で、前記中子20とフアィバ素線を接着固定し
た後、挿入円孔22から突出しているフアィバ素線をダ
イヤモンドカットで切断し、その切断機面を60巧竃の
ェメリ−研磨およびアルミナ粉を用いたバフ仕上げによ
り精度の高い平滑面とした。なお、プラグ45およびソ
ケット55の組立ては、瞬間接着剤を用いて行った。接
続損失を波長0.85ム肌のLED光源と1物のモード
スクランブラを用いて測定した結果、0.5母旧であっ
た。
For the connection study, a graded index fiber made of quartz with an outer diameter of 125mm and a core of 50mm was used as the bare wire, an aramid fiber was used as the tension member, and the outermost layer was coated with vinyl chloride. using fiber optic cable. In this case, the fiber core 20 is attached to the fiber core 20 by inserting the fiber core wire with approximately three ribs protruding into the inner hole 21 of the core 20 and causing the fiber wire to protrude from the insertion circular hole 22. After the core 20 and the fiber wire are bonded and fixed, the fiber wire protruding from the insertion hole 22 is cut with a diamond cut, and the cutting machine surface is polished with 60mm emerald and coated with alumina powder. The buffing used resulted in a highly accurate and smooth surface. Note that the plug 45 and socket 55 were assembled using instant adhesive. The connection loss was measured using an LED light source with a wavelength of 0.85 mm and a single mode scrambler, and was found to be 0.5 mm.

組み立てに要した時間は30分であった。重量はプラグ
45が1.5夕、ソケット55が1夕であった。ソケッ
ト55の両端にプラグ45を装着した状態での寸法は、
長さ7山吹、直径1仇岬であった。各部品の成形時間は
、中子20およびスリーブ56が各5分、またプラグ4
5及びソケット55の各ホルダ部は4分であった。製造
例第3図および第4図にもとづいて説明した製造方法に
よって、合計72個の中子20を同一成形条件で製作し
た。
The time required for assembly was 30 minutes. The weight of the plug 45 was 1.5 kg, and the weight of the socket 55 was 1 kg. The dimensions with the plug 45 attached to both ends of the socket 55 are:
It was seven mountains in length and one cape in diameter. The molding time for each part is 5 minutes each for the core 20 and sleeve 56, and 5 minutes for the plug 4.
Each holder part of 5 and socket 55 was 4 minutes. Manufacturing Example A total of 72 cores 20 were manufactured under the same molding conditions by the manufacturing method explained based on FIGS. 3 and 4.

この中子20の外径の分布を第9図に示す。平均外径2
.4斑払側が得られ、2.4875帆から2.4895
側までの2仏のの間に7の固のものが入っており、平均
値±lAmの精度で97%以上の製品が製作されること
がわかった。上記製造例で得た中子20のうち、52個
を任意にとり出し、その真空度を真円度測定機で測定し
た。
The distribution of the outer diameter of this core 20 is shown in FIG. Average outer diameter 2
.. 4 Madarafu side is obtained, 2.4895 from 2.4875 sails
It was found that there were 7 hard pieces between the two Buddhas up to the side, and that a product with an accuracy of 97% or more could be manufactured with an accuracy of ±lAm. Among the cores 20 obtained in the above manufacturing example, 52 cores were randomly taken out and their degree of vacuum was measured using a roundness measuring machine.

その結果を第10図に示す。真円度1りの以下に3針固
が入っており、1.5〃机以下には5N固が入っていた
。上記製造例で成形された72個の中子20の挿入円孔
22の偏心を真円度測定機で測定し、第1 1図に示す
結果を得た。
The results are shown in FIG. 3 needle hardness was included in the roundness of 1 or less, and 5N hardness was included in the roundness of 1.5 or less. The eccentricity of the insertion hole 22 of the 72 cores 20 molded in the above manufacturing example was measured using a roundness measuring machine, and the results shown in FIG. 11 were obtained.

