JPS6030053A - Storage method of lead-acid battery - Google Patents

Storage method of lead-acid battery

Info

Publication number
JPS6030053A
JPS6030053A JP58139550A JP13955083A JPS6030053A JP S6030053 A JPS6030053 A JP S6030053A JP 58139550 A JP58139550 A JP 58139550A JP 13955083 A JP13955083 A JP 13955083A JP S6030053 A JPS6030053 A JP S6030053A
Authority
JP
Japan
Prior art keywords
battery
lead
acid battery
self
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58139550A
Other languages
Japanese (ja)
Other versions
JPH0789486B2 (en
Inventor
Yoshikazu Ishikura
石倉 良和
Takanao Matsumoto
松本 孝直
Akira Watanabe
明 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58139550A priority Critical patent/JPH0789486B2/en
Publication of JPS6030053A publication Critical patent/JPS6030053A/en
Publication of JPH0789486B2 publication Critical patent/JPH0789486B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/128Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/22Forming of electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To decrease performance deterioration during storage for a long time without complicated maintenance by completely sealing a lead-acid battery after formation, in an atmosphere of inactive gas. CONSTITUTION:A lead-acid battery 10 is assembled and charged for formation. The fully charged lead-acid battery 10 is completed sealed with packaging material such as polypropylene package 11. In this process, inactive gas such as nitrogen gas 12 is sealed within the package 11 at the same time to keep the battery 10 in a state of storage. Oxygen gas penetration into a resin container 6 of the battery is completed prevented. As a result, self-discharge reaction of the lead-acid battery 10 is suppressed and performance deterioration is prevented.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は鉛蓄電池、特に遊離の電解液が電池内部に存在
しないように電解液量を制限した形態の所3119テナ
一式鉛蓄電池の保存方法に関するものであり、化成処理
後長期間放置して保存しても電池特性を低下させること
のない保存方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to the storage of lead-acid batteries, particularly 3119 Tena lead-acid batteries, which have a form in which the amount of electrolyte is limited so that free electrolyte does not exist inside the battery. The present invention relates to a storage method that does not cause deterioration of battery characteristics even if stored for a long period of time after chemical conversion treatment.

(ロ)従来技術 リテナ一式鉛蓄電池は、電解液量を制限し、且、陰極容
量を陽極容量より10〜30%程度大きくして充電時陽
極が先に満充電となるようにし、過充電の際、陽極より
発生する酸素、を陰極で吸収且消費する形態が採用され
ている。。
(b) The conventional lead-acid battery with a retainer limits the amount of electrolyte and makes the cathode capacity about 10 to 30% larger than the anode capacity so that the anode becomes fully charged first during charging to prevent overcharging. In this case, a configuration is adopted in which oxygen generated from the anode is absorbed and consumed by the cathode. .

通常、この種の蓄電池は電池として組立てられた後化成
処理を施し、満充電にされた状態で工場等で保存或いは
工場から販売店等へ出荷されるものであり、消費者がそ
の蓄電池を購入し実際に使用するまでの期間が長期に暇
る場合、定期的に例えば6ケ月毎に或いは望ましくは3
ケ月毎に補充電を施し、蓄電池が常時満充電に近い状態
で保存均0,1〜0.15%程度自巳放重をし、6ケ月
間で約20〜30%自己放電によって電池容量が低下す
ることになる。言いかえると6ケ月間で20〜30%放
電したということである。
Normally, this type of storage battery is assembled into a battery, undergoes chemical conversion treatment, and is either stored in a fully charged state at a factory, etc., or shipped from the factory to a retailer, etc., and then the battery is purchased by a consumer. However, if there is a long period of free time before actual use, periodically, for example, every 6 months, or preferably every 3 months.
Supplementary charging is carried out every month, and the storage battery is stored at a constant state close to full charge and allowed to self-load by an average of 0.1 to 0.15%, and the battery capacity decreases by self-discharging by about 20 to 30% over a period of 6 months. This will result in a decline. In other words, the battery discharged 20 to 30% over a period of 6 months.

