JPS6031208A - Permanent magnet - Google Patents

Permanent magnet

Info

Publication number
JPS6031208A
JPS6031208A JP58139678A JP13967883A JPS6031208A JP S6031208 A JPS6031208 A JP S6031208A JP 58139678 A JP58139678 A JP 58139678A JP 13967883 A JP13967883 A JP 13967883A JP S6031208 A JPS6031208 A JP S6031208A
Authority
JP
Japan
Prior art keywords
permanent magnet
atomic
less
rare earth
temperature characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58139678A
Other languages
Japanese (ja)
Other versions
JP2610798B2 (en
Inventor
Yutaka Matsuura
裕 松浦
Masato Sagawa
佐川 真人
Setsuo Fujimura
藤村 節夫
Masao Togawa
戸川 雅夫
Hitoshi Yamamoto
日登志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP58139678A priority Critical patent/JP2610798B2/en
Publication of JPS6031208A publication Critical patent/JPS6031208A/en
Application granted granted Critical
Publication of JP2610798B2 publication Critical patent/JP2610798B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve temperature characteristics and oxidization resistance of a permanent magnet by making the permanent magnet of a sintered substance whose main components are rare earth elements, boron and iron and whose main phase is tetragonal crystal. CONSTITUTION:A sintered substance is composed of 8-30atom% of R (R means at least one of rare earth elements including Y), 2-28atom% of B, 50atom% or less of Co, 15atom% or less of Si and remainder of Fe and unavoidable impurities and its main phase is tetragonal crystal. By substituting a part of Fe, which is one of the main components, with Co, Curie point of the produced alloy is ascended and the temperature characteristics of the residual flux density are improved. Also by substituting a part of Fe or B with Si, Curie point of the produced alloy is ascended and the temperature characteristics of the residual flux density are improved.

Description

【発明の詳細な説明】 この発明は、R(RはYを含む希土類元素のうち少なく
とも1種>、B、Fe、GOを主成分とする永久磁石に
係り、主成分たるFeまたはBの一部をSiで置換し、
温度特性及び耐酸化性を改善した希土類・鉄・ボロン・
コバル1〜系永久磁石合に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a permanent magnet whose main components are R (R is at least one rare earth element including Y), B, Fe, and GO, and where one of the main components is Fe or B. is replaced with Si,
Rare earth, iron, boron, etc. with improved temperature characteristics and oxidation resistance.
Regarding Kobal 1~ system permanent magnet combination.

永久磁石材料は、一般家庭の各種電気製品から、大型コ
ンピュータの周辺端末機器まで、幅広い分野で使用され
る極めて重要な電気・電子材料の一つである。近年の電
気・電子機器の小形化、高効率化の要求にともない、永
久磁石材料は益々高性能化がめられるようになった。
Permanent magnetic materials are one of the extremely important electrical and electronic materials used in a wide range of fields, from various household appliances to peripheral terminal equipment for large computers. In recent years, with the demand for smaller size and higher efficiency of electrical and electronic equipment, permanent magnet materials are increasingly required to have higher performance.

現在の代表的な永久磁石材料は、アルニコ、ハードフェ
ライトおよび希土類コバル1〜磁石である。
Current representative permanent magnet materials are alnico, hard ferrite and rare earth Kobal 1~ magnets.

近年のコバルトの原料事情の不安定化に伴ない、コバル
1〜を20〜30wt%含むアルニ」磁石の需要は減り
、鉄の酸化物を主成分とする安価なハードフェライトが
磁石材料の主流を占めるにうになった。
As the raw material situation for cobalt has become unstable in recent years, the demand for aluminum magnets containing 20 to 30 wt% of cobal 1 has decreased, and cheap hard ferrite, which is mainly composed of iron oxides, has become the mainstream magnet material. It became more common.

一方、希土類コバル1−磁石はコバル[へを50〜eo
wt%も含むうえ、希土類鉱石中にあまり含まれていな
いSmを使用するため大変高価であるが、他の磁石に比
べて、磁気特性が格段に高いため、主として小型で付加
価値の高い磁気回路に多用されるにうになった。
On the other hand, the rare earth Kobal 1 magnet is Kobal [to 50~eo
Although it is very expensive because it uses Sm, which is not included in rare earth ores, it has much higher magnetic properties than other magnets, so it is mainly used in small and high value-added magnetic circuits. Now it is often used in

そこで、本発明者は先に、高価’c’j SmやωをC
右しない新しい高性能永久磁石どしてFe−BR系(R
はYを含む希土類元素のうち少なくとも1種)永久磁石
を提案した(特願昭57−145072号)。この永久
磁石は、Rとして陶やPrを中心どする資源的に豊富な
軽希土類を用い、Feを主成分として25M G Oe
以上の極めて高いエネルギー積を示すすぐれた永久磁石
である。
Therefore, the inventor first changed the expensive 'c'j Sm and ω to C
Fe-BR series (R
proposed a permanent magnet containing at least one rare earth element containing Y (Japanese Patent Application No. 57-145072). This permanent magnet uses light rare earths, which are rich in resources, mainly ceramics and Pr, as R, and has Fe as the main component, and is 25M G Oe.
This is an excellent permanent magnet that exhibits an extremely high energy product.

