JPS6028223A - Manufacture of semiconductor crystal thin film - Google Patents

Manufacture of semiconductor crystal thin film

Info

Publication number
JPS6028223A
JPS6028223A JP13590683A JP13590683A JPS6028223A JP S6028223 A JPS6028223 A JP S6028223A JP 13590683 A JP13590683 A JP 13590683A JP 13590683 A JP13590683 A JP 13590683A JP S6028223 A JPS6028223 A JP S6028223A
Authority
JP
Japan
Prior art keywords
film
semiconductor
thin film
implanted
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13590683A
Other languages
Japanese (ja)
Other versions
JPH0570928B2 (en
Inventor
Toshio Yoshii
俊夫 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13590683A priority Critical patent/JPS6028223A/en
Publication of JPS6028223A publication Critical patent/JPS6028223A/en
Publication of JPH0570928B2 publication Critical patent/JPH0570928B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02694Controlling the interface between substrate and epitaxial layer, e.g. by ion implantation followed by annealing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To reduce lattice defects and inactivate electrically a deep level caused by the defect when a semiconductor thin film is formed on an insulating substrate and ions are implanted and the film is made amorphous and subjected to heat-treatment to recrystallize to form a semiconductor crystal thin film by a method wherein a hallide of composing element of the semiconductor is used as an ion seed to be implanted. CONSTITUTION:An Si film 12 is deposited on an insulating substrate such as single crystal sapphire by a vapor deposition method and SiF<+> ions are implanted as ion seeds. At that time, an accelerating voltage is set at 170kV in order to make projected flying distance positioned nearly the center of the film 12 to convert the surface of the film 12 into an amorphous layers 13 selecting the dosage at 2X10<15>/cm<2>. After that, the layer 13 is subjected to heat-treatment at 1,000 deg.C for about 20min in an N2 gas atmosphere and the layer 13 is recrystallized in the manner of solid phase epitaxial growth to become a recrystallized Si layer 14. With this constitution, non-pair electron produced by a lattice defect is inactivated by fluorine.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、SO8等絶縁性基板上の半導体結晶薄膜の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a method for manufacturing a semiconductor crystal thin film on an insulating substrate such as SO8.

〔従来技術とその問題点〕[Prior art and its problems]

絶縁性基板、特に絶縁性単結晶基板上のシリコン膜を用
いた集積回路は、その構造上、高密度化、高速度化の点
において半導体基板を用いたものよりも有利である。反
面、基板上に異種の単結晶膜を成長させるためシリコン
膜には高密度の格子欠陥が存在するという欠点をもつ。
Integrated circuits using a silicon film on an insulating substrate, particularly an insulating single crystal substrate, are structurally more advantageous than those using a semiconductor substrate in terms of higher density and higher speed. On the other hand, since a single crystal film of a different type is grown on a substrate, the silicon film has the disadvantage of having a high density of lattice defects.

例えばSOS (サファイア単結晶基板上のシリコン膜
)を用いてMOSデバイスを製作しその基本特性を調べ
てみるとバルクシリコンのMOSデバイスと比べ、ドレ
ーンリーク電流の増加、反転層移動度の低下が見られる
。前者はドレーン側近傍における生成再結合電流による
ものであシ、後者はシリコン膜に散乱中心が多いため、
キャリア担体が散乱することによって起こる。そして、
これらは共に格子欠陥に基因しているものであるためそ
の大幅な減少及び格子欠陥によってつくられる深い準位
を電気的に不活性化することが要求されている。
For example, when we fabricated a MOS device using SOS (silicon film on a sapphire single crystal substrate) and investigated its basic characteristics, we found an increase in drain leakage current and a decrease in inversion layer mobility compared to bulk silicon MOS devices. It will be done. The former is due to recombination current generated near the drain side, and the latter is due to the large number of scattering centers in the silicon film.
This occurs due to scattering of the carrier. and,
Since these are both caused by lattice defects, it is required to significantly reduce them and to electrically inactivate the deep levels created by lattice defects.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、半導体薄膜に存在する格子欠陥を減少
させると共に格子欠陥に基因する深い準位を電気的に不
活性化せしめる効果を与えることよシ、すぐれた特性を
もつ半導体装置用の絶縁性基板上の半導体結晶薄膜を得
ることにある。
An object of the present invention is to reduce lattice defects existing in a semiconductor thin film and to provide an effect of electrically inactivating deep levels caused by lattice defects. The purpose of this invention is to obtain a semiconductor crystal thin film on a transparent substrate.