この自己放電によって蓄電池内で生成された放電生成物
が充電によって活性化する。こい炉えれば電池容量が回
復するものであれば度々補充電する必要はないが、この
自己放電状態で長期間放置すれば、放電生成物である硫
酸鉛(PbSO4)が不活性化し、その結果充電効率が
悪くなって容量が十分回復されず電池特性の劣下を招く
ため、補充電を繰返して保守する必要がある。し〃)シ
、この保守作業は煩雑であるばかりか、たとえ補充電を
繰返しても電池容量は完全に回復することがない等の問
題があった。
Discharge products generated within the storage battery due to this self-discharge are activated by charging. If the battery capacity can be recovered by heating the carp, there is no need for frequent recharging, but if left in this self-discharging state for a long period of time, lead sulfate (PbSO4), a discharge product, becomes inactive, and as a result, Since charging efficiency deteriorates and the capacity is not fully recovered, resulting in deterioration of battery characteristics, it is necessary to perform maintenance by repeatedly performing supplementary charging. (ii) This maintenance work is not only complicated, but also has the problem that the battery capacity is not completely restored even if supplementary charging is repeated.

本願発明者等が種々検討したところによると、化成充電
処理後長時間放置すると蓄電池自身の自己放電によって
徐々に電池電圧は低下して行く。
According to various studies conducted by the inventors of the present application, if the storage battery is left for a long time after chemical charging treatment, the battery voltage gradually decreases due to self-discharge of the storage battery itself.

この自己放電は主として陽極板の方で多く起こり、陽極
自己放電量が蓄電池の自己放電量を決定することになる
。従って陽極自己放電量を抑制することが蓄電池の自己
放電を抑制することになる。
This self-discharge occurs mainly in the anode plate, and the amount of self-discharge of the anode determines the amount of self-discharge of the storage battery. Therefore, suppressing the amount of anode self-discharge suppresses self-discharge of the storage battery.

そして陽極板の自己放電は活物質PbO2や集電体t’
b及びその腐食層のPbO2がPb++イオンとなり電
解液の804−一イオンと反応して放電生成物であるP
bSO4になるために起る。しかもこの反応は例えば電
解液規制型電池の如き陽極板に薄層の電解液しか存在し
ない場合には、酸素ガスが容易に陽極板表面に接触する
ことが可能となるために陽極板上で一種の三相(気相、
液相、固相)界面を構成することになり、より一層自己
放電反応が加速されることになる。
The self-discharge of the anode plate is caused by the active material PbO2 and the current collector t'.
b and PbO2 in its corroded layer become Pb++ ions and react with 804-1 ions in the electrolyte to generate P which is a discharge product.
It happens to become bSO4. Moreover, this reaction occurs when there is only a thin layer of electrolyte on the anode plate, such as in electrolyte-regulated batteries, because oxygen gas can easily come into contact with the anode plate surface. three phases (gas phase,
This forms an interface (liquid phase, solid phase), further accelerating the self-discharge reaction.

通常鉛蓄電池の電槽はプラスチ・リクス例えばABS樹
脂で構成されておりこの種プラスチ・リクスはそれ自身
空気(特に酸素ガス)を容易に透過する性質があり、蓄
電池内の雰囲気を完全昏こ一定に保つこと自体難しい。
Normally, the case of a lead-acid battery is made of plastics, such as ABS resin, and this type of plastics itself has the property of easily permeating air (especially oxygen gas), keeping the atmosphere inside the battery completely constant. It is difficult to keep it in itself.

従って、電槽にABS樹脂等のプラスチ・リクスを使用
する限り、電池内に空気が透過することになり、陽極板
は酸素ガスにさらされ易くなり前述した如く自己放電は
より加速されることになる。
Therefore, as long as plastics such as ABS resin are used for the battery case, air will permeate into the battery, and the anode plate will be easily exposed to oxygen gas, which will accelerate self-discharge as mentioned above. Become.

ピ\)発明の目的 本発明は、鉛蓄電池の化成処理後の保存に関する上述の
如き問題点に鑑みて成されたものであり、補充電を繰返
して電池特性を維持する煩雑な保守を必要とせずに、長
期間の保存に対しても電池特性が劣化することのない鉛
蓄電池の保存方法を提供することを目的とするものであ
る。
P\) Purpose of the Invention The present invention has been made in view of the above-mentioned problems regarding storage of lead-acid batteries after chemical conversion treatment. The object of the present invention is to provide a method for storing lead-acid batteries that does not cause deterioration of battery characteristics even during long-term storage.