また、さらに、上記のすぐれた磁気特性を有するFe−
BR元系磁気異方焼結体からなる永久磁石の温度特性を
改善するため、Feの一部を6で置換することにJこり
、生成台金のキュリ一点を上昇させて温度特性を改善し
たFe−BCoR系異方性焼結体からなる永久磁石を提
案したく 特願昭57−166663号)。この永久磁
石により、高温度の環境下での使用が可能となった。
Furthermore, Fe-
In order to improve the temperature characteristics of a permanent magnet made of a BR element-based magnetic anisotropic sintered body, we decided to replace a part of Fe with 6, and raised the Curie point of the generated base metal by one point to improve the temperature characteristics. We would like to propose a permanent magnet made of an anisotropic sintered body of Fe-BCoR system (Japanese Patent Application No. 166663/1982). This permanent magnet allows use in high-temperature environments.

しかし、今日、磁石の用途は拡がる一方であり、苛酷な
環境下での使用に耐え得る永久磁石が強く要望されてい
る。また、この苛酷な環境どは、高温多湿の環境であり
、すぐれた温度特性と共に高い耐食性を有する永久磁石
材料が必要となる。
However, today, the uses of magnets are expanding, and there is a strong demand for permanent magnets that can withstand use in harsh environments. Moreover, this harsh environment is a high temperature and humid environment, and a permanent magnet material that has excellent temperature characteristics and high corrosion resistance is required.

この発明は、希土類・ボロン・鉄を主成分とする新規な
永久磁石の温度特性と共に耐酸化性を改善した希土類・
ボロン・鉄を主成分とする永久磁石を目的としている。
This invention is a new permanent magnet mainly composed of rare earth elements, boron, and iron, which has improved temperature characteristics and oxidation resistance.
It is aimed at permanent magnets whose main components are boron and iron.

すなわち、この発明は、R(但しRはYを含む希土類元
素のうち少なくとも1種) 8原子%〜30原子%、B
 2原子%〜28原子%、CO50原子%以下、5i1
5原子%以下、残部Fe及び不可避的不純物からなり、
主相が正方品とする焼結体であることを特徴りる永久磁
石である。
That is, this invention provides R (where R is at least one kind of rare earth elements including Y) 8 at % to 30 at %, B
2 atomic% to 28 atomic%, CO50 atomic% or less, 5i1
5 at % or less, the remainder consisting of Fe and unavoidable impurities,
A permanent magnet characterized by being a sintered body whose main phase is a square one.

永久磁石材料におけるキュリ一点の増大は、磁気特性の
温度変化の減少のための最も重要な要因とされており、
上述したR−B−Fe系永久磁石のキュリ一点は、希土
類含有される希土類元素によって変化し、ちなみに、t
!1−B−Fe系で約310℃、ω−日日−e系で約3
70℃であった。この発明では、主成分たるFsの一部
を0で置換覆ることにより、生成合金のキュリ一点を上
テrさけ、残留磁束密度の温度特性を改善し、さらに、
FeまたはBの一部をSLで置換することにより、生成
合金のキュリ一点を上昇させ、残留磁束密度の温度特性
を改善づると共に、さらに、磁気回路に組立だ揚台の永
久磁石の錆発生は磁気回路の出ノJ低下を招来するため
、永久磁石の耐酸化性の改善をL)つたちのであRBC
o−Fe系永久ItiEiにおいて、このSLの置換間
の増大に伴ない、耐食性が向上し、さらに、生成合金の
キュリ一点が上昇し、残留磁束密度の温度特性が改善さ
れ、かつ、希土類元素9種類を問わず有効である。
The increase in the Curie point in permanent magnet materials is considered the most important factor for reducing temperature changes in magnetic properties.
The Curie point of the above-mentioned R-B-Fe permanent magnet changes depending on the rare earth element contained, and by the way, t
! About 310℃ for 1-B-Fe system, about 3 for ω-day day-e system
The temperature was 70°C. In this invention, by substituting and covering a part of Fs, which is the main component, with 0, the Curie point of the produced alloy is avoided, the temperature characteristics of the residual magnetic flux density are improved, and further,
By substituting a part of Fe or B with SL, the Curie point of the resulting alloy is raised by a single point, improving the temperature characteristics of the residual magnetic flux density, and furthermore, rusting of the permanent magnet of the lifting platform assembled in the magnetic circuit is reduced. In order to reduce the output J of the magnetic circuit, it is necessary to improve the oxidation resistance of the permanent magnet.
In the o-Fe-based permanent ItiEi, as the SL substitution period increases, the corrosion resistance improves, the Curie point of the resulting alloy increases, the temperature characteristics of the residual magnetic flux density improves, and the rare earth element 9 Valid regardless of type.

