JPH0246658B2 - - Google Patents

Info

Publication number
JPH0246658B2
JPH0246658B2 JP57146468A JP14646882A JPH0246658B2 JP H0246658 B2 JPH0246658 B2 JP H0246658B2 JP 57146468 A JP57146468 A JP 57146468A JP 14646882 A JP14646882 A JP 14646882A JP H0246658 B2 JPH0246658 B2 JP H0246658B2
Authority
JP
Japan
Prior art keywords
alloy
nax
koe
magnets
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57146468A
Other languages
Japanese (ja)
Other versions
JPS5935648A (en
Inventor
Kazuhiro Kumasaka
Kenichi Ono
Koichi Hoshino
Shozo Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57146468A priority Critical patent/JPS5935648A/en
Publication of JPS5935648A publication Critical patent/JPS5935648A/en
Publication of JPH0246658B2 publication Critical patent/JPH0246658B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、希土類コバルト系永久磁石合金に関
するものである。 希土類元素Rとコバルトとからなる希土類コバ
ルト磁石は、SmCo5合金とSm2Co17系合金で知ら
れる単相形磁石およびSm2(CoFeCuM)17系合金
で知られる2相分離形磁石の2つに大別される。
このSm2Co17系とSm2(CoFeCuM)17系とのちが
いは構成元素のちがいのみではなく、前者が単相
形磁石であるのに対して、後者が2相分離形磁石
である点である。すなわち、2相分離形Sm2
(CoFeCuM)17は、正確にはSm(CoFeCuM)z
(7.0≦Z≦8.3)であり、Zの化学量論組成すな
わち8.5からのずれにより、固有の処理でSm
(CoCu)5相とSm2(CoFe)17相への2相分離を起こ
して磁石となるものであり、Z>8.3では磁石と
ならない。これらの希土類コバルト磁石は、その
最大エネルギー積(BH)naxがRCo5系で
25MGOe、R2(CoFeCuM)17系で33MGOeに達
し、アルニコ磁石の10MGOe、Baフエライト磁
石の4MGOeに比べてきわめて高いため、特に小
形化の要求される機器や強磁界の必要な機器に使
用されている。しかし、磁束の温度係数について
は例えばSmCo5系でほぼ−0.04%/℃、2相分離
形Sm2(CoFeCuM)17系でほぼ−0.03%/℃と大
きく、アルニコ磁石の−0.022〜0.016%/℃と比
較して劣るため、温度変化の激しい環境での使用
は困難であつた。 ところで、最近各種の電気計測機器や通信機器
にはますます小形化、軽量化、高性能化、高信頼
化が求められている。機器の小形化、軽量化のた
めには高い(BH)naxを持つ磁石が求められ、特
に薄形化のためには高い保磁力IHcをも同時に持
つ磁石が求められている。例えば通信衛星用進行
波管には小形化、軽量化のために周期磁石として
希土類コバルト磁石が用いられるようになつて来
ており、さらに近年に至つては進行波管の小形
化、大容量化の要求に伴つてますます高(BH)n
axで高IHcの磁石が求められている。さらに機器
の高性能化、高信頼化のためには、機器使用環境
の温度が変化しても磁束の変化の小さい磁石が求
められている。例えば、宇宙空間で衛星の受ける
温度環境は−50〜+150℃程度ときわめて厳しく、
進行波管の高性能化、高信頼化のためには磁束の
温度変化の少ない磁石が強く求められている。 このような要求に応えるために磁束の温度係数
を改善した希土類コバルト磁石として、Smの一
部をGd、Er、Ho、Tb、Dyという重希土類元素
で置換した永久磁石が提案されている(特開昭50
−75919、同50−81914、同51−52319)。しかし、
これらは実質的にRCo5を主体とした磁石であり、
その可逆温度係数は0〜−0.03%/℃と小さい
が、(BH)naxが8〜13MGOeと低く、各種機器の
小形化には十分に対処できない。 したがつて、高い(BH)naxを持ち、かつ磁束
の温度係数の小さい磁石を開発するためには、磁
化の高い2相分離形R2(CoFeCuM)17系合金の利
用を考えなければならない。 ところで、R2(CoFeCuM)17系磁石は、Cuおよ
びFeを含む合金を時効によりRCo5相とR2Co17
とに2相分離させて磁気硬化して製造することを
特徴とするが、そのIHcは一般的に低く、そのた
め低いパーミアンス係数の形状では使用できず、
したがつて機器の薄形化のためにはIHcを高める
必要がある。 本発明はこのような状況に鑑みてなされたもの
であり、その目的は、磁束の温度変化が小さくか
つ保磁力IHc、最大エネルギー積(BH)naxが共に
高い永久磁石合金を提供することにある。 このような目的を達成するために、本発明の2
相分離形永久磁石合金は、(Sm1-x-yXxGdy
(Co1-a-b-cFeaCubMczの一般式で示される組成
物を用いたものである。 ここで、XはPr、MはTi、Zr、Hfの少なくと
も1種であり、また、0≦x≦0.2、0.05≦y≦
0.7、0.05≦a≦0.35、0.03≦b≦0.15、0.005≦c
≦0.05、7.0≦z≦8.3である。 また、本発明の2相分離形永久磁石合金の製造
方法は、上記組成の混合物を溶解してインゴツト
を作製し、これを粉砕して得た粉末を磁界中成形
し、成形物を焼結後、均一化処理を行ない室温ま
で急冷し、その後約850から350℃の間で冷却時効
するものである。なお、850〜350℃の冷却は、階
段状に行なつても、またそのステツプを非常に細
かくしたものに相当する連続冷却としてもよい。 一般に、R2Co17合金においてRが軽希土類元
素からなる場合には通常の磁石合金と同様に温度
が上昇すると共に合金の磁束が減少する。ところ
が、Gd2Co17合金においては、常温を含む広い範
囲で、温度が上昇すると共に合金の磁束は増加す
る。本発明は、これら合金の磁束と温度の関係
が、Cu、FeおよびM(MはTi、Zr、Hfの少なく
とも1種)を含む(Sm1-xXx)(Co1-a-b-cFeaCub
Mcz合金、およびGd(Co1-a-b-cFeaCubMcz合金
(ここでXはPr)において、2相分離処理を施し
て磁石化した場合でも同様に成り立つことを見出
し、(Sm1-x-yXxGdy)(Co1-a-b-cFeaCubMcz
金においてyで表わされるGd量を変化させるこ
とにより(Sm1-xXx)(Co1-a-b-cFeaCubMcz合金
とGd(Co1-a-b-cFeaCubMcz合金との中間的な磁
束の温度係数が得られることの発見に基づいてな
されたものである。 本発明による永久磁石合金は、一般に次のよう
にして製造される。 先ず、前記所定の組成となるように各元素を調
合し、次いでこの混合物を溶解してインゴツトを
得る。このインゴツトを粗粉砕し、さらにボール
ミル、ジエツトミルなどを用いて微粉砕する。こ
の微粉末を5〜15kOe程度の磁場中でプレス成形
し、成形物を1150〜1230℃の温度で15分ないし2
時間程度焼結する。この後、1100〜1190℃で1時
間以上溶体化処理を行なう。この溶体化処理は、
長時間行なうことにより後述する時効後のIHc
増加させることが可能であり、特に5時間以上行
なうことにより従来のR2Co17系磁石では得られ
なかつたような25kOe以上という非常に高いIHc
が得られる。 この溶体化処理の後、750〜950℃で1時間以上
初段時効し、さらに1〜50℃/minの冷却速度で
450〜300℃まで連続冷却する2相分離処理を施
す。連続冷却の代りに多段冷却を行なつてもよ
い。初段時効を長時間行なうことにより、微細な
2相分離組織が得られるためにIHcを増加させる
ことが可能であり、5時間以上行なうことが好ま
しい。 これらの溶解、粉砕、焼結、溶体化、時効は、
種々の雰囲気で行なうことができるが、不活性、
真空、非酸化性、還元性の雰囲気中で行なうこと
が好ましい。 本発明に係る永久磁石合金の各成分およびその
成分比の限度は次のような理由による。 先ず、(Sm1-x-yXxGdy)(Co1-a-b-cFeaCubMc
zで表わされる一般式において、Smは、優れた
(BH)naxを得るために必要な元素である。この
Smは、その一部を0≦x≦0.2の範囲でXに置換
してもよい。 ここで、Xは先に述べたようにPrであるが、
xが0.2を越すとIHcが低下するために好ましくな
い。XとしてPrを含む場合には飽和磁化を上昇
させて残留磁束密度Brを上昇させる効果がある。 Gdは磁束の温度係数を低下させるために有効
であるが、yが0.05未満ではこの効果が顕著に現
われないためy≧0.05とする必要がある。しかし
ながら、他方でGd量が増加すると共に飽和磁化
が低下してBrが低下するため、高(BH)naxを得
るためにはy≦0.7とすることが必要である。 なお、これら希土類元素の総量に対する他の元
素の総量の比zが7.0未満ではIHcが低下すると共
に、飽和磁化が低下するためにBrも低下する。
またzが8.3を越えるとIHcが急激に低下するた
め、7.0≦z≦8.3が適当である。 Feは、飽和磁化を増加させてBrを増加させる
効果があるが、aが0.05未満ではその効果が少な
く、0.4を越えるとIHcが低下するため、0.05≦a
≦0.4が適当である。 Cuは、2相分離反応を起こさせるために必要
な元素であり、IHcを増加させる効果がある。しか
しながら、bが0.03未満では2相分離反応が十分
に進行しないために磁石として十分なIHcが得ら
れず、またbが0.15を越えると飽和磁化が低下し
てBrが低下するため、0.03≦b≦0.15が適当であ
る。 Mとして、Ti、Zr、Hfの少なくとも1種を添
加することにより、IHcを増加させる効果がある。
しかしながら、cが0.005未満ではこの効果が顕
著に現われず、また0.05を越えると逆にIHcが急
激に減少するため、0.005≦x≦0.05が適当であ
る。 以下、実施例を用いて本発明を詳細に説明す
る。 実施例 1 先ず、(Sm0.8Gd0.2)(Co0.65Fe0.25Cu0.08Zr0.02
7.
で示される組成の合金となるように原料を調合
した。 この混合物をアーク溶解してインゴツトを作製
し、鉄乳鉢で粗粉砕した後、ステンレスボールミ
ルを用いて石油ベンジン中で平均粒径3〜15μm
に微粉砕した。この微粉末を13kOeの磁界中で
2.5t/cm2の圧力で金型を用いて圧縮成形した。こ
れらの圧粉体をAr気流中で1200℃で30分間焼結
し、その後1160℃で1〜18時間の均一化処理を施
した後室温まで急冷する溶体化処理を行なつた。
次いでAr気流中で850℃で10時間の初段時効を施
し、さらに350℃まで1.5℃/minで連続冷却し、
350℃で1時間保持した。 このようにして得た永久磁石合金の磁気特性を
第1表に示す。
The present invention relates to a rare earth cobalt-based permanent magnet alloy. Rare earth cobalt magnets made of rare earth element R and cobalt are divided into two types: single-phase magnets known as SmCo 5 alloy and Sm 2 Co 17 alloy, and two-phase separated magnets known as Sm 2 (CoFeCuM) 17 alloy. Broadly classified.
The difference between the Sm 2 Co 17 series and the Sm 2 (CoFeCuM) 17 series is not only the difference in constituent elements, but also that the former is a single-phase magnet, while the latter is a two-phase separated magnet. . In other words, two-phase separated type Sm 2
(CoFeCuM) 17 is exactly Sm (CoFeCuM)z
(7.0≦Z≦8.3), and due to the deviation from the stoichiometric composition of Z, that is, 8.5, Sm
It becomes a magnet by causing two-phase separation into 5 phases (CoCu) and 17 phases Sm 2 (CoFe), and does not become a magnet when Z>8.3. These rare earth cobalt magnets have a maximum energy product (BH) nax of RCo 5 series.
25MGOe, R 2 (CoFeCuM) 17 series reaches 33MGOe, which is extremely high compared to 10MGOe for alnico magnets and 4MGOe for Ba ferrite magnets, so it is especially used in equipment that requires miniaturization and equipment that requires a strong magnetic field. There is. However, the temperature coefficient of magnetic flux is large, for example, approximately -0.04%/℃ for the SmCo 5 system, approximately -0.03%/℃ for the two-phase separated Sm 2 (CoFeCuM) 17 system, and -0.022 to 0.016%/℃ for the alnico magnet. It was difficult to use in environments with rapid temperature changes because it was inferior to that of ℃. Incidentally, recently, various electric measuring instruments and communication devices are required to be more and more compact, lightweight, high performance, and highly reliable. To make devices smaller and lighter, magnets with high (BH) nax are required, and in particular, to make devices thinner, magnets that also have high coercive force I H c are required. For example, rare earth cobalt magnets have been used as periodic magnets in traveling wave tubes for communication satellites to make them smaller and lighter, and in recent years, traveling wave tubes have also become smaller and have larger capacities. increasingly high (BH) n
There is a need for a magnet with high I H c in ax . Furthermore, in order to improve the performance and reliability of devices, there is a need for magnets that have small changes in magnetic flux even when the temperature of the environment in which the device is used changes. For example, the temperature environment that satellites are exposed to in space is extremely harsh, ranging from -50 to +150 degrees Celsius.
In order to improve the performance and reliability of traveling wave tubes, there is a strong demand for magnets whose magnetic flux changes little with temperature. To meet these demands, permanent magnets in which a portion of Sm is replaced with heavy rare earth elements such as Gd, Er, Ho, Tb, and Dy have been proposed as rare-earth cobalt magnets with improved temperature coefficients of magnetic flux. 1977