偏D量の平均2.8ム肌が得られ、偏心が極くわずかで
あることがわかった。また偏心方向は全ての成形品にお
いてほぼ同じ方向で、その方向の角度のばらつきは±1
.5度以内であった。上記製造例で成形された72個の
中子20のうち任意に1の固の中子20をとり出し、こ
れに光ファイバケーブルを挿入し、第5図に示すプラグ
45を粗立てた。
It was found that a skin with an average deviation D amount of 2.8 mm was obtained, and the eccentricity was extremely small. In addition, the eccentric direction is almost the same for all molded products, and the variation in angle in that direction is ±1
.. It was within 5 degrees. One solid core 20 was arbitrarily taken out of the 72 cores 20 molded in the above manufacturing example, an optical fiber cable was inserted into it, and a plug 45 shown in FIG. 5 was roughened.

そして、これらのプラグ45と第6図に示すソケット5
5を使って、フアィバ接続を行ない、その接続損失のヒ
ストグラムを求めると第12図のようになった。平均接
続損失0.5紅Bが得られ、非常に低い接続損失でフア
ィバ接続が可能であることが確かめられた。また、上記
したプラグ45とソケット55によって組立てられた1
0のコネクタのうち任意の5個をとり出し、その接続損
失の着脱再現性を検討した。
These plugs 45 and the socket 5 shown in FIG.
5 was used to make a fiber connection, and the histogram of the connection loss was obtained as shown in Fig. 12. An average splice loss of 0.5 B was obtained, confirming that fiber splicing is possible with very low splice loss. Moreover, the unit assembled by the above-mentioned plug 45 and socket 55
Five arbitrary connectors were taken out of the 0 connectors, and the connection loss reproducibility of connection and disconnection was examined.

これらのコネクタに#1〜#5の番号をつけ、各々lq
団の着脱を行ない、その着脱操作1回毎に接続損失を測
定し、その平均値と最大・技小値をプロットすると第1
3図の結果が得られた。この結果、最大・最小値は平均
値土0.09旧以内におさまっており、着脱による接続
損失の変動はごく少ないことがわかった。さらに、上記
実験に供したコネクタ#3を用いて、多数回の着脱操作
を行ない、その後の接続損失の変動を調べた。
Number these connectors #1 to #5, each with lq
When attaching and detaching the cable, measure the connection loss for each attaching and detaching operation, and plot the average value and the maximum and technical minimum values.
The results shown in Figure 3 were obtained. As a result, it was found that the maximum and minimum values were within the average value of 0.09, and that there was very little variation in connection loss due to attachment and detachment. Furthermore, using the connector #3 used in the above experiment, connection and disconnection operations were performed many times, and subsequent fluctuations in connection loss were investigated.

即ちまず#3のコネクタを10回着脱し、その時の接続
損失の最大・最小値とその平均値を測定し、その後10
0の国の着脱を行なった。そして、100の司の着脱操
作後、10回の着脱を行ない、その時の各着脱後の接続
損失の最大・最小値とその平均値を測定した。第14図
aに、この測定値を1000回の着脱操作の前・後につ
いて示した。1000回の着脱操作も平均値で0.0幻
Bの変化を示し、その最大・最小値も0.1船以内にお
さまることを確認した。
That is, first connect and disconnect #3 connector 10 times, measure the maximum and minimum connection loss values and their average value, and then
I attached and detached 0 countries. After 100 connection/detachment operations, connection/detachment was performed 10 times, and the maximum and minimum connection losses and their average values after each connection/detachment were measured. FIG. 14a shows the measured values before and after 1000 attachment/detachment operations. It was confirmed that even after 1,000 attachment/detachment operations, the average value showed a change of 0.0 phantom B, and the maximum and minimum values were also within 0.1 ship.