従って、この発明の永久磁石は、Rとして陶や円を中心
とする資源的に豊富な軽希土類を主に用い、Fe 、B
、 R,Co、 SLを主成分とすることにより、25
MGOe以上の極めて高いエネルギー積並びに、高残留
磁束密度、高保持力を有し、かつすぐれた残留磁束密度
の温度特性を示Jとともに高い耐酸化性を有づる、すぐ
れた永久磁石を安価に得ることができる。
Therefore, the permanent magnet of the present invention mainly uses resource-rich light rare earths such as ceramics and circles as R, and Fe, B
, R, Co, and SL as the main components, 25
To obtain an excellent permanent magnet at a low cost, which has an extremely high energy product exceeding MGOe, a high residual magnetic flux density, a high coercive force, and exhibits excellent temperature characteristics of the residual magnetic flux density, and has high oxidation resistance as well as J. be able to.

また、SLは、安価な低1[i度「eまたはフェロボロ
ン中に多量に含有されており、これら不純物の多い安価
な原料を使用することにより、不純物としてSLが含有
されるが、この原料合金中の5itiを調整することに
にす、湿度特性のすぐれた高性能永久磁石が安価に得ら
れる。
In addition, SL is contained in a large amount in inexpensive low 1 degree "e" or ferroboron, and by using cheap raw materials with many of these impurities, SL is contained as an impurity, but this raw material alloy By adjusting the 5iti inside, a high-performance permanent magnet with excellent humidity characteristics can be obtained at a low cost.

以下に、この発明による永久磁石の組成限定理由を説明
する。
The reasons for limiting the composition of the permanent magnet according to the present invention will be explained below.

この発明の永久磁石に用いる希土類元素Rは、イン1−
リウム(Y)を包含し軽希土類及び重希土類を包含する
希土類元素であり、これらのうち少なくとも1種、好ま
しくはNd、pr等の軽希土類を主体として、あるいは
Nd、l)r等との混合物を用いる。すなわち、Rとし
ては、 ネオジム(Nd)、プラセオジム(Pr)。
The rare earth element R used in the permanent magnet of this invention is
Rare earth elements including lithium (Y), light rare earths and heavy rare earths, at least one of these, preferably light rare earths such as Nd and pr, or a mixture with Nd, l)r, etc. Use. That is, R includes neodymium (Nd) and praseodymium (Pr).

ランタン(La)、セリウム(Ce)。Lanthanum (La), cerium (Ce).

テルビウム(Tb>、ジスプロシウム(Dy)。Terbium (Tb>, dysprosium (Dy).

ホルミウム(110)、エルビウム(Er)。Holmium (110), erbium (Er).

ユウロピウム(EU)、サマリウム(Sm)。Europium (EU), samarium (Sm).

カドリニウム(Gd)、プロメチウム(Pm)。Cadolinium (Gd), promethium (Pm).

ツリウム(Tm)、イッテルビウム(Yb)。Thulium (Tm), Ytterbium (Yb).

ルテチウム(Lu)、イソ1〜リウム(Y)が包含され
る。
Included are lutetium (Lu) and iso1-lium (Y).

又、通例Rのうち1種をもって足りるが、実用上は2種
以上の混合物(ミツシュメタル、ジジム等)を入手上の
便宜等の理由により用いることができ、Sm、Y、La
、Ce、Gd等は他のR1特にNd、pr等との混合物
として用いることができる。
In addition, it is usually sufficient to use one type of R, but in practice, a mixture of two or more types (Mitushmetal, didymium, etc.) can be used for reasons such as convenience of availability, and Sm, Y, La
, Ce, Gd, etc. can be used as a mixture with other R1, especially Nd, pr, etc.

なお、この[では純希土類元索でなくてもよく、工業上
入手可能な範囲で製造上不可避な不純物を含有づ−るも
のでも差支えない。
Note that this does not necessarily have to be a pure rare earth element, and may contain impurities that are unavoidable in production within an industrially available range.