-75919, 50-81914, 51-52319). but,
These are essentially magnets based on RCo 5 ,
Although its reversible temperature coefficient is small at 0 to -0.03%/°C, its (BH) nax is low at 8 to 13 MGOe, making it unable to adequately cope with miniaturization of various devices. Therefore, in order to develop a magnet with high (BH) nax and a small temperature coefficient of magnetic flux, it is necessary to consider the use of a two-phase separated R 2 (CoFeCuM) 17 alloy with high magnetization. By the way, R 2 (CoFeCuM) 17 -based magnets are characterized by being manufactured by magnetically hardening an alloy containing Cu and Fe by aging to separate the two phases into RCo 5 phase and R 2 Co 17 phase. Its I H c is generally low and therefore cannot be used in geometries with low permeance coefficients,
Therefore, in order to make the device thinner, it is necessary to increase I H c . The present invention was made in view of these circumstances, and its purpose is to provide a permanent magnet alloy with small temperature changes in magnetic flux and high coercive force I H c and maximum energy product (BH) nax . It is in. In order to achieve such an objective, the second aspect of the present invention
Phase-separated permanent magnet alloy is (Sm 1-xy X x Gd y )
A composition represented by the general formula (Co 1-abc Fe a C b M c ) z is used. Here, X is Pr, M is at least one of Ti, Zr, and Hf, and 0≦x≦0.2, 0.05≦y≦
0.7, 0.05≦a≦0.35, 0.03≦b≦0.15, 0.005≦c
≦0.05, 7.0≦z≦8.3. In addition, the method for manufacturing the two-phase separated permanent magnet alloy of the present invention involves melting a mixture having the above composition to prepare an ingot, pulverizing the ingot, molding the resulting powder in a magnetic field, and sintering the molded product. The material is homogenized, rapidly cooled to room temperature, and then cooled and aged at a temperature between approximately 850 and 350°C. Note that the cooling from 850 to 350° C. may be performed in steps, or may be continuous cooling corresponding to very fine steps. Generally, when R in an R 2 Co 17 alloy is made of a light rare earth element, the magnetic flux of the alloy decreases as the temperature rises, similar to a normal magnetic alloy. However, in the Gd 2 Co 17 alloy, the magnetic flux of the alloy increases as the temperature rises over a wide range including room temperature. The present invention provides that the relationship between magnetic flux and temperature of these alloys includes (Sm 1-x X x ) (Co 1-abc Fe a Cu b
We found that the same holds true even when magnetized by two-phase separation treatment in the M c ) z alloy and the Gd (Co 1-abc Fe a C b M c ) z alloy (where X is Pr). ( Sm 1 - xy _ _ _ _ _ _ This was based on the discovery that a temperature coefficient of magnetic flux intermediate between the a Cu b M c ) z alloy and the Gd (Co 1-abc Fe a Cu b M c ) z alloy was obtained. The permanent magnet alloy according to the present invention is generally manufactured as follows. First, each element is mixed to have the predetermined composition, and then this mixture is melted to obtain an ingot. This ingot is coarsely ground, and then finely ground using a ball mill, jet mill, or the like. This fine powder is press-molded in a magnetic field of about 5 to 15 kOe, and the molded product is heated at a temperature of 1150 to 1230°C for 15 minutes to 2 hours.
Sinter for about an hour. After this, solution treatment is performed at 1100 to 1190°C for 1 hour or more. This solution treatment is
By carrying out the process for a long time, it is possible to increase the I H c after aging, which will be described later. In particular, by carrying out the process for more than 5 hours, it is possible to increase the I H c after aging, which will be described later. In particular, by carrying out the process for more than 5 hours, it is possible to increase the I H c after aging, which is extremely high at 25 kOe or more, which could not be obtained with conventional R 2 Co 17 magnets. I H c
is obtained. After this solution treatment, initial aging is performed at 750 to 950℃ for more than 1 hour, and then at a cooling rate of 1 to 50℃/min.
Two-phase separation treatment with continuous cooling to 450-300°C is performed. Multistage cooling may be performed instead of continuous cooling. By carrying out the initial aging for a long time, a fine two-phase separated structure can be obtained, so that I H c can be increased, and it is preferable to carry out the aging for 5 hours or more. These melting, crushing, sintering, solution treatment, and aging are
It can be carried out in a variety of atmospheres, including inert,
It is preferable to carry out the reaction in a vacuum or in a non-oxidizing, reducing atmosphere. The limits of each component and the component ratio of the permanent magnet alloy according to the present invention are due to the following reasons. First, (Sm 1-xy X x Gd y ) (Co 1-abc Fe a Cu b M c )
In the general formula represented by z , Sm is an element necessary to obtain excellent (BH) nax . this
A part of Sm may be replaced with X within the range of 0≦x≦0.2. Here, X is Pr as mentioned earlier, but
If x exceeds 0.2, I H c decreases, which is not preferable. When Pr is included as X, there is an effect of increasing the saturation magnetization and increasing the residual magnetic flux density B r . Gd is effective for lowering the temperature coefficient of magnetic flux, but this effect is not noticeable when y is less than 0.05, so it is necessary to set y≧0.05. However, on the other hand, as the amount of Gd increases, the saturation magnetization decreases and B r decreases, so it is necessary to satisfy y≦0.7 in order to obtain a high (BH) nax . Note that if the ratio z of the total amount of other elements to the total amount of these rare earth elements is less than 7.0, I H c decreases, and B r also decreases because the saturation magnetization decreases.
Furthermore, if z exceeds 8.3, I H c decreases rapidly, so 7.0≦z≦8.3 is appropriate. Fe has the effect of increasing saturation magnetization and increasing B r , but the effect is small when a is less than 0.05, and when it exceeds 0.4, I H c decreases, so 0.05≦a
≦0.4 is appropriate. Cu is an element necessary for causing a two-phase separation reaction, and has the effect of increasing I H c . However, if b is less than 0.03, the two-phase separation reaction will not proceed sufficiently and sufficient I H c will not be obtained as a magnet, and if b exceeds 0.15, the saturation magnetization will decrease and B r will decrease. 0.03≦b≦0.15 is appropriate. Adding at least one of Ti, Zr, and Hf as M has the effect of increasing I H c .
However, if c is less than 0.005, this effect will not be noticeable, and if c exceeds 0.05, I H c will decrease rapidly, so 0.005≦x≦0.05 is appropriate. Hereinafter, the present invention will be explained in detail using Examples. Example 1 First, (Sm 0.8 Gd 0.2 ) (Co 0.65 Fe 0.25 Cu 0.08 Zr 0.02 )
7.
Raw materials were prepared to obtain an alloy having the composition shown in 7 . This mixture was melted in an arc to produce an ingot, which was coarsely ground in an iron mortar, and then crushed in petroleum benzene using a stainless steel ball mill to an average particle size of 3 to 15 μm.
It was finely ground. This fine powder is placed in a magnetic field of 13kOe.
Compression molding was performed using a mold at a pressure of 2.5 t/cm 2 . These green compacts were sintered at 1200° C. for 30 minutes in an Ar flow, then subjected to homogenization treatment at 1160° C. for 1 to 18 hours, and then subjected to solution treatment in which they were rapidly cooled to room temperature.
Next, an initial aging was performed at 850°C for 10 hours in an Ar flow, and the material was continuously cooled to 350°C at a rate of 1.5°C/min.
It was held at 350°C for 1 hour. The magnetic properties of the permanent magnet alloy thus obtained are shown in Table 1.