さらに、コネクタ#1を用いて、一20q○から+60
qoの温度範囲を1サイクル1幼時間で変化させるヒー
トサイクル試験を2サイクル行ない、その前・後の接続
損失の最大・最小値とその時の平均値を測定した。
Furthermore, using connector #1, from -20q○ to +60
Two cycles of a heat cycle test were conducted in which the temperature range of qo was changed for one period per cycle, and the maximum and minimum values of connection loss before and after that, as well as the average value at that time, were measured.

第14図bはその結果を示す。この場合も、平均値で0
.03B以下の変化であり、最大・最小値の幅も0.1
dB程度と小さいことが確認された。以上説明したよう
に本発明に係るプラスチック光コネクタ用プラグにおけ
る中子の製造方法によれば、ロッドと小ロッドをマスタ
型とし、これにニッケル電銭を施して電銭層を形成し、
この篤銭層からロッドのみを抜き出して亀鏡金型とし、
この電鏡金型と一対の金型およびパイプによって形成す
べき中子のキャビティを形成し、このキャビティにプラ
スチックを射出充填することにより中子を形成するよう
にしたので、寸法精度が高〈偏心の少ない中子を製造す
ることができ、しかも量産が可能で、品質の向上とコス
トの低減を計ることができる。
Figure 14b shows the results. In this case as well, the average value is 0
.. The change is less than 03B, and the width of the maximum and minimum values is also 0.1
It was confirmed that it was as small as about dB. As explained above, according to the method for manufacturing a core in a plug for a plastic optical connector according to the present invention, a rod and a small rod are used as a master mold, and a nickel coin is applied to this to form a coin layer,
Only the rod is extracted from this Atsushi layer and made into a turtle mirror mold.
The cavity of the core to be formed is formed by this electric mirror mold, a pair of molds, and a pipe, and the core is formed by injecting and filling this cavity with plastic, resulting in high dimensional accuracy and It is possible to manufacture fewer cores, mass production is possible, and it is possible to improve quality and reduce costs.

また、このような製造方法によって形成される中子は着
脱再現性、温度サイクル印加試験でも、コネク夕の寸法
精度を正しく保証することが確認された。特に、本発明
は中空パイプを使用しているので、金型内のガス抜きが
良好で、成形品の歩留りをズ水底1こ向上させることが
でき、また金属製の小ロッドを使用しているので数万シ
ョットでも破損せず、金型の耐久性を向上させることが
できるという優れた効果を期待し得るものである。
In addition, it was confirmed that the core formed by this manufacturing method correctly guarantees the dimensional accuracy of the connector in reproducibility of attachment and detachment and temperature cycle application tests. In particular, since the present invention uses a hollow pipe, gas can be vented well in the mold, and the yield of molded products can be improved by 1 inch, and small metal rods are used. Therefore, it can be expected to have the excellent effect of improving the durability of the mold without being damaged even after tens of thousands of shots.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のプラスチック光コネクタの基本構造を示
す断面図、第2図は本発明による製造方法によって製造
された中子の一実施例を示す中心線で断面した斜視図、
第3図は中子製作用電銭金型の製造工程図、第4図は中
子成形用金型の断面図、第5図は本発明によって製造さ
れた中子を用いたプラグの一例を示す断面図、第6図は
第5図のプラグが接続されるソケットの断面図、第7図
a,bは円筒形スリーブの断面図および側面図、同図c
は割りスリーブの側面図、第8図はスリーブ成形用金型
の断面図、第9図は中子外径のヒストグラム、第10図
は中子真円度のヒストグラム、第11図は中子外周から
の挿入円孔の偏心ヒストグラム、第12図は光ファィバ
接続損失のヒストグラム、第13図は着脱再現性の実験
結果を示す図、第14図aは1000回の着脱前後の接
続損失値の変化図、同図bは−200C〜+6000の
ヒートサイクル試験前後の接続損失値の変化図である。 20・・・・・・中子、20A・・・・・・円筒体、2
08・・・・・・鍔部、21・・・・・・内孔、22・
・・・・・挿入円孔、23・・・・・・位置決め用切欠
き、25・・・・・・ロッド、26・…・・円孔、27
・・・・・・小ロッド、29・・・・・・ニッケル電綾
浴槽、32・・・・・・電錆層、33…・・・電銭金型
、35A,35B・・・・・・金型、35・・・・・・
中子成形用金型、40……パイプ、45……プラグ。第
1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図 第9図 第10図 第11図 第12図 第13図 第14図
FIG. 1 is a sectional view showing the basic structure of a conventional plastic optical connector, and FIG. 2 is a perspective view taken along a center line showing an embodiment of a core manufactured by the manufacturing method of the present invention.
Fig. 3 is a manufacturing process diagram of a coin mold for producing a core, Fig. 4 is a sectional view of a mold for forming a core, and Fig. 5 is an example of a plug using a core manufactured according to the present invention. Figure 6 is a cross-sectional view of the socket to which the plug of Figure 5 is connected; Figures 7a and b are cross-sectional views and side views of the cylindrical sleeve;
A side view of the split sleeve, Fig. 8 is a cross-sectional view of the sleeve molding die, Fig. 9 is a histogram of the core outer diameter, Fig. 10 is a histogram of the core roundness, and Fig. 11 is the core outer periphery. Fig. 12 is a histogram of optical fiber splice loss, Fig. 13 is a diagram showing the experimental results of attachment/detachment reproducibility, and Fig. 14a is the change in splice loss value before and after 1000 connections/detachments. Figure 1B shows changes in connection loss values before and after heat cycle tests from -200C to +6000C. 20... Core, 20A... Cylindrical body, 2
08... Flange, 21... Inner hole, 22.
...Insertion circular hole, 23...Positioning notch, 25...Rod, 26...Circular hole, 27
...Small rod, 29...Nickel electric twill bathtub, 32...Electric rust layer, 33...Electric money mold, 35A, 35B...・Mold, 35...
Core molding mold, 40... pipe, 45... plug. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14