R(Yを含む希土類元素のうち少なくとも1種)は、新
規な上記系永久磁石におりる必須元素であって、8原子
%未満では、高磁気特性、特に保磁力1kOe以上が冑
られず、3o原子%を越えると、残留磁束密度(Br 
)が低下して、すぐれた特性の永久磁石が得られず、工
業生産上取扱・製造が困難となる。よっC1希土類元素
は、8原子%〜3゜原子%の範囲とする。
R (at least one rare earth element including Y) is an essential element in the new above-mentioned permanent magnet, and if it is less than 8 atomic %, high magnetic properties, especially coercive force of 1 kOe or more, will not be improved. When it exceeds 3o at%, the residual magnetic flux density (Br
) decreases, making it impossible to obtain a permanent magnet with excellent characteristics, and making it difficult to handle and manufacture in industrial production. Therefore, the C1 rare earth element should be in the range of 8 atomic % to 3° atomic %.

Bは、新規な上記系永久磁石における必須元素であって
、2原子%未満では、保磁力(1l−1G )1に08
以上は得られず、28原子%を越えるど、残留磁束密度
(Br )が低下し、4KG未満となるため、Jぐれた
永久磁石が得られない。よって、Bは、2原子%・−2
8原子%の範囲とづる。
B is an essential element in the new above-mentioned permanent magnet, and at less than 2 atomic %, B has a coercive force (1l-1G) of 0.8
However, as the residual magnetic flux density (Br 2 ) exceeds 28 at %, the residual magnetic flux density (Br 2 ) decreases to less than 4 KG, making it impossible to obtain a permanent magnet with J deviation. Therefore, B is 2 atomic %・-2
Spelled out as a range of 8 atomic percent.

COは、Feの一部と置換J°ることにより、生成合金
のキュリ一点を上昇さぜる効果を有するが、保磁力iH
cは6置換により減少づる傾向にあり、ら置換量ととも
に保磁力の低下が箸しく、永久磁石祠料として必要な保
磁力1kOe以上を1iノるために、Co量は50原子
%以下とする。
CO has the effect of raising the Curie point of the produced alloy by substituting a part of Fe, but the coercive force iH
C tends to decrease with 6 substitutions, and the coercive force decreases with the amount of 6 substitutions.In order to maintain the coercive force of 1 kOe or more required as a permanent magnet abrasive, the amount of Co is set to 50 atomic % or less. .

Slは、水系永久磁石の温度特性を改善Jるため、Bま
たはFeの一部を置換するもので、置換量の増大に伴な
い生成合金のキュリ一点を上昇「しめるが、15原子%
を越えるど、保磁力がIKOθ未満となり、実用磁石と
して不適であるので、151M子%以下とする。また、
高い磁気特性を有する永久1石を得るには、10原子%
以下のSLが望ましく、好ましい組成範囲の永久磁石の
保磁ツノは4.5KOe以上、最大エネルギー積は19
MGOe以上となる。
Sl replaces a part of B or Fe in order to improve the temperature characteristics of water-based permanent magnets, and as the amount of substitution increases, the temperature of the produced alloy increases by one point, but it decreases by 15 atomic %.
If it exceeds IKOθ, the coercive force becomes less than IKOθ, making it unsuitable for use as a practical magnet. Also,
To obtain a permanent stone with high magnetic properties, 10 atom%
The following SL is desirable, and the coercive horn of the permanent magnet in the preferred composition range is 4.5 KOe or more, and the maximum energy product is 19
It will be more than MGOe.

[eは、新規な上記系永久磁石にお(プる必須元素であ
り、上記成分を含有した残余を占める。しかし、65原
子%未満では残留磁束密度(Br )が低下い82原子
%を越えると、高い保磁力が得られないので、Feは6
5原子%〜82原子%が望ましい。
[e is an essential element for the new above-mentioned permanent magnet, and occupies the remainder containing the above components.However, if it is less than 65 at%, the residual magnetic flux density (Br) decreases and if it exceeds 82 at%. Since high coercive force cannot be obtained, Fe is 6
5 atomic % to 82 atomic % is desirable.

この発明において、高い残留磁束密度と高い保磁力を共
に有するすぐれた永久磁石を得るためには、[<10原
子%〜25原子%、B4原子%〜2G原子%、Go 3
原子%〜45原子%、3t 10原子%以下、Fe 6
8原子%・−80原子%が好ましい。
In this invention, in order to obtain an excellent permanent magnet having both a high residual magnetic flux density and a high coercive force, [<10 at% to 25 at%, B4 at% to 2G at%, Go3
atomic% to 45 atomic%, 3t 10 atomic% or less, Fe 6
8 atomic % and −80 atomic % are preferable.