〔発明の概要〕[Summary of the invention]

本発明は絶縁性基板上に形成した半導体結晶薄膜に該半
導体のハロゲン化合物をイオン注入し半導体膜の一部を
非晶質化した後、熱処理によシ該非晶質層を再結晶化さ
せ半導体膜に含まれていた格子欠陥を除去すると共に、
イオン注入されたハロゲン原子によシ格子欠陥における
不対電子を不活性化させることによシ半導体薄膜の電気
的特性を向上せしめるものである。
In the present invention, a halogen compound of the semiconductor is ion-implanted into a semiconductor crystal thin film formed on an insulating substrate to make a part of the semiconductor film amorphous, and then the amorphous layer is recrystallized by heat treatment. In addition to removing lattice defects contained in the film,
The electrical characteristics of the semiconductor thin film are improved by inactivating unpaired electrons in the lattice defects by the ion-implanted halogen atoms.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、イオン注入による非晶質化とその後の
熱処理によって半導体膜中の格子欠陥密度が大巾に減少
すると共に未だ存在する格子欠陥によって形成される不
対電子はハロゲン原子によって不活性化され、この結果
、半導体薄膜の電気的特性はバルク半導体のそれとほぼ
同等のものになる。
According to the present invention, the lattice defect density in the semiconductor film is greatly reduced by making it amorphous by ion implantation and subsequent heat treatment, and the unpaired electrons formed by the still existing lattice defects are inactivated by halogen atoms. As a result, the electrical properties of the semiconductor thin film become almost equivalent to those of the bulk semiconductor.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例について図面を参照して詳述する。第1
図に於いて絶縁性基板(11)として(110,2)面
を有するサファイア単結晶基板を用いた。
Embodiments of the present invention will be described in detail with reference to the drawings. 1st
In the figure, a sapphire single crystal substrate having a (110,2) plane was used as the insulating substrate (11).

その上にシリコン(Si)膜(12)を0.3μm堆積
した。成長方法は化学気相成長法(CVD法)であり、
その条件を成長温度950℃、成長速度2μm / m
inとすることによ、b、(ooi)シリコン単結晶膜
が形成される(第1図(a))。次にイオン種としてシ
リコンフッ素化合物(SiF)を選び射影飛程(Rp)
がシリコン膜のほぼ中央部になるよう加速電圧を170
kVに設定し、ドーズ量2×10cm の条件において
シリコン膜(12)へイオン注入し、シリコン表面側を
非晶質化(13)する。
A 0.3 μm thick silicon (Si) film (12) was deposited thereon. The growth method is chemical vapor deposition method (CVD method),
The conditions were a growth temperature of 950℃ and a growth rate of 2μm/m.
By setting in, a (ooi) silicon single crystal film is formed (FIG. 1(a)). Next, select silicon fluorine compound (SiF) as the ion species and calculate the projected range (Rp).
The acceleration voltage was set to 170° so that the
kV, and ions are implanted into the silicon film (12) at a dose of 2×10 cm 2 to make the silicon surface side amorphous (13).

(第1図(b))。次に1000℃、N2ガス雰囲気中
ニオいて20分間熱処理を行い、非晶質シリコン層(1
3)f:固相エピタキシャル的に再結晶化せしめる(第
1図(C))。
(Figure 1(b)). Next, heat treatment was performed for 20 minutes at 1000°C in an N2 gas atmosphere, and the amorphous silicon layer (1
3) f: Recrystallize in a solid phase epitaxial manner (FIG. 1(C)).

このようにして得られた試料を用い、次にMO8累子金
製作しその特性を評価した。試作方法はよく用いられて
いる多結晶シリコンゲート工程によった。Nチャ坏ル及
びPチャネルMO8)ランジスタにつき評価を行った結
果、キャリア移動度はNチャネルトランジスタでは80
0 cm2/ V−sec。
Using the sample thus obtained, MO8 graded gold was then manufactured and its properties were evaluated. The prototype was manufactured using a commonly used polycrystalline silicon gate process. As a result of evaluating N-channel transistors and P-channel MO8) transistors, carrier mobility is 80 for N-channel transistors.
0 cm2/V-sec.

Pチャネルトランジスタでは220 cm” /V・s
ecが得られ、従来の805M08)ランジスタにおけ
るキャリア移動度450 cm2/V −5ec (N
テヤネ/l/)、及び180 cm” /V・sec 
(Pチャネル)を大幅に上回ることが判明した。また、
ドレーンリーク電流も従来の508MO8)ランジスタ
における値1×10 A/μm11から大幅に改善され
1×12 10 A/μmになった。このようにキャリア移動度及
びドレーンリーク電流が大幅に改良された理由として、
再結晶化したシリコン層における格子欠陥密度が減少す
ること及びフッ素が格子欠陥による不対電子を電気的に
不活性化することが考えられる。
220 cm”/V・s for P-channel transistor
ec is obtained, and the carrier mobility in the conventional 805M08) transistor is 450 cm2/V -5ec (N
Teyane/l/), and 180 cm”/V・sec
(P channel). Also,
The drain leakage current was also significantly improved from the value of 1×10 A/μm11 in the conventional 508MO8) transistor to 1×1210 A/μm. The reason for the significant improvement in carrier mobility and drain leakage current is as follows.
It is thought that the lattice defect density in the recrystallized silicon layer decreases and that fluorine electrically inactivates unpaired electrons due to lattice defects.

