JPS6026712A - Intake of water stored in dam - Google Patents

Intake of water stored in dam

Info

Publication number
JPS6026712A
JPS6026712A JP58132196A JP13219683A JPS6026712A JP S6026712 A JPS6026712 A JP S6026712A JP 58132196 A JP58132196 A JP 58132196A JP 13219683 A JP13219683 A JP 13219683A JP S6026712 A JPS6026712 A JP S6026712A
Authority
JP
Japan
Prior art keywords
water
turbidity
intake
water level
taken
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58132196A
Other languages
Japanese (ja)
Other versions
JPS6328164B2 (en
Inventor
Akio Tsujikawa
辻川 秋雄
Toshio Hata
俊夫 畑
Masayoshi Suzuki
正義 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58132196A priority Critical patent/JPS6026712A/en
Publication of JPS6026712A publication Critical patent/JPS6026712A/en
Publication of JPS6328164B2 publication Critical patent/JPS6328164B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • E02B9/02Water-ways
    • E02B9/04Free-flow canals or flumes; Intakes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Barrages (AREA)

Abstract

PURPOSE:To suppress the reduction of effective stored water amount in a dam by a method in which when turbidity detected is more than a specified value, water is taken out of the water level of highest turbidity, and when the turbidity is less than the specified value, water is taken out of the water level of lowest turbidity. CONSTITUTION:The turbidity of each water level near the water intake portion is measured while moving a water quality sensor 9. In case where average intake turbidity in a water level coincides with a set value when a switcher 17 is on the manual setting side (b), an intake gate 2 is driven at the water level. Also, when the switcher 17 is on automatic setting side (a), data (turbidity and inflow amount) on the quality of incoming water are taken by an incoming water sensor 13. When the data exceed specified values, it is judged to be flood, the intake gate is driven, and water is taken from the water level of highest turbidity. Before turbid substances settle, water is discharged to maximum extent to prevent the reduction of effective storage amount. When the turbidity is less than a specified value, the gate 2 is driven to the water level of lowest turbidity, and water is taken from the water of lowest turbidity.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ダムから取水して発電した後下流河川に農、
工、上水用として放流するダム貯留水の取水方法に関す
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention provides agricultural and
Concerning methods of taking in water stored in dams and discharging it for water use.

〔発明の背景〕[Background of the invention]

一般に、水資源を有効利用するためダムを設置して、上
流河川から流入する河川水を一旦貯留し、このダムから
農業、工業又は上水用等(以下単に用水と称する)、に
必要な少なくとも所定量を取水して発電に利用した後、
下流河川に放流するようにしている。
Generally, in order to use water resources effectively, dams are installed to temporarily store river water flowing in from upstream rivers, and from this dam, at least the minimum amount of water necessary for agriculture, industry, water supply, etc. (hereinafter simply referred to as water supply) is installed. After taking a predetermined amount of water and using it for power generation,
The water is discharged into downstream rivers.

また、用水の水質は、洪水の如き自然現象時は別として
、低濁度のものが好ましいことから、特開昭48−76
349号公報等に示されたように、取水口の水位を可変
とし、且つ取水口付近の濁度を計測して常に低濁度水位
から取水するように゛している。
In addition, since it is preferable that the water quality of water be low in turbidity, except in times of natural phenomena such as floods,
As shown in Publication No. 349, etc., the water level at the water intake is made variable, and the turbidity near the water intake is measured so that water is always taken from a low turbidity water level.

ところが、洪水時等には上流から流入される汚濁物質に
よりダムの貯留水の濁度が増大されることがらシ、また
、洪水がおさまって清水が流入しても、汚濁物質が沈澱
するの゛に長期を要するため、水位によっては相当長期
に亘って高濁度になることがある。
However, during floods, the turbidity of the water stored in the dam increases due to pollutants flowing in from upstream, and even if the flood subsides and fresh water flows in, pollutants may settle. Depending on the water level, high turbidity may occur for a considerable period of time.