また、この発明による永久磁石は、 R,[3゜Feの
他、工業的生産上不可避的不純物の存在を許容できるが
、Bの 一部を4.0原子%以下のC13,5原子%の
P、2.5原子%以上のS、3.5%以下のCOのうら
少なくとも1種、合81量で4.0原子%以下で置換°
りることにより、永久磁石の製造性改善、低価格化が可
能である。
In addition, the permanent magnet according to the present invention can tolerate the presence of unavoidable impurities in industrial production in addition to R and [3°Fe, but a portion of B is replaced with 4.0 at% or less of C13.5 at%. At least one of P, S of 2.5 atomic % or more, and CO of 3.5 atomic % or less, in a total amount of 81% or less, substituted with 4.0 atomic % or less
By doing so, it is possible to improve the manufacturability and reduce the cost of permanent magnets.

ざらに、R、B、Co 、Si 、Fe系に、9.5原
子%以上のへ交、4.5原子%以下の1−119.5原
子%以下のV、8.5原子%以下のQr18.0原子%
以下のMn、5原子%以下のB1112.5原子%以下
のNb 、 10.5原子%以下のTa、9.5原子%
以下のMo s 9.5原子%以下のW、2.5原子%
以下のSb、7原子%以下のGe、35原子%以下のS
n、5.5原子%以上のZr、5.5原子%以下のH1
’のうち少なくとも1種を添加含有、但し、2種以上含
有乃る場合は、その最大含有量は当該添加元素のうち最
大値を有するものの原子百分比%以下の含有さμること
により、永久磁石の高保磁力化が可能になる。
Roughly, in the R, B, Co, Si, and Fe systems, 9.5 atom% or more of hexagonal, 4.5 atom% or less of 1-119.5 atom% of V, and 8.5 atom% or less of Qr18.0 atomic%
The following Mn, 5 at% or less B11 2.5 at% or less Nb, 10.5 at% or less Ta, 9.5 at%
Mos: 9.5 at% or less W, 2.5 at%
Sb below, Ge below 7 atomic%, S below 35 atomic%
n, 5.5 at% or more Zr, 5.5 at% or less H1
However, if two or more of the following are added, the maximum content is less than the atomic percentage of the one with the maximum value among the added elements, and the permanent magnet is It becomes possible to increase the coercive force of

結晶相は主相が正方晶であることが、微細で均一な合金
粉末より、すぐれた磁気特性を有づる焼結永久磁石を作
製するのに不可欠である。
It is essential that the main crystalline phase be tetragonal in order to produce a sintered permanent magnet with superior magnetic properties than a fine and uniform alloy powder.

また、製造に際して、磁場中プレス成型覆ることにより
磁気的異方性磁石が得られ、無磁界中でプレス成型する
ことにより、磁気的等方性磁石を得ることができる。
Furthermore, during production, a magnetically anisotropic magnet can be obtained by press-molding in a magnetic field, and a magnetically isotropic magnet can be obtained by press-molding in a non-magnetic field.

この発明による永久磁石は、保磁)J+1−1c≧1K
 Os、残留磁束密度3r>4)(Q、を示し、最大エ
ネルギー積(BH)maxはハードフェライトど同等以
上となり、最も好ましい組成範囲では、(BH)max
≧10MGOeを示し、最大値は25MGOθ以上に達
する。
The permanent magnet according to the present invention has a coercivity J+1-1c≧1K
Os, residual magnetic flux density 3r>4) (Q), the maximum energy product (BH) max is equal to or higher than that of hard ferrite, and in the most preferable composition range, (BH) max
It shows ≧10MGOe, and the maximum value reaches 25MGOθ or more.

また、この発明永久磁石のRの主成分がその50%以上
を軽希土類金属が占める場合で、[<12原子%〜20
原子%、B44原子〜24原子%、Co3原子%〜45
原子%、Fe 65原子%〜82原子%、5L10原子
%以下含有するとき最もずぐれた磁気特性を示し、特に
軽希土類金属が陶の場合には、(B l−1)maxは
その最大値が33MGOs以上に達する。
Further, in the case where the main component of R of the permanent magnet of this invention is light rare earth metal for 50% or more, [<12 atomic % to 20
atomic%, B44 atomic% to 24 atomic%, Co3 atomic% to 45 atomic%
%, Fe 65 atomic % to 82 atomic %, 5L exhibits the most outstanding magnetic properties when it contains 10 atomic % or less, and especially when the light rare earth metal is ceramic, (B l-1) max is its maximum value. reaches more than 33 MGOs.