に)発明の構成 陰・陽画極板と、該両極板間に設けられたセパレータを
具備し、前記両極板及びセパレータに電解液を含浸保持
せしめると共に遊離の電解液が存在しないように前記電
解液の量を制限した鉛蓄電池において、化成処理後の鉛
蓄電池を窒素ガス等の不活性ガス雰囲気の下で完全密閉
包装することにより、蓄電池の自己放電を抑制するもの
である。
B) Structure of the Invention The invention comprises negative and positive electrode plates and a separator provided between the two electrode plates, and the electrolyte is impregnated into the two electrode plates and the separator to retain the electrolyte, and the electrolyte is absorbed so that there is no free electrolyte. In a lead-acid battery with a limited amount of hydrogen, self-discharge of the battery is suppressed by completely hermetically packaging the lead-acid battery after chemical conversion treatment in an atmosphere of an inert gas such as nitrogen gas.

匝)実施例 以下、本発明の一実施例を図面Iこ基いて説明する。匝)Example An embodiment of the present invention will be described below with reference to Drawing I.

先ず本発明が適用される鉛蓄電池の一例を第1図に基い
て説明する。
First, an example of a lead-acid battery to which the present invention is applied will be explained with reference to FIG.

鋳造、切抜き、或いはエキスバンド加工により得られた
鉛−カルシウム合金をsoXsoX2(mm)及び50
X50X1 (rrm)の寸法に裁断したるものを夫々
陽極集重体(1)及び陰極集電体(21+21とし、p
b。
The lead-calcium alloy obtained by casting, cutting, or expanding processing is soXsoX2 (mm) and 50
The pieces cut into the dimensions of
b.

(−酸化鉛)と水とによりなる活物質ペーストをローラ
により厚み1.0.及び0.7 rrmに圧着した寸法
50 X 50 traのシート状活物質層を圧着して
陽極板+31及び陰極板(4)(41とする。このよう
にして構成された陽極板(3)及び陰極板(41(41
は夫々厚み2,4朋及び1.2.である。
An active material paste consisting of lead oxide (-lead oxide) and water is rolled to a thickness of 1.0. Then, a sheet-like active material layer with a size of 50 x 50 tra, which was crimped to 0.7 rrm, was crimped to form an anode plate +31 and a cathode plate (4) (41).The anode plate (3) and Cathode plate (41 (41
have thicknesses of 2, 4 and 1.2, respectively. It is.

以上のようにして得た1板の陽極板(3)と2枚の陰極
板(4)(4)をガラス繊#に製セパレータ(51(5
1(51(51を介して交互に積重ねた電極群を樹脂製
例えばABS樹脂の電槽(6)内に介挿するっ 次いで比重1.30の希硫酸電解液を1Qcc注液して
両極板+31 f41 (41及びセパレータf51 
(5)f5)(5)に含浸保持せしめた後、陰・陽極外
部端子(7H81を取付けた電槽蓋(9)を装着して容
量1AHの鉛vM電池α0)を得た。そして化成充電処
理して使用可能とする。
One anode plate (3) and two cathode plates (4) (4) obtained as described above are combined with a separator (51 (5) made of glass fiber #).
1 (51) Insert the electrode groups stacked alternately through 51 into a resin container (6) made of ABS resin, for example. Next, pour 1 Qcc of dilute sulfuric acid electrolyte with a specific gravity of 1.30 to separate the electrodes. +31 f41 (41 and separator f51
(5) f5) After impregnating and retaining (5), a battery case lid (9) with negative and anode external terminals (7H81 attached) was attached to obtain a lead vM battery α0 with a capacity of 1 AH. Then, it undergoes chemical charging treatment to make it usable.

そして満充電された鉛蓄電池10)を包装材として ゛
ポリプロピレン製のプラスチ・リクパ・νケージ(11
1にて完全密閉し、豆本活性ガスとして窒素(12)を
前記パ噌ケージ(111内に同時に封入して保存状態の
鉛蓄電池(10)を得る。
Then, the fully charged lead-acid battery 10) is used as a packaging material and the ``Polypropylene Plasti Rikupa ν Cage (11
The battery cage (111) is completely sealed and nitrogen (12) is simultaneously sealed as an active gas into the battery cage (111) to obtain a preserved lead-acid battery (10).

このようにして保存状態に置かれた化成処理後の鉛蓄電
池へ)と前記パ叩ケージQllなしで保存した場合の比
較用鉛蓄電池四との電池特性を比較測定してみた。
The battery characteristics of the lead-acid battery stored in this manner (after chemical conversion treatment) and the comparison lead-acid battery 4 stored without the packaging cage Qll were compared and measured.