【表】 第1表からわかるように、本発明に係る永久磁
石合金は、IHcが20kOe以上ときわめて高い値を示
す。また、溶体処理時間が長時間になるにしたが
つてIHcの値が増加し、6時間では30kOeとこれ
までの2相分離形R2(CoFeCuM)17系合金では得
られなかつたような高いIHcが得られた。またそ
の場合の(BH)naxは21.0MGOeであつた。 さらに、これらの永久磁石合金についてパーミ
アンス係数を2.0として測定した−50〜+150℃の
温度範囲における磁束の可逆温度係数α-50〜150
は、−0.020%/℃であり、従来のSmCo5系合金の
−0.04%/℃、2相分離形Sm2(CoFeCuM)17
合金の−0.03%/℃のいずれと比較しても著しく
改善されている。 実施例 2 第2表に示すような各成分の合金となるように
原料を調合した。このうち合金番号2〜5で示す
試料が本発明の実施例となるものであり、合金番
号1および6、7の試料は参考例である。
[Table] As can be seen from Table 1, the permanent magnet alloy according to the present invention exhibits an extremely high I H c value of 20 kOe or more. In addition, as the solution treatment time becomes longer, the I H c value increases, reaching 30 kOe after 6 hours, a value that could not be obtained with conventional two-phase separated R 2 (CoFeCuM) 17 alloys. A high I H c was obtained. Also, (BH) nax in that case was 21.0MGOe. Furthermore, the reversible temperature coefficient α of magnetic flux in the temperature range of -50 to +150 °C, measured with a permeance coefficient of 2.0 for these permanent magnet alloys, is -50 to +150 °C.
is -0.020%/°C, which is a significant improvement compared to -0.04%/°C for the conventional SmCo 5 -based alloy and -0.03%/°C for the two-phase separated Sm 2 (CoFeCuM) 17 -based alloy. has been done. Example 2 Raw materials were prepared to form an alloy of each component as shown in Table 2. Among these, the samples indicated by alloy numbers 2 to 5 are examples of the present invention, and the samples indicated by alloy numbers 1, 6, and 7 are reference examples.