Claims (1)

【特許請求の範囲】[Claims] 1 金属、セラミツクまたは金属とセラミツクの複合体
からなるロツドの一端面中央部に光フアイバ素線とほぼ
同径の円孔を形成し、この円孔に小ロツドを差し込み、
前記小ロツドが差し込まれたロツドをマスタ型としてこ
れにニツケル電鋳を施すことにより所定の厚さに成長し
た電鋳層を形成し、この電鋳層から前記ロツドのみを抜
き出してこれを電鋳金型とし、この電鋳金型とパイプお
よび一対の金型とによつて中子成形用金型を形成し、こ
の中子形成用金型内に形成されたキヤビテイにプラスチ
ツクを射出充填することにより中子を形成することを特
徴とするプラスチツク光コネクタ用プラグにおける中子
の製造方法。
1. A circular hole with approximately the same diameter as the optical fiber wire is formed in the center of one end surface of a rod made of metal, ceramic, or a composite of metal and ceramic, and a small rod is inserted into this circular hole.
Using the rod into which the small rod is inserted as a master mold, nickel electroforming is performed on this to form an electroformed layer that has grown to a predetermined thickness, and only the rod is extracted from this electroformed layer and used as an electroformed metal. This electroforming mold, a pipe, and a pair of molds form a core molding mold, and the cavity formed in this core molding mold is injected and filled with plastic. A method for manufacturing a core in a plug for a plastic optical connector, characterized by forming a core.
JP9373181A 1981-04-22 1981-06-19 Manufacturing method for cores in plastic optical connector plugs Expired JPS6032163B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP9373181A JPS6032163B2 (en) 1981-06-19 1981-06-19 Manufacturing method for cores in plastic optical connector plugs
GB8210456A GB2097021B (en) 1981-04-22 1982-04-08 Method for production of optical fiber connectors
US06/368,028 US4479910A (en) 1981-04-22 1982-04-13 Method for production of optical fiber connectors
FR8206733A FR2504692A1 (en) 1981-04-22 1982-04-20 METHOD FOR MANUFACTURING A CONNECTOR FOR OPTICAL FIBERS
KR8201747A KR850001619B1 (en) 1981-04-22 1982-04-20 Method manufacturing meson for using plastic optical connector
CA000401374A CA1187274A (en) 1981-04-22 1982-04-21 Method for production of optical fiber connectors
DE3215090A DE3215090C2 (en) 1981-04-22 1982-04-22 Process for the manufacture of a plastic connector from optical fibers
NLAANVRAGE8201676,A NL186039C (en) 1981-04-22 1982-04-22 METHOD FOR MANUFACTURING A PLUG BUS, MERGING INTO A PLUG WHICH, WITH AN ADAPTER, FORMS AN OPTICAL FIBER CONNECTOR AND A COAT FOR SUCH A PLUG.
SG823/84A SG82384G (en) 1981-04-22 1984-11-16 Method for producing parts of optical fiber connectors
HK124/85A HK12485A (en) 1981-04-22 1985-02-12 Method for producing parts of optical fiber connectors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9373181A JPS6032163B2 (en) 1981-06-19 1981-06-19 Manufacturing method for cores in plastic optical connector plugs