したがって、上述したように常に低濁度水位から取水す
るようにしていた従来の取水方法によると、次第に貯留
水金体が高濁度のものになシ、洪水後も相当長期に亘っ
て高濁度水を取水放流しなければならないという欠点が
あった。しかも、ダムに流入される汚濁物質の量に比べ
て取水放流される汚濁物質の量が少ないので、その分だ
けダム底部に汚濁物質が堆積することになシ、有効貯水
量が減少してしまうという欠点があった。
Therefore, as mentioned above, according to the conventional water intake method, which always takes water from a low turbidity water level, the stored water gradually becomes less turbid, and even after a flood, the turbidity remains high for a considerable period of time. The drawback was that water had to be taken in and discharged. Moreover, since the amount of pollutants taken in and discharged is smaller than the amount of pollutants flowing into the dam, the amount of pollutants deposited at the bottom of the dam decreases, reducing the effective water storage capacity. There was a drawback.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高濁度水の取水期間を短期化するとと
もに、汚濁物質を最大限放流して有効貯水量の減少を抑
制できるダム貯留水の取水方法を提供することにある。
An object of the present invention is to provide a method for intake of water stored in a dam, which can shorten the intake period of highly turbid water, discharge pollutants to the maximum extent, and suppress a decrease in effective water storage.

〔発明の概要〕[Summary of the invention]

本発明は取水量とダム取水部の水位方向における濁度分
布と水温分布とを検出し、これらの検出値から各取水水
位に対応させて平均取水濁度を試算するとともに、ダム
流入水の濁度を検出し、該検出濁度が規定値以上のとき
洪水と判断して前記試算平均取水濁度の最高濁度取水水
位から取水し、規定値未満のとき非洪水又は洪水終了と
判断して最低濁度水位から取水するようにし、これによ
って高濁度水の取水期間を短期化するとともに、汚濁物
質を最大限放流して有効貯水量の減少を抑制しようとす
ることにある。
The present invention detects the amount of water intake and the turbidity distribution and water temperature distribution in the water level direction of the dam water intake, and calculates the average intake water turbidity based on these detected values in correspondence with each intake water level, and also calculates the turbidity of the dam inflow water. When the detected turbidity is above a specified value, it is determined that there is a flood, and water is taken from the highest turbidity intake water level of the estimated average water intake turbidity, and when it is less than the specified value, it is determined that it is not a flood or that the flood has ended. The purpose is to intake water from the lowest turbidity water level, thereby shortening the intake period of highly turbid water, and to discharge pollutants to the maximum extent to suppress a decrease in the effective water storage volume.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on examples.

第1図に本発明の適用された一実施例の取水装置の全体
構成図を示し、第2及び第3図に実施例のフローチャー
トを示す。
FIG. 1 shows an overall configuration diagram of a water intake device according to an embodiment of the present invention, and FIGS. 2 and 3 show flowcharts of the embodiment.

第1図に示すように、ダム1には、任意の水位から取水
可能な選択取水ゲート2を具えた取水管3が設けられ、
取水ゲート2から取水された用水は取水管3を通し、図
示していない発電装置に導ひかれるようにンiっている
。取水ゲート2は、例えばスライドゲート方式となって
おシ、ゲート駆。
As shown in FIG. 1, a dam 1 is provided with a water intake pipe 3 equipped with a selective water intake gate 2 that can take water from any water level.
Water taken from the water intake gate 2 passes through a water intake pipe 3 and is led to a power generation device (not shown). The water intake gate 2 is, for example, a slide gate type.

動装置4により口〜プ5を介゛して上下に可変されるよ
うになっている。この取水ゲート2の開度は開度計6に
よって検出可能になっている。取水量は取水管3内に設
けられた流量センサ7を介して検知され、流量計8によ
って計測されるようになっている。取水部における濁度
と水温は水質センサ9を介して検知され、水質計10に
よって計測されるようになっている。水質センサ9は例
えばローブ1it−介して水質センサ駆動装置12によ
って水位方向に移動可能になっている。ダム1に流入さ
れる流入水の濁度及び流入量は、流入水センサ13によ
って計測され、テレメータ装置114からテレメータ装
置15に伝送されるようになっている。前記開度計6、
流量計7、水質計12、及びテレメータ装置15から出
力される各データは、データ処理装置16.に取9込ま
れるようになっており、このデータ処理装置16からは
前記取水ゲート駆動装置4と水質センサ駆動装置12に
、制御指令がそれぞれ与えられるようになっている。
It can be moved up and down by a moving device 4 via a mouth to a mouth 5. The opening degree of this water intake gate 2 can be detected by an opening meter 6. The amount of water intake is detected via a flow sensor 7 provided in the water intake pipe 3 and measured by a flow meter 8. Turbidity and water temperature in the water intake section are detected via a water quality sensor 9 and measured by a water quality meter 10. The water quality sensor 9 is movable in the water level direction by a water quality sensor driving device 12 via, for example, a lobe 1it. The turbidity and amount of inflow water flowing into the dam 1 are measured by the inflow water sensor 13 and transmitted from the telemeter device 114 to the telemeter device 15. the opening degree meter 6;
Each data output from the flow meter 7, water quality meter 12, and telemeter device 15 is processed by a data processing device 16. The data processing device 16 provides control commands to the water intake gate driving device 4 and the water quality sensor driving device 12, respectively.