【表】 この混合物をアーク溶解し、鉄乳鉢で粗粉砕し
た後、ステンレスボールミルを用いて石油ベンジ
ン中で平均粒径3〜15μmに微粉砕した。この微
粉末を13kOeの磁界中で2.5t/cm2の圧力で金型を
用いて圧縮成形した。これらの圧粉体をAr気流
中で1200℃で30分間焼結し、その後1160〜1180℃
で均一化処理を施した後室温まで急冷する溶体化
処理を行なつた。次いでAr気流中で850℃で10時
間の初段時効を施し、さらに350℃まで1.5℃/
minで連続冷却し、350℃で1時間保持した。 このようにして得た永久磁石合金の磁気特性を
第3表に示すと共に、パーミアンス係数を2.0と
して測定したα-50〜150℃を図に示す。
[Table] This mixture was arc melted, coarsely pulverized in an iron mortar, and then finely pulverized in petroleum benzine using a stainless steel ball mill to an average particle size of 3 to 15 μm. This fine powder was compression molded using a mold at a pressure of 2.5 t/cm 2 in a magnetic field of 13 kOe. These green compacts were sintered at 1200℃ for 30 minutes in an Ar flow, and then heated at 1160-1180℃.
After homogenization treatment, solution treatment was performed by rapidly cooling to room temperature. Next, initial aging was performed at 850°C for 10 hours in an Ar flow, and then aged at 1.5°C/100°C until 350°C.
The mixture was continuously cooled at 350° C. for 1 hour. The magnetic properties of the permanent magnet alloy thus obtained are shown in Table 3, and α -50 to 150 °C measured with a permeance coefficient of 2.0 are shown in the figure.