以下に、この発明による実施例を示しその効果を明らか
にする。
Examples according to the present invention will be shown below to clarify its effects.

実施例1 出発原料として、純度99.9%の電解鉄、819.4
%を含有し残部はFe及び/V、SL、C等の不純物か
らなるフエ[1ボロン合金、純度99.7%以上の陶、
純度99.9%の電解ら、純度99.9%のSLを使用
し、これらを高周波溶解し、その後水冷銅鋳型に鋳造し
た。
Example 1 As a starting material, electrolytic iron with a purity of 99.9%, 819.4
%, with the remainder consisting of Fe and impurities such as /V, SL, and C.
Electrolysis with a purity of 99.9% and SL with a purity of 99.9% were used, which were subjected to high frequency melting, and then cast into a water-cooled copper mold.

その後インゴットを、スタンプミルにより35メツシユ
スルーまでに粗粉砕し、次にボールミルにより3時間粉
砕し、粒度3〜10加の微粉末を得た。
Thereafter, the ingot was coarsely ground with a stamp mill to a throughput of 35 meshes, and then ground with a ball mill for 3 hours to obtain a fine powder with a particle size of 3 to 10 mm.

この微粉末を金型に挿入し、10KOeの磁界中で配向
し、2 tJの圧力で成形した。
This fine powder was inserted into a mold, oriented in a magnetic field of 10 KOe, and molded at a pressure of 2 tJ.

得られた成形体を、1000℃〜1200℃、1〜4時
間、 Ar中、の条件で焼結し、その後放冷し、この発
明による永久磁石を作製した。
The obtained molded body was sintered under the conditions of 1000° C. to 1200° C. for 1 to 4 hours in Ar, and then allowed to cool to produce a permanent magnet according to the present invention.

このとき、基本成分組成を、15K −8El −10
C。
At this time, the basic component composition is 15K -8El -10
C.

−57Feとし、Feの一部をSLで置換し、5Lff
lを種々変化させた各種永久磁石〔15M−813−1
0Co−(57−X ) Fe X Sv)のキュリ一
温度を調べた。
-57Fe, part of Fe is replaced with SL, 5Lff
Various permanent magnets with various changes in l [15M-813-1
The Curie temperature of 0Co-(57-X)FeXSv) was investigated.

結果は第1図に示す。The results are shown in Figure 1.

キュリ一温度の測定は、焼結体から 3.5+n+nX
3 、5 mm X 1 mm寸法に切り出し、10 
K Oeの磁場を印加し、25℃〜500℃の温度範囲
で、17rlの温度変化を測定し、4πIがほぼOとな
る湿度とした。
The Curie temperature is measured from a sintered body at 3.5+n+nX
3.Cut out to 5 mm x 1 mm dimensions, 10
A magnetic field of K Oe was applied, and a temperature change of 17 rl was measured in a temperature range of 25° C. to 500° C., and the humidity was set such that 4πI was approximately O.

第1図の結果から明らかなように、SL量の増加に伴な
って、キュリ一点が上昇して磁気特性の温度変化の改善
に有効なことがわかる。
As is clear from the results in FIG. 1, as the SL amount increases, the Curie point increases, indicating that it is effective in improving temperature changes in magnetic properties.

実施例2 出発原料として、純度99.9%の電解鉄、E119.
4%を含有し残部はFe及びA355C等の不純物から
なるフェロボロン合金、純度!19.7%以上のM1純
度99.9%の電解G1純度99.9%のSLを使用し
、これらを高周波溶解し、その後水冷銅鋳型に鋳造した
Example 2 As a starting material, electrolytic iron with a purity of 99.9%, E119.
Ferroboron alloy containing 4% and the remainder consisting of impurities such as Fe and A355C, purity! Electrolysis with M1 purity of 99.9% and SL with G1 purity of 99.9% over 19.7% were used, which were high frequency melted and then cast into water-cooled copper molds.

その後インボッ1−を、スタンプミルにより35メツシ
ユスルーまでに粗粉砕し、次にボールミルにより3時間
粉砕し、粒度3〜10庫の微V)末を得た。
Thereafter, the Inboru 1- was coarsely pulverized with a stamp mill to 35 mesh throughput, and then pulverized with a ball mill for 3 hours to obtain a fine V) powder with a particle size of 3 to 10.

この微粉末を金型に挿入し、10KOeの磁界中で配向
し、2 tJの圧力で成形した。
This fine powder was inserted into a mold, oriented in a magnetic field of 10 KOe, and molded at a pressure of 2 tJ.