測定方法は、鉛蓄電池をi、5A/dm2に相当する℃
)及び40℃の雰囲気下で保存し、0.10電流で放電
して放電終止電圧(1,7V)に達する迄の放電容量を
測定し、両電池(Al(B)の残存容量を比較した。
The measurement method is to measure the lead-acid battery at i, 5A/dm2 in °C.
) and stored in an atmosphere at 40°C, discharged at 0.10 current, measured the discharge capacity until reaching the final discharge voltage (1.7 V), and compared the remaining capacity of both batteries (Al(B)). .

第2図は室温で保存したときの電池特性図であり、上の
直線は蓄電池iA)、下の直線は比較蓄電油量を示す。
FIG. 2 is a battery characteristic diagram when stored at room temperature, where the upper straight line shows the storage battery iA), and the lower straight line shows the comparative storage oil amount.

本発明の保存方法によれば同一保存期間で比較して明ら
かに自己放電量が少ないことがわ刀シる。
It can be seen that according to the storage method of the present invention, the amount of self-discharge is clearly lower than that for the same storage period.

一方第6図は40℃の雰囲気で保存した場合のしている
。この図から明らかなように4o℃の雰囲気中で保存し
た場合、室温で保存した場合よりも自己放電量が大きく
なるが、それでも本発明の保存方法によれば自己放電量
は抑制される。
On the other hand, FIG. 6 shows the case where the sample was stored in an atmosphere at 40°C. As is clear from this figure, when stored in an atmosphere of 40° C., the amount of self-discharge is greater than when stored at room temperature, but even so, according to the storage method of the present invention, the amount of self-discharge is suppressed.

自己放電現象は化成充電処理によって蓄電池内で生成さ
れた活物質であるPbO2が保存中に電解液中の硫酸(
l(2SO4)との反応により一部PbSO4の生成反
応が起こり、蓄電池の残存容量が減少したこと1こ依存
するが、この反応は主として活物質層の表面、換言すれ
ば蓄電池内の雰囲気rc最もさらされ易い部分に局部的
に起こる。本発明では、蓄電池(10)の保存に関して
斯かる問題点を解消するためにith池00)をポリプ
ロピレン製のパ・リケージ01)で完全密閉し、且窒素
ガス(12)をそのパ・・Jケージ(Ill内に充満さ
ぜることIζなり、蓄γU池0αの樹脂製電槽(6)を
通過し、侵入する酸素カスを告無にすることにより前述
した蓄電池の自已放1ハが抑制され、電池特性の低下を
防止することか可能となる。
The self-discharge phenomenon occurs when PbO2, an active material produced in the storage battery through chemical charging treatment, is discharged from sulfuric acid (
Due to the reaction with L(2SO4), a part of PbSO4 production reaction occurred, and the remaining capacity of the storage battery decreased.This reaction mainly depends on the surface of the active material layer, in other words, the atmosphere inside the storage battery. Occurs locally in exposed areas. In the present invention, in order to solve such problems regarding the storage of the storage battery (10), the ith pond 00) is completely sealed with a polypropylene par cage 01), and the nitrogen gas (12) is By filling the cage (Ill) with Iζ and passing through the resin battery case (6) of the storage γU battery 0α and invading oxygen scum, the above-mentioned self-release of the storage battery is suppressed. This makes it possible to prevent deterioration of battery characteristics.

両極板及びセパレータに電解液を含浸保持せしめると共
に遊離の電解液が存在しないように前記電解液の量を制
限した鉛蓄電池において、化成処理後の鉛蓄電池を窒素
ガス等の不活性ガス雰囲気の下で完全密閉包装すること
iこより、蓄電池の自己放電反応を促進させる酸素を実
質的に電池内から排除することか可能となり、蓄′心池
の自己放電を防止でき、シフJ)も定期的な補充ξ等の
煩雑な保守も不要になる等、その工業的価値は極めて大
きい。
In a lead-acid battery in which both electrode plates and separators are impregnated with an electrolyte and the amount of the electrolyte is limited so that no free electrolyte exists, the lead-acid battery after chemical conversion treatment is placed under an inert gas atmosphere such as nitrogen gas. By packaging the battery in a completely sealed manner, it is possible to substantially eliminate oxygen, which promotes the self-discharge reaction of the storage battery, from inside the battery, preventing self-discharge of the storage battery, and Schiff J) Its industrial value is extremely great, as it eliminates the need for complicated maintenance such as replenishment ξ.