【表】 第3表からわかるように、Gd量が増加するに
したがつてBr、(BH)naxが低下する傾向を示す
が、本発明に係るGd量の範囲(参金番号2〜5)
では、(BH)naxが13〜25MGOe、IHcが23〜30kOe
という高(BH)naxで高IHcな磁気特性が得られ
る。これに対し、合金番号6および7の参考例で
はBrが低下し、(BH)naxも9MGOe以下の低い値
しか得られない。 また、図からわかるようにα-50〜150℃はGd量が
増加するにしたがつて低下し、yがほぼ0.5で零
となつた後符号が正に転じる。Gdを含まない合
金番号1の参考例はα-50〜150℃が−0.030%/℃と
大きいが、本発明の実施例では−0.025%/℃〜
+0.006%/℃と非常に小さい。 実施例 3 第4表に示すような各組成の合金となるように
原料を調合した。このうち、合金番号8および9
で示す試料はいずれもSmおよびGdの総量に対す
るCo、Fe、CuおよびZrの総量の比zが本発明の
範囲外である参考例であり、実施例2に示したと
同じ合金番号3の試料のみが本発明の実施例とな
るものある。
[Table] As can be seen from Table 3, as the amount of Gd increases, B r and (BH) nax tend to decrease. )
So (BH) nax is 13~25MGOe, IHc is 23~30kOe
High (BH) nax and high I H c magnetic properties can be obtained. On the other hand, in the reference examples of alloy numbers 6 and 7, B r decreases, and (BH) nax only obtains a low value of 9 MGOe or less. Further, as can be seen from the figure, α -50 to 150 °C decreases as the amount of Gd increases, and after becoming zero when y is approximately 0.5, the sign changes to positive. In the reference example of Alloy No. 1, which does not contain Gd, α -50~150 °C is as large as -0.030%/°C, but in the example of the present invention, it is -0.025%/°C ~
It is extremely small at +0.006%/℃. Example 3 Raw materials were prepared to form alloys having various compositions as shown in Table 4. Among these, alloy numbers 8 and 9
All of the samples shown are reference examples in which the ratio z of the total amount of Co, Fe, Cu, and Zr to the total amount of Sm and Gd is outside the scope of the present invention, and only the sample with alloy number 3, which is the same as shown in Example 2. are examples of the present invention.