得られた成形体を、1000℃・〜1200℃、1〜4
時間、 Ar中、の条件で焼結し、その後放冷し、この
発明による永久磁石を作製した。
The obtained molded body was heated at 1000°C to 1200°C for 1 to 4
A permanent magnet according to the present invention was produced by sintering the magnet in Ar for 2 hours, and then allowing it to cool.

上記の製造に際して、基本成分組成を、17!N−9E
t −5Co 69Feとし、「θの一部をS=で置換
し、5ijfiヲ種々変化させた各種永久!!石(17
Nd−9B−5Co −(69−X ) Fe−X S
L)の耐酸化性並びにキュリ一温度を調べた。キュリ一
温度の測定は実施例1と同方法で測定し、k4酸化性の
試験は、1法10 mm X 10 mm X 15 
mmの直方体試料を用い、湿度80%含有人気中で60
℃で24時間保持した後、各試料の単位面積当りの重量
増加で評価した。結果は第1表に示すように、SL量の
増加にともない耐酸化性が著しく改善されており、また
、=1コリ一点も上昇していることが明らかである。
When producing the above, the basic component composition is 17! N-9E
t-5Co 69Fe, various permanent stones (17
Nd-9B-5Co-(69-X)Fe-XS
The oxidation resistance and Curie temperature of L) were investigated. The Curie temperature was measured in the same manner as in Example 1, and the k4 oxidation test was conducted using one method: 10 mm x 10 mm x 15
Using a rectangular parallelepiped sample with a diameter of 60 mm, the humidity was 80%.
After being maintained at ℃ for 24 hours, each sample was evaluated by weight increase per unit area. The results are shown in Table 1, and it is clear that as the SL amount increases, the oxidation resistance is significantly improved, and also increases by 1 point.

実施例3 出発原料として、純度99.9%の電解鉄、E119.
4%を含有し残部はFe及び#、SL、C等の不純物か
らなるフェロボロン合金、純度99.7%以上の陶、純
度99.9%の電解ら、純度99.9%のSしを使用し
、第2表の成分組成となるように配合し、これらを高周
波溶解し、その後水冷銅鋳型に鋳造した。
Example 3 As a starting material, electrolytic iron with a purity of 99.9%, E119.
A ferroboron alloy containing 4% and the remainder is Fe and impurities such as #, SL, and C, ceramic with a purity of 99.7% or more, electrolytic material with a purity of 99.9%, and sulfur with a purity of 99.9% are used. They were blended to have the composition shown in Table 2, subjected to high frequency melting, and then cast into a water-cooled copper mold.

その後インゴットを、スタンプミルににす35メツシユ
スルーまでに粗粉砕し、次にボールミルにより3時間粉
砕し、粒度3・〜10AII11の微’Ft)末を得た
Thereafter, the ingot was coarsely ground in a stamp mill to a throughput of 35 meshes, and then ground in a ball mill for 3 hours to obtain a fine 'Ft) powder with a particle size of 3.about.10 AII11.

この微粉末を金型に挿入し、10 K Osの磁界中で
配向し、2 t、7の圧力で成形した。
This fine powder was inserted into a mold, oriented in a magnetic field of 10 K Os, and molded at a pressure of 2 t and 7 t.

得られた成形体を、1000℃〜1200’C,1〜4
詩閤、 Ar中、の条件で焼結し、その後放冷し、この
発明による永久磁石を作製した3゜ また、比較のため、S(を添加しないR−B−C。
The obtained molded body was heated at 1000°C to 1200'C, 1 to 4
Permanent magnets according to the present invention were produced by sintering under the following conditions in Ar and then allowed to cool.Also, for comparison, R-B-C without S(S) was added.

−Fe系永久磁石も同製法で作製した。-Fe-based permanent magnets were also produced using the same manufacturing method.

得られた永久磁石の磁気時f!l並びにキュリー温度を
測定した。測定結果を第3表に示ず。
The magnetic time of the obtained permanent magnet is f! l as well as the Curie temperature were measured. Measurement results are not shown in Table 3.

第2表から明らかなように、高い最大エネルギー積を有
し、キュリ一点が改善され温度特性のりぐれた永久磁石
が得られたことがわかる。
As is clear from Table 2, a permanent magnet with a high maximum energy product, an improved Curie point, and excellent temperature characteristics was obtained.