〔発明の他の実施例〕[Other embodiments of the invention]

上述した工程を経て得られたSO8膜に対し、さらにシ
リコン界面側の結晶性をも改良するだめ第2図に示す工
程をとることができる。すなわち、SiFを加速エネル
ギー350KeV1 ドーズ量15 −2 X10cm の条件でシリコン膜(22)へイオン注入
する(第2図(a))。これによシリコン界面側が非晶
質(23)される(第2図(b))。次に1000°C
N2ガス雰囲気中で20分間熱処理を行ないシリコン表
面側から非晶質層(23)を再結晶化する。この工程を
経た後、作られたMO8素子特性ではドレーンリーク電
流が畜らに1桁低下する効果が得られた。
In order to further improve the crystallinity of the silicon interface side of the SO8 film obtained through the steps described above, the steps shown in FIG. 2 can be performed. That is, SiF ions are implanted into the silicon film (22) at an acceleration energy of 350 KeV1 and a dose of 15 -2 x 10 cm (FIG. 2(a)). This makes the silicon interface side amorphous (23) (FIG. 2(b)). Then 1000°C
Heat treatment is performed for 20 minutes in an N2 gas atmosphere to recrystallize the amorphous layer (23) from the silicon surface side. After going through this process, the characteristics of the MO8 element produced had the effect of significantly reducing the drain leakage current by one order of magnitude.

この例においては、界面側、表面側それぞれ一回ずつイ
オン注入を行ったが、さらに同様な菌性でイオン注入、
熱処理工程を交互にくり返すことによって、よシ一層の
結晶性改善がなされる。
In this example, ion implantation was performed once each on the interface side and the surface side.
Crystallinity can be further improved by repeating the heat treatment process alternately.

また、本発明実施後のシリコン単結晶膜上にさらにシリ
コン膜をエピタキシャル成長させることによって所望の
膜厚のシリコン単結晶膜を得ることもできる。
Furthermore, a silicon single crystal film having a desired thickness can be obtained by further epitaxially growing a silicon film on the silicon single crystal film after implementing the present invention.

基板としては絶縁性単結晶基板であればよく、サファイ
ア(α−Adzes)以外にはスピネル(M、!90 
・A/zOs) 、酸化ベリリウム(BeO)、シリカ
(α−8i02) 、二酸化トリウム(ThOz)など
が挙げられる。
The substrate may be any insulating single crystal substrate, and in addition to sapphire (α-Adzes), spinel (M, !90
-A/zOs), beryllium oxide (BeO), silica (α-8i02), thorium dioxide (ThOz), and the like.

半導体薄膜としてはシリコンの他にジルマニウム、スズ
等があげられる。イオン注入条件は所望の非晶質層を形
成できる条件であればよく、イオン種はSiFの他に5
iFz、5iFa等の5i−F系。
Examples of the semiconductor thin film include zirmanium, tin, and the like in addition to silicon. The ion implantation conditions may be any conditions as long as they can form the desired amorphous layer, and the ion species may be 5 in addition to SiF.
5i-F series such as iFz and 5iFa.