【表】 この混合物をアーク溶解し、鉄乳鉢で粗粉砕し
た後、ステンレスボールミルを用いて石油ベンジ
ン中で平均粒径2〜12μmに微粉砕した。この微
粉末を13kOeの磁界中で2.5t/cm2の圧力で金型を
用いて圧縮成形した。これらの圧粉体を1200℃で
30分間焼結し、その後1100〜1180℃で10時間の均
一化処理を施した後室温まで急冷する溶体化処理
を行なつた。次いでAr気流中850℃で10時間の初
段時効を施し、さらに350℃まで1.5℃/minで連
続冷却し、350℃で1時間保持した。 このようにして得た永久磁石合金の磁気特性を
第5表に示す。なお、合金番号3の実施例につい
ては実施例2で得た結果を示した。
[Table] This mixture was arc melted, coarsely pulverized in an iron mortar, and then finely pulverized in petroleum benzine using a stainless steel ball mill to an average particle size of 2 to 12 μm. This fine powder was compression molded using a mold at a pressure of 2.5 t/cm 2 in a magnetic field of 13 kOe. These green compacts are heated at 1200℃.
Sintering was performed for 30 minutes, followed by homogenization treatment at 1100 to 1180°C for 10 hours, followed by solution treatment in which the material was rapidly cooled to room temperature. Next, an initial aging was performed at 850°C for 10 hours in an Ar flow, followed by continuous cooling to 350°C at a rate of 1.5°C/min, and held at 350°C for 1 hour. The magnetic properties of the permanent magnet alloy thus obtained are shown in Table 5. Note that for the example of alloy number 3, the results obtained in example 2 are shown.

【表】 第5表からわかるように、zの値が6.5である
合金番号8の参考例ではIHcが7kOeしか得られ
ず、Brも7.7kGであり、いずれも合金番号3の実
施例に比較して低い。また、zの値が8.5と大き
い合金番号9の参考例ではBrは高いがIHcが4kOe
しか得られない。 実施例 4 第6表に示すような各組成の合金となるように
原料を調合した。このうち合金番号11、14、17の
試料のみが本発明の実施例となるものであり、そ
の他は参考例である。
[Table] As can be seen from Table 5, in the reference example of Alloy No. 8 with a z value of 6.5, I H c was only 7 kOe, and B r was also 7.7 kG, both of which were compared to the implementation of Alloy No. 3. Low compared to the example. In addition, in the reference example of alloy number 9 with a large z value of 8.5, B r is high but I H c is 4 kOe.
I can only get it. Example 4 Raw materials were prepared to form alloys having various compositions as shown in Table 6. Among these, only the samples with alloy numbers 11, 14, and 17 are examples of the present invention, and the others are reference examples.

【表】 この混合物をアーク溶解し、鉄乳鉢で粗粉砕し
た後、ステンレスボールミルを用いて石油ベンジ
ン中で平均粒径2〜12μmに微粉砕した。この微
粉末を13kOeの磁界中で2.5t/cm2の圧力で金型を
用いて圧縮成形した。これらの圧粉体を1200℃で
30分間焼結し、その後1160℃で6時間の均一化処
理を施した後室温まで急冷する溶体化処理を行な
つた。次いでAr気流中で850℃で10時間の初段時
効を施し、さらに350℃まで1.5℃/minで連続冷
却し、350℃で1時間保持した。 このようにして得た永久磁石合金の磁気特性を
第7表に示す。
[Table] This mixture was arc melted, coarsely pulverized in an iron mortar, and then finely pulverized in petroleum benzine using a stainless steel ball mill to an average particle size of 2 to 12 μm. This fine powder was compression molded using a mold at a pressure of 2.5 t/cm 2 in a magnetic field of 13 kOe. These green compacts are heated at 1200℃.
Sintering was performed for 30 minutes, followed by homogenization treatment at 1160° C. for 6 hours, followed by solution treatment in which the material was rapidly cooled to room temperature. Next, an initial aging was performed at 850°C for 10 hours in an Ar stream, followed by continuous cooling to 350°C at a rate of 1.5°C/min, and held at 350°C for 1 hour. The magnetic properties of the permanent magnet alloy thus obtained are shown in Table 7.