Publications (2)

Publication Number Publication Date
JPS57208521A JPS57208521A (en) 1982-12-21
JPS6032163B2 true JPS6032163B2 (en) 1985-07-26

Family

ID=14090550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9373181A Expired JPS6032163B2 (en) 1981-04-22 1981-06-19 Manufacturing method for cores in plastic optical connector plugs

Country Status (1)

Country Link
JP (1) JPS6032163B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276512A (en) * 1986-05-26 1987-12-01 Furukawa Electric Co Ltd:The Manufacture of main metallic mold for molding ferrule used for optical connector

Also Published As

Publication number Publication date
JPS57208521A (en) 1982-12-21

Similar Documents

Publication Publication Date Title
KR850001619B1 (en) Method manufacturing meson for using plastic optical connector
EP0174013B1 (en) Optical connector and method of manufacturing a pair of ferrules therefor
JPH03501899A (en) Optical connector with plastic alignment ferrule
JP3803072B2 (en) Multi-core ferrule and method for manufacturing multi-core ferrule
EP1146370B1 (en) Method for production of plastic ferrule for optical connector
US4911518A (en) Threaded front end connector for optical fiber and method of making same
US6709167B2 (en) Composite ferrule of connector for optical fibers, and method of manufacturing the same
EP0386769A2 (en) Front end connector for optical fiber
JP2004038005A (en) Ferrule, and method for manufacturing ferrule
JPS6032163B2 (en) Manufacturing method for cores in plastic optical connector plugs
CA2487535A1 (en) Optical fiber connector-use ferrule and optical fiber connector structure, and ferrule connecting sleeve
KR950000707Y1 (en) Optical fiber connector and method of making same
KR20040015269A (en) Ferule for optical connector
JPS6135530B2 (en)
JP4350360B2 (en) Multi-core ferrule and multi-core ferrule manufacturing apparatus
JP3379131B2 (en) Mold for manufacturing ferrule for multi-core optical connector and method of manufacturing the same
JPS6022329B2 (en) Manufacturing method of plastic optical connector
JPS5816085A (en) Production of mold for forming nozzle
US5703981A (en) Pre-terminated optical fibers
JPH0862452A (en) Master plug for multi-core optical connector inspection and manufacture thereof
JPS62131210A (en) Production of optical connector ferrule
JP3660033B2 (en) Multi-fiber optical connector and manufacturing method thereof
JPS61239205A (en) Optical fiber connector ferrule and its manufacturing device
JPS62276512A (en) Manufacture of main metallic mold for molding ferrule used for optical connector
JP2004206017A (en) Plastic ferrule