また、データ処理装置16には、自動手動の切換器17
を介して操作卓18から制御指令が入力されるようにな
っている。
The data processing device 16 also includes an automatic/manual switch 17.
Control commands are input from the console 18 via the control console 18.

このように構成される実施例の動作をフローチャートを
参照しながら説明する。なお、自動手動の切換器17が
手動設定側に切替えられている場合は、操作卓18から
入力される設定取水濁度に基づき、第2図のフローチャ
ートに沿って制御され、自動設定側に切替えられている
場合は第3図のフローチャートに沿って制御される。
The operation of the embodiment configured as described above will be explained with reference to a flowchart. In addition, when the automatic/manual switch 17 is switched to the manual setting side, it is controlled according to the flowchart in Fig. 2 based on the set intake water turbidity input from the operation console 18, and is switched to the automatic setting side. If so, the control is performed according to the flowchart shown in FIG.

第2図に示したように、ステップ102においてデータ
処理装置16は、水質センサ駆動装置12f:起動して
水質センサ9を移動させながら、取水部付近の水位I 
(I=1.2.・・・・・・)の濁度Cxの分布と水温
TIの分布をそれぞれ計測する。
As shown in FIG. 2, in step 102, the data processing device 16 starts the water quality sensor driving device 12f and moves the water quality sensor 9 while controlling the water level I near the water intake section.
The distribution of turbidity Cx and water temperature TI of (I=1.2...) are measured respectively.

ここで工は例えば1mピッチに設定されているものとし
て説明する。次に、ステップ103に゛おいて切替器1
7の状態が判断され、手動設定の場合はステップ104
を介してステップ105に移行し、取水の水位(J)f
:1mピッチで変えた場合の各取水水位Jにおける平均
取水濁度を試算する。
Here, the description will be made assuming that the pitch is set to, for example, 1 m pitch. Next, in step 103, the switch 1
7 is determined, and if it is manual setting, step 104 is performed.
The process moves to step 105 via
: Calculate the average intake water turbidity at each intake water level J when changing at 1 m pitch.

この平均取水78度は次式(1)、 (2)によってめ
られる。即ち、第4図の模式図に示すように、取水ゲー
ト2から取水される取水量をQ(m/s)、水温分布に
よる貯留水の密度勾配をε、取水ゲート2の開口部形状
係数全θ、重力加速度をg(−9,8m / s ) 
、係数をGとしたとき、取水に係る流動層の厚みδ(m
)は次式(1)で表わすことができる。
This average water intake of 78 degrees can be calculated using the following equations (1) and (2). That is, as shown in the schematic diagram of FIG. 4, the amount of water taken from the water intake gate 2 is Q (m/s), the density gradient of the stored water due to the water temperature distribution is ε, and the opening shape factor of the water intake gate 2 is θ, gravitational acceleration g (-9,8 m/s)
, when the coefficient is G, the thickness of the fluidized bed related to water intake δ(m
) can be expressed by the following equation (1).

この流動層厚みδに含まれる水位工の前記検出濁度CI
とし、それらの水位Iが取水量Qに占める割合を重み係
数αXと設定すると、任意の取水水位J (J+=l、
2.・・・・・・)における平均取水濁度DJは、次式
(2)で表わすものとなる。
The detected turbidity CI of the water level included in this fluidized bed thickness δ
If we set the proportion of these water levels I to the water intake amount Q as the weighting coefficient αX, then any water intake water level J (J+=l,
2. The average intake water turbidity DJ at ...) is expressed by the following equation (2).