【表】【table】

【表】 第7表の合金番号10〜12の試料についての結果
からわかるように、Feを含まない合金番号10の
参考例ではIHcは28kOeと高いがBrが7.2kGと低
く、(BH)naxも12MGOeしか得られない。 これに対し、Fe量が増加するにしたがつてBr
が増加し、合金番号11の実施例ではBrが9.5kG、I
Hcが30kOe、(BH)naxが20.5MGOeという高
(BH)naxで高IHcな磁気特性が得られた。 しかしながら、さらにFe量が増加すると、Br
は増加するが他方でIHcが減少し、合金番号12の
参考例ではIHcが1.0kOeときわめて低くなる。 また、合金番号13〜15の試料についての結果か
らわかるように、Cu含有量の少ない合金番号13
の参考例では、IHcが0.5kOeときわめ低いが、Cu
量が増加するにしたがつてIHcが増加し、合金番
号14の実施例ではIHcが28kOe、Brが9.5kG、
(BH)naxが20.0MGOeという高IHcで高(BH)nax
な磁気特性が得られる。しかしながら、さらに
Cu量が増加すると、IHcは増加するがBrは減少し、
合金番号15の参考例ではBrが5.5kGと低く、
(BH)naxも7.0MGOeという低い値であつた。 さらに合金番号16〜18の試料についての結果か
らわかるように、Hfを含まない合金番号16の参
考例ではIHcが8kOeであるが、Hf量が増加する
にしたがつてIHcが増加し、合金番号17の実施例
ではIHcが29kOe、Brが4.9kG、(BH)nax
20MGOeという高IHcで高(BH)naxな特性が得ら
れた。しかしながら、さらにHf量が増加するとI
Hcが減少し、合金番号18の参考例では4kOeとき
わめて低い値しか得られなかつた。 また、合金番号19および20の参考例について結
果からわかるように、ZrやTiも、本発明におい
て限定した範囲を越えて含む場合にはきわめて低
い値のIHcしか得られない。 実施例 5 第8表に示すような各成分の合金となるように
原料を調合した。合金番号23、24は低価格化を目
的とする参考例である。
[Table] As can be seen from the results for samples of alloy numbers 10 to 12 in Table 7, in the reference example of alloy number 10, which does not contain Fe, I H c is high at 28 kOe, but B r is low at 7.2 kG, ( BH) nax also only gets 12 MGOe. On the other hand, as the amount of Fe increases, B r
increases, and in the example of alloy number 11 B r is 9.5 kG, I
High (BH) nax and high I H c magnetic properties were obtained with H c of 30 kOe and (BH) nax of 20.5 MGOe. However, when the amount of Fe increases further, B r
increases, but on the other hand, I H c decreases, and in the reference example of alloy number 12, I H c becomes extremely low at 1.0 kOe. Also, as can be seen from the results for samples of alloy numbers 13 to 15, alloy number 13, which has a low Cu content,
In the reference example, I H c is extremely low at 0.5 kOe, but Cu
As the amount increases, I H c increases, and in the example of alloy number 14, I H c is 28 kOe, B r is 9.5 kG,
(BH) nax is high with high I H c of 20.0MGOe (BH) nax
Magnetic properties can be obtained. However, further
As the amount of Cu increases, I H c increases but B r decreases,
The reference example of alloy number 15 has a low B r of 5.5kG.
(BH) nax was also at a low value of 7.0MGOe. Furthermore, as can be seen from the results for samples of alloy numbers 16 to 18, I H c is 8 kOe in the reference example of alloy number 16, which does not contain Hf, but I H c increases as the amount of Hf increases. However, in the example of alloy number 17, I H c is 29 kOe, B r is 4.9 kG, and (BH) nax is
High (BH) nax characteristics were obtained with a high I H c of 20MGOe. However, when the amount of Hf further increases, I
H c decreased, and in the reference example of alloy number 18, only an extremely low value of 4 kOe was obtained. Further, as can be seen from the results for reference examples of alloy numbers 19 and 20, when Zr and Ti are included beyond the range limited in the present invention, only extremely low values of I H c can be obtained. Example 5 Raw materials were prepared to form an alloy of each component as shown in Table 8. Alloy numbers 23 and 24 are reference examples aimed at lowering prices.

【表】 この混合物をアーク溶解し、鉄乳鉢で粗粉砕し
た後、ステンレスボールミルを用いて石油ベンジ
ン中で平均粒径8〜12μmに微粉砕した。この微
粉末を13kOeの磁界中で2.5t/cm2の圧力で金型を
用いて圧縮成形した。これらの圧粉体を1200℃で
30分間焼結し、その後1140〜1165℃で均一化処理
を施した後室温まで急冷する溶体化処理を行なつ
た。次いでAf気流中850℃で10時間の初段時効を
施し、さらに350℃まで1.5℃/minで連続冷却
し、350℃で1時間保持した。 このようにして得た永久磁石合金の磁気特性お
よびパーミアンス係数を2.0として測定した
α-50〜150℃を第9表に示す。
[Table] This mixture was arc melted, coarsely ground in an iron mortar, and then finely ground to an average particle size of 8 to 12 μm in petroleum benzine using a stainless steel ball mill. This fine powder was compression molded using a mold at a pressure of 2.5 t/cm 2 in a magnetic field of 13 kOe. These green compacts are heated at 1200℃.
After sintering for 30 minutes, a homogenization treatment was performed at 1140 to 1165°C, followed by a solution treatment in which the material was rapidly cooled to room temperature. Next, an initial aging was performed at 850°C for 10 hours in an Af air flow, and the material was continuously cooled to 350°C at a rate of 1.5°C/min, and maintained at 350°C for 1 hour. Table 9 shows the magnetic properties of the permanent magnet alloy thus obtained and α -50 to 150 ° C. measured assuming a permeance coefficient of 2.0.

【表】 第9表からわかるように、Smの一部をPr、
Ce、ミツシユメタルMMで置換しても、(BH)na
が17.5〜20.0MGOe、IHcが24〜30kOeでしかも
α-50〜150℃が−0.023〜−0.008%/℃という高
(BH)nax、高IHcでしかも磁束の温度係数の低い
磁石合金が得られた。 以上説明したように、本発明によれば、2相分
離形R2(CoFeCuM)17系磁石の希土類元素の一部
としてGdを含ませたことにより、磁束の温度係
数が小さく、かつ保磁力IHcおよび最大エネルギ
ー積(BH)naxの高い永久磁石合金を得ることが
可能となり、小型化、軽量化、高性能化、高信頼
化が同時に要求される通信機器など各種機器に寄
与するところがきわめて大きい。
[Table] As can be seen from Table 9, a part of Sm is Pr,
Even if Ce is replaced with Mitsushi Metal MM, (BH) na
x is 17.5 to 20.0 MGOe, I H c is 24 to 30 kOe, α -50 to 150 ℃ is -0.023 to -0.008%/℃, high (BH) nax , high I H c and low temperature coefficient of magnetic flux. A magnetic alloy was obtained. As explained above, according to the present invention, by including Gd as part of the rare earth element in the two-phase separated R 2 (CoFeCuM) 17 -based magnet, the temperature coefficient of magnetic flux is small and the coercive force I It is now possible to obtain a permanent magnetic alloy with high H c and maximum energy product (BH) nax , which will greatly contribute to various devices such as communication equipment that require smaller size, lighter weight, higher performance, and higher reliability. big.