8i(4,SiC]zの5i−C1系及び、5i−I系
化合物を用いてもよいことはもちろんである。また他の
半導体に対してもそのハロゲン系化合物を用いればよい
。熱処理温度は再結晶化が起こる温度であればよく50
0℃以上での炉処理、あるいはレーザ、電子線等の工坏
ルギービーム照射であってもよい。また熱処理雰凹気は
N2ガス、02ガス、Arガス等の不活性ガスそれぞれ
において同様な効果が認められた。シリコン膜形成法は
CVD法に限らず、真空蒸着法、分子線エピタキシャル
法などがある。
Of course, the 5i-C1 and 5i-I compounds of 8i(4,SiC]z may be used.The halogen compounds may also be used for other semiconductors.The heat treatment temperature is 50 as long as the temperature at which recrystallization occurs
Furnace treatment at 0° C. or higher, or irradiation with a mechanical energy beam such as a laser or an electron beam may be used. Furthermore, similar effects were observed in the heat treatment atmosphere using inert gases such as N2 gas, 02 gas, and Ar gas. The silicon film forming method is not limited to the CVD method, but includes a vacuum evaporation method, a molecular beam epitaxial method, and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(C)は本発明の一実施例を説明するた
めの工程断面図、第2図(a)〜(C)は本発明の他の
実施例を説明するための工程断面図である。 図において、 11.21・・・サファイア基板、12.22・・・シ
リコン単結晶膜、13.23・・・非晶質シリコン層、
14.24・・・再結晶化シリコン層。 代理人 弁理士 則 近 憲 佑 (ほか1名)第1図 第 2 図
FIGS. 1(a) to (C) are process sectional views for explaining one embodiment of the present invention, and FIGS. 2(a) to (C) are process sectional views for explaining another embodiment of the present invention. FIG. In the figure, 11.21... Sapphire substrate, 12.22... Silicon single crystal film, 13.23... Amorphous silicon layer,
14.24... Recrystallized silicon layer. Agent Patent Attorney Kensuke Chika (and 1 other person) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁性基板上の半導体薄膜をイオン注入により非
晶質化する工程と、その後熱処理によシ該非晶質領域を
再結晶化せしめる工程とを含んでおシ、かつ該イオン注
入におけるイオン種として該半導体の構成元素のハロゲ
ン化合物を用いることを特徴とする半導体結晶薄膜の製
造方法。
(1) The method includes a step of making a semiconductor thin film on an insulating substrate amorphous by ion implantation, and a step of recrystallizing the amorphous region by subsequent heat treatment, and ions in the ion implantation. A method for producing a semiconductor crystal thin film, characterized in that a halogen compound of a constituent element of the semiconductor is used as a seed.
JP13590683A 1983-07-27 1983-07-27 Manufacture of semiconductor crystal thin film Granted JPS6028223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13590683A JPS6028223A (en) 1983-07-27 1983-07-27 Manufacture of semiconductor crystal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13590683A JPS6028223A (en) 1983-07-27 1983-07-27 Manufacture of semiconductor crystal thin film

Publications (2)

Publication Number Publication Date
JPS6028223A true JPS6028223A (en) 1985-02-13
JPH0570928B2 JPH0570928B2 (en) 1993-10-06

Family

ID=15162589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13590683A Granted JPS6028223A (en) 1983-07-27 1983-07-27 Manufacture of semiconductor crystal thin film

Country Status (1)

Country Link
JP (1) JPS6028223A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6693324B2 (en) * 1996-04-26 2004-02-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having a thin film transistor and manufacturing method thereof
KR100843741B1 (en) 2007-03-31 2008-07-04 동국대학교 산학협력단 Method for preparing a silicon on sapphire thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6693324B2 (en) * 1996-04-26 2004-02-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having a thin film transistor and manufacturing method thereof
KR100843741B1 (en) 2007-03-31 2008-07-04 동국대학교 산학협력단 Method for preparing a silicon on sapphire thin film

Also Published As

Publication number Publication date
JPH0570928B2 (en) 1993-10-06

Similar Documents

Publication Publication Date Title
US4775641A (en) Method of making silicon-on-sapphire semiconductor devices
US7396747B2 (en) Hetero-integrated strained silicon n- and p-MOSFETs
JP2004014856A (en) Method for manufacturing semiconductor substrate and semiconductor device
US4693758A (en) Method of making devices in silicon, on insulator regrown by laser beam
JPH04250669A (en) Polysilicon thin film semiconductor device
JPS59155121A (en) Manufacture of semiconductor thin film
JPS6028223A (en) Manufacture of semiconductor crystal thin film
JPH04264724A (en) Manufacture of semiconductor substrate
KR930010093B1 (en) Forming method of semiconductor thin film
JPS62104021A (en) Formation of silicon semiconductor layer
JPS643046B2 (en)
JPS5860556A (en) Preparation of semiconductor device
JPS5885520A (en) Manufacture of semiconductor device
JPS59181609A (en) Manufacture of semiconductor device
JPS59228713A (en) Manufacture of semiconductor device
JPH0555142A (en) Crystallizing method for amorphous semiconductor layer
JPH0533527B2 (en)
JPS58176930A (en) Manufacture of semiconductor device
JPS5825222A (en) Manufacture of semiconductor device
JPS6065523A (en) Manufacture of semiconductor film
JPS60126813A (en) Manufacture of semiconductor device
JPS6091623A (en) Manufacture of semiconductor single crystal thin film
JPS5860530A (en) Manufacture of semiconductor film
JPH0396223A (en) Forming method for soi structure
JPH0516174B2 (en)