DJ=Σα!・Cx ・・川・・・・(2)このように
して試算した平均取水濁度DJが、操作卓18から与え
られている設定取水濁度と一致すれば(ステップ106
)、ステップ107に移行して取水ゲート2の位置をそ
の取水水位Jに移動すべく、取水ゲート駆動装置4に制
御指令を出力する。なお、ステップ106において一致
していなければ、順次他の取水水位Jについて平均取水
濁度DJt試算して一嵌する取水水位Jt=割シ出す。
DJ=Σα!・Cx...River... (2) If the average intake water turbidity DJ calculated in this way matches the set intake water turbidity given from the operation console 18 (step 106
), the process proceeds to step 107, and a control command is output to the water intake gate driving device 4 in order to move the position of the water intake gate 2 to the intake water level J. If they do not match in step 106, the average intake water turbidity DJt is calculated for other intake water levels J in order to determine the intake water level Jt that fits.

このようにして所望とする濁度の取水を行なわせている
のである。
In this way, water intake with the desired turbidity is achieved.

自動の場合は、第2図のステップ103がら第3図のス
テップ201を介してステップ202に移行し、両式(
1)、 (2)に基づき平均取水濁度DJを試算し、そ
の中で最高と最低の平均取水濁度を示す最高濁度取水水
位と最低濁度取水水位をめる。
In the automatic case, the process moves from step 103 in FIG. 2 to step 202 via step 201 in FIG. 3, and both formulas (
Calculate the average intake water turbidity DJ based on 1) and (2), and calculate the highest and lowest turbidity intake water levels that indicate the highest and lowest average intake turbidity.

次ニ、ステップ203において、テレメーク装置15か
ら流入水の水質データ(濁度、流入量)を取p込み、流
入量と濁度が規定値以上であれば洪水と判断し、ステッ
プ204に移行して、前記最高濁度取水水位に取水ゲー
ト2を駆動して高濁度水を取水する。一方、濁度が規定
値未満の場合又は、洪水でないと判断しf′c、場合は
ステップ205に移行して、前記最高濁度取水水位に取
水ゲート2を駆動して低濁度水を取水する。
Next, in step 203, the water quality data (turbidity, inflow amount) of the inflow water is imported from the telemake device 15, and if the inflow amount and turbidity are above the specified values, it is determined that it is a flood, and the process moves to step 204. Then, the water intake gate 2 is driven to the highest turbidity intake water level to intake high turbidity water. On the other hand, if the turbidity is less than the specified value, or if it is determined that there is no flood, the process moves to step 205, and the water intake gate 2 is driven to the maximum turbidity intake water level to intake low turbidity water. do.

したがって、本実施例によれば、第5図(a)に示す流
入水濁度の変化に一致させて、第5図(b)のように取
水の濁度を制御することができる。これに対し、前述し
た従来法によれば、第6図(a)に示す流入水濁度の変
化に対し、第6図(b)に示すように取水の濁度変化が
遅れたものとなシ、洪水終了時点から相当遅れて清水の
取水が行なわ扛ることになるのである。
Therefore, according to this embodiment, the turbidity of intake water can be controlled as shown in FIG. 5(b) in accordance with the change in inflow water turbidity shown in FIG. 5(a). On the other hand, according to the conventional method described above, the change in the turbidity of the intake water is delayed as shown in Figure 6 (b) with respect to the change in the turbidity of the inflow water shown in Figure 6 (a). However, the intake of fresh water will be carried out quite late after the end of the flood.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、高汚濁水の取水
期間が短期化さルるとともに、汚濁物質が沈澱しないう
ちに最大限放流することができ、これによって有効貯水
量の減少が抑制されるという効果がある。
As explained above, according to the present invention, the intake period of highly polluted water can be shortened, and the maximum amount of water can be discharged before pollutants settle, thereby suppressing a decrease in the effective water storage amount. It has the effect of being

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の適用された一実施例の全体構成図、第
2図及び第3図は実施例フローチャート、第4図は説明
図、第5図及び第6図は効果を説明するだめの濁度変化
を示す線図である。 1・・・ダム、2・・・取水ゲート、3・・・取水管、
4・・・取水ゲート駆動装置、6・・・開度計、7・・
・流量センサ、8・・・流量計、9・・・水質センサ、
10・・・水質計、12・・・水質センサ駆動装置、1
3・・・流入水センサ、16・・・データ処理装置。 代理人 弁理士 鵜沼辰之 芋 l 固 第22 茅 3 図 163より 第4− 目
Figure 1 is an overall configuration diagram of an embodiment to which the present invention is applied, Figures 2 and 3 are flowcharts of the embodiment, Figure 4 is an explanatory diagram, and Figures 5 and 6 are for explaining the effects. It is a line diagram showing turbidity change of. 1... Dam, 2... Water intake gate, 3... Water intake pipe,
4... Water intake gate drive device, 6... Openness gauge, 7...
・Flow rate sensor, 8...flow meter, 9...water quality sensor,
10...Water quality meter, 12...Water quality sensor drive device, 1
3... Inflow water sensor, 16... Data processing device. Agent Patent Attorney Tatsunoimo Unuma l Kata No. 22 Kaya 3 From Figure 163, 4th item