【図面の簡単な説明】 第1図は保存時iこおける鉛蓄電池の縦断面図、第2図
は本発明方法により保存した蓄1α池四と比較蓄電池C
B+との室温における電池特性図、第3図は同じ(40
℃における゛電池特性図である。 (11)陰極板、(31−l′eJtJii板、(5)
・セパレータ−,o2)・・・不活性ガス、(1J)・
・バ・リヶージ。
[Brief explanation of the drawings] Fig. 1 is a vertical cross-sectional view of a lead-acid battery during storage, and Fig. 2 is a comparison storage battery C with a storage battery stored by the method of the present invention.
The battery characteristic diagram at room temperature with B+, Figure 3 is the same (40
It is a battery characteristic diagram at ℃. (11) Cathode plate, (31-l'eJtJii plate, (5)
・Separator, o2)...Inert gas, (1J)・
・Ba Ligage.

Claims (1)

【特許請求の範囲】[Claims] (1) 陰・陽画極板と、該両極板間に設けられたセパ
レータを具備し、前記両極板及びセパレータに電解液を
含浸保持せしめると共に遊離の電解液が存在しないよう
に前記電解液の四を制限した鉛蓄電池におい七、化成処
理後の鉛蓄電池を窒素ガス等の不活性ガス雰囲気の下で
完全密閉包装することを特徴とする鉛蓄電池の保存方法
(1) A negative/positive picture electrode plate and a separator provided between the two electrode plates are provided, and the electrolytic solution is impregnated into the two electrode plates and the separator and retained, and the electrolytic solution is mixed into four parts so that there is no free electrolyte. 7. A method for preserving a lead-acid battery, which is characterized by completely hermetically packaging the lead-acid battery after chemical conversion treatment in an inert gas atmosphere such as nitrogen gas.
JP58139550A 1983-07-29 1983-07-29 How to store lead acid batteries Expired - Lifetime JPH0789486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58139550A JPH0789486B2 (en) 1983-07-29 1983-07-29 How to store lead acid batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58139550A JPH0789486B2 (en) 1983-07-29 1983-07-29 How to store lead acid batteries

Publications (2)

Publication Number Publication Date
JPS6030053A true JPS6030053A (en) 1985-02-15
JPH0789486B2 JPH0789486B2 (en) 1995-09-27

Family

ID=15247868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58139550A Expired - Lifetime JPH0789486B2 (en) 1983-07-29 1983-07-29 How to store lead acid batteries

Country Status (1)

Country Link
JP (1) JPH0789486B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252071A (en) * 1986-04-24 1987-11-02 Shin Kobe Electric Mach Co Ltd Manufacture of instantaneous use lead-acid battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252071A (en) * 1986-04-24 1987-11-02 Shin Kobe Electric Mach Co Ltd Manufacture of instantaneous use lead-acid battery

Also Published As

Publication number Publication date
JPH0789486B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
US3839089A (en) Water activated lead acid storage battery cell having dry discharged electrodes
JPH10188963A (en) Sealed lead-acid battery
JPS6030053A (en) Storage method of lead-acid battery
JPS58154171A (en) Lead-acid battery
JPS58115775A (en) Lead-acid battery
JPS6030052A (en) Storage method of lead-acid battery
JP3185300B2 (en) Sealed lead-acid battery
JPS635866B2 (en)
JPS63152871A (en) Sealed lead-acid battery
JPS6048867B2 (en) lead acid battery
JPS62254359A (en) Hydrogen cell
JPH0864227A (en) Sealed lead-acid battery
JPH05242882A (en) Lead-acid battery
JP2003178806A (en) Charging control method of lead-acid battery
JP2982376B2 (en) Manufacturing method of sealed lead-acid battery
JP3496241B2 (en) How to charge lead storage batteries
JPS6321761A (en) Sealed lead-acid battery
JPH0468749B2 (en)
JPS5848367A (en) Lead storage battery
JPS58115774A (en) Lead-acid battery
JPS63146358A (en) Enclosed lead storage battery
JPS58201252A (en) Formation of enclosed lead storage battery
JPS607070A (en) Manufacture of sealed lead-acid battery
JPS603858A (en) Manufacture of negative plate for sealed lead storage battery
JPH11233134A (en) Lead-acid battery