以下余白 第1表 第2表 以下余白Below margin Table 1 Table 2 Below margin

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は5Lf7iとキュリ一温度との関係を示すグラ
フである。 出願人 住友特殊金属株式会社
FIG. 1 is a graph showing the relationship between 5Lf7i and Curie temperature. Applicant: Sumitomo Special Metals Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1R(但しRはYを含む希土類元素のうち少なくとも1
種)8原子%〜30原子%、B 2原子%・−28原子
%、C050原子%以下、3i15原子%以下、残部[
e及び不可避的不純物からなり、主相が正方晶どづる焼
結体であることを特徴する永久磁石。
1R (where R is at least one rare earth element including Y)
Species) 8 at% to 30 at%, B 2 at% -28 at%, C050 at% or less, 3i15 at% or less, balance [
1. A permanent magnet characterized in that the main phase is a sintered body of tetragonal crystals.
JP58139678A 1983-07-29 1983-07-29 Permanent magnet material Expired - Lifetime JP2610798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58139678A JP2610798B2 (en) 1983-07-29 1983-07-29 Permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58139678A JP2610798B2 (en) 1983-07-29 1983-07-29 Permanent magnet material

Publications (2)

Publication Number Publication Date
JPS6031208A true JPS6031208A (en) 1985-02-18
JP2610798B2 JP2610798B2 (en) 1997-05-14

Family

ID=15250870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58139678A Expired - Lifetime JP2610798B2 (en) 1983-07-29 1983-07-29 Permanent magnet material

Country Status (1)

Country Link
JP (1) JP2610798B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174905A (en) * 1985-10-25 1987-07-31 Toshiba Corp Permanent magnet
US5110377A (en) * 1984-02-28 1992-05-05 Sumitomo Special Metals Co., Ltd. Process for producing permanent magnets and products thereof
US5135584A (en) * 1990-09-20 1992-08-04 Mitsubishi Steel Mfg. Co., Ltd. Permanent magnet powders
CN1058579C (en) * 1989-03-22 2000-11-15 住友特殊金属株式会社 Method of manufacturing permanent magnet
CN106992051A (en) * 2017-03-09 2017-07-28 京磁材料科技股份有限公司 The preparation method of Sintered NdFeB magnet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3997413B2 (en) 2002-11-14 2007-10-24 信越化学工業株式会社 R-Fe-B sintered magnet and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141901A (en) * 1981-02-26 1982-09-02 Mitsubishi Steel Mfg Co Ltd Permanent magnet powder
JPS59222564A (en) * 1983-05-31 1984-12-14 Sumitomo Special Metals Co Ltd Rare earth-ferrous magnetic material and permanent magnet
JPH0617200A (en) * 1992-10-19 1994-01-25 Sumitomo Special Metals Co Ltd Tetragonal rare earth element-iron-boron type compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141901A (en) * 1981-02-26 1982-09-02 Mitsubishi Steel Mfg Co Ltd Permanent magnet powder
JPS59222564A (en) * 1983-05-31 1984-12-14 Sumitomo Special Metals Co Ltd Rare earth-ferrous magnetic material and permanent magnet
JPH0617200A (en) * 1992-10-19 1994-01-25 Sumitomo Special Metals Co Ltd Tetragonal rare earth element-iron-boron type compound

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110377A (en) * 1984-02-28 1992-05-05 Sumitomo Special Metals Co., Ltd. Process for producing permanent magnets and products thereof
JPS62174905A (en) * 1985-10-25 1987-07-31 Toshiba Corp Permanent magnet
CN1058579C (en) * 1989-03-22 2000-11-15 住友特殊金属株式会社 Method of manufacturing permanent magnet
US5135584A (en) * 1990-09-20 1992-08-04 Mitsubishi Steel Mfg. Co., Ltd. Permanent magnet powders
CN106992051A (en) * 2017-03-09 2017-07-28 京磁材料科技股份有限公司 The preparation method of Sintered NdFeB magnet

Also Published As

Publication number Publication date
JP2610798B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
JPH0510807B2 (en)
JPH0316761B2 (en)
JPH03236202A (en) Sintered permanent magnet
JPS6031208A (en) Permanent magnet
JPS61195954A (en) Permanent magnet alloy
JPH0316762B2 (en)
JP2665658B2 (en) Rare earth / iron / cobalt / boron tetragonal compounds
JPH0678582B2 (en) Permanent magnet material
JPS609104A (en) Permanent magnet
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPH0146575B2 (en)
JPH0536495B2 (en)
JPH0535210B2 (en)
JPS601808A (en) Permanent magnet
JPS6144155A (en) Permanent magnet alloy
JPS59163803A (en) Permanent magnet
JPS60187662A (en) Ferromagnetic alloy
JPS61147503A (en) Rare earth magnet
JPS62170455A (en) Permanent magnet alloy
JPS63234503A (en) Manufacture of permanent magnet
JPH0621307B2 (en) Resin-bonded rare earth cobalt magnet
JPH0320044B2 (en)
JPH0246658B2 (en)
JPH0362775B2 (en)
JPS61284551A (en) Permanent magnet alloy