Claims (1)

【特許請求の範囲】[Claims] 1、取水量と取水部の水位方向における濁度分布と水温
分布とを検出し、これらの検出値から各取水水位に対応
させて平均取水濁度を試算するとともに、ダム流入水の
濁度を検出し、該検出濁度が規定値以上のときは前記試
算平均取水濁度の最高濁度取水水位から取水し、規定値
未満のときは最低濁度取水水位から取水することを特徴
とするダム貯留水の取水方法。
1. Detect the amount of water intake and the turbidity distribution and water temperature distribution in the direction of the water level at the water intake, and from these detected values, calculate the average intake water turbidity corresponding to each intake water level, and calculate the turbidity of the dam inflow water. and when the detected turbidity is above a specified value, water is taken from the highest turbidity intake water level of the estimated average intake water turbidity, and when it is less than the specified value, water is taken from the lowest turbidity intake water level. How to take in stored water.
JP58132196A 1983-07-20 1983-07-20 Intake of water stored in dam Granted JPS6026712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58132196A JPS6026712A (en) 1983-07-20 1983-07-20 Intake of water stored in dam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58132196A JPS6026712A (en) 1983-07-20 1983-07-20 Intake of water stored in dam

Publications (2)

Publication Number Publication Date
JPS6026712A true JPS6026712A (en) 1985-02-09
JPS6328164B2 JPS6328164B2 (en) 1988-06-07

Family

ID=15075640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58132196A Granted JPS6026712A (en) 1983-07-20 1983-07-20 Intake of water stored in dam

Country Status (1)

Country Link
JP (1) JPS6026712A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541780U (en) * 1991-11-01 1993-06-08 株式会社クニトミ Towel printing device
JPH06115236A (en) * 1992-10-07 1994-04-26 Kunitomi:Kk Method of printing thick fabric
JP2006037354A (en) * 2004-07-22 2006-02-09 Hokuriku Electric Power Co Inc:The Method and equipment for controlling water intake of run-of-river type hydro-electric power plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541780U (en) * 1991-11-01 1993-06-08 株式会社クニトミ Towel printing device
JPH06115236A (en) * 1992-10-07 1994-04-26 Kunitomi:Kk Method of printing thick fabric
JP2006037354A (en) * 2004-07-22 2006-02-09 Hokuriku Electric Power Co Inc:The Method and equipment for controlling water intake of run-of-river type hydro-electric power plant

Also Published As

Publication number Publication date
JPS6328164B2 (en) 1988-06-07

Similar Documents

Publication Publication Date Title
CN110647039B (en) Synchronous control self-adaptive balance scheduling method for long-distance open channel water delivery project
JPS6026712A (en) Intake of water stored in dam
CN107544569A (en) A kind of V-type filter state keeps the control method of constant level
JP3293193B2 (en) Weir discharge calculation method
JPH04104307A (en) Control method for dam discharge rate
JPS6070210A (en) Controller for surface intake gate
JPS60239814A (en) Control method of dam
JPS6162115A (en) Water level control method for dam reservoir
JPH05180169A (en) Controller for water level in pump well
JP3018767B2 (en) Water level adjustment device
JPS6216283B2 (en)
JP3544704B2 (en) Turbine generator control device
JPS5911127B2 (en) Estuary weir water level control system
JP7029671B2 (en) Water intake device
SU589005A1 (en) Method of controlling a pulp thickening process
JPH08159006A (en) Head tank water level regulation control device for hydraulic power plant in snowy area
JP2003303024A (en) Method, system and program for controlling water level of dam
JPH07138930A (en) Planed maximum dam water discharge control method device, and dam water discharge facilities using the method and device
JPS5834192B2 (en) Gensuijiyoukaseigiyosouchi
JPS6488722A (en) Water level controller
JPH0757942B2 (en) Water level control device
SU1659989A1 (en) Water-consumption measuring device used in irrigation systems
JPH0438474B2 (en)
JPH0412331Y2 (en)
JP2006045914A (en) Sluice gate device