【図面の簡単な説明】[Brief explanation of drawings]

図は磁束の可逆温度係数α-50〜150℃のGd量依存
性を示す図である。
The figure shows the Gd content dependence of the reversible temperature coefficient of magnetic flux α -50 to 150 °C.

Claims (1)

【特許請求の範囲】 1 一般式(Sn1-x-yXxGdy)(Co1-a-b-cFeaCub
Mcz(式中XはPr、MはTi、Zr、Hfの少なくと
も1種、また、0≦x≦0.2、0.05≦y≦0.7、
0.05≦a≦0.35、0.03≦b≦0.15、0.005≦c≦
0.05、7.0≦z≦8.3) で示される組成を有する2相分離形永久磁石合
金。 2 一般式(Sn1-x-yXxGdy)(Co1-a-b-cFeaCub
Mcz(式中XはPr、MはTi、Zr、Hfの少なくと
も1種、また、0≦x≦0.2、0.05≦y≦0.7、
0.05≦a≦0.35、0.03≦b≦0.15、0.005≦c≦
0.05、7.0≦z≦8.3) で示される組成の混合物を溶解してインゴツトを
作製し、これを粉砕して得た粉末を磁界中成形
し、成形物を焼結した後均一化処理を行ない、室
温まで急冷し、その後、引きつづき約850℃から
約350℃の間で階段状あるいは連続冷却時効する
2つの熱処理工程を経ることを特徴とする2相分
離形永久磁石合金の製造方法。
[Claims] 1 General formula (S n1-xy X x Gd y ) (Co 1-abc Fe a Cu b
M c ) z (where X is Pr, M is at least one of Ti, Zr, and Hf, and 0≦x≦0.2, 0.05≦y≦0.7,
0.05≦a≦0.35, 0.03≦b≦0.15, 0.005≦c≦
0.05, 7.0≦z≦8.3). 2 General formula (S n1-xy X x Gd y ) (Co 1-abc Fe a Cu b
M c ) z (where X is Pr, M is at least one of Ti, Zr, and Hf, and 0≦x≦0.2, 0.05≦y≦0.7,
0.05≦a≦0.35, 0.03≦b≦0.15, 0.005≦c≦
0.05, 7.0≦z≦8.3) by melting a mixture having a composition shown by A method for producing a two-phase separated permanent magnet alloy, which is characterized by passing through two heat treatment steps: rapid cooling to room temperature, followed by stepwise or continuous cooling aging between about 850°C and about 350°C.
JP57146468A 1982-08-24 1982-08-24 Permanent magnet alloy Granted JPS5935648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57146468A JPS5935648A (en) 1982-08-24 1982-08-24 Permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57146468A JPS5935648A (en) 1982-08-24 1982-08-24 Permanent magnet alloy

Publications (2)

Publication Number Publication Date
JPS5935648A JPS5935648A (en) 1984-02-27
JPH0246658B2 true JPH0246658B2 (en) 1990-10-16

Family

ID=15408315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57146468A Granted JPS5935648A (en) 1982-08-24 1982-08-24 Permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPS5935648A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0313553Y2 (en) * 1985-09-04 1991-03-27
CN105355352B (en) * 2015-12-14 2018-06-29 成都银河磁体股份有限公司 A kind of samarium-cobalt magnet of low-coercivity and preparation method thereof
CN109712770B (en) * 2019-01-28 2020-07-07 包头天和磁材科技股份有限公司 Samarium cobalt magnet and method of making same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030735A (en) * 1973-07-20 1975-03-27
JPS5075919A (en) * 1973-11-12 1975-06-21
JPS5081914A (en) * 1973-10-24 1975-07-03

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5030735A (en) * 1973-07-20 1975-03-27
JPS5081914A (en) * 1973-10-24 1975-07-03
JPS5075919A (en) * 1973-11-12 1975-06-21

Also Published As

Publication number Publication date
JPS5935648A (en) 1984-02-27

Similar Documents

Publication Publication Date Title
US4773950A (en) Permanent magnet
US4814139A (en) Permanent magnet having good thermal stability and method for manufacturing same
EP0134304B2 (en) Permanent magnets
JPS60221549A (en) Rare earth permanent magnet
US5181973A (en) Sintered permanent magnet
JPH0232761B2 (en)
JPS6110209A (en) Permanent magnet
US3655464A (en) Process of preparing a liquid sintered cobalt-rare earth intermetallic product
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JPS6181606A (en) Preparation of rare earth magnet
US3684591A (en) Sintered cobalt-rare earth intermetallic product including samarium and cerium and permanent magnets produced therefrom
US3682714A (en) Sintered cobalt-rare earth intermetallic product and permanent magnets produced therefrom
JPH0518242B2 (en)
JPS61263201A (en) Manufacture of generator
US5230749A (en) Permanent magnets
JPS6181603A (en) Preparation of rare earth magnet
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JPH0316762B2 (en)
JPH0732090B2 (en) permanent magnet
JPH0246658B2 (en)
JPS6181607A (en) Preparation of rare earth magnet
JPH06231926A (en) Rare earth permanent magnet
JPH0246657B2 (en)
US3682715A (en) Sintered cobalt-rare earth intermetallic product including samarium and lanthanum and permanent magnets produced therefrom
JPS6181605A (en) Preparation of rare earth magnet