JPS6026601B2 - Method of forming rough shaped steel pieces - Google Patents

Method of forming rough shaped steel pieces

Info

Publication number
JPS6026601B2
JPS6026601B2 JP14415079A JP14415079A JPS6026601B2 JP S6026601 B2 JPS6026601 B2 JP S6026601B2 JP 14415079 A JP14415079 A JP 14415079A JP 14415079 A JP14415079 A JP 14415079A JP S6026601 B2 JPS6026601 B2 JP S6026601B2
Authority
JP
Japan
Prior art keywords
rolling
slab
hole
width
rough
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14415079A
Other languages
Japanese (ja)
Other versions
JPS5668502A (en
Inventor
輝行 中西
俊幸 阿久根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14415079A priority Critical patent/JPS6026601B2/en
Publication of JPS5668502A publication Critical patent/JPS5668502A/en
Publication of JPS6026601B2 publication Critical patent/JPS6026601B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Description

【発明の詳細な説明】 本発明は、粗形鋼片の成形方法に係り、特に、ウェブと
フランジを有する形鋼を圧延するための相形鋼片を、分
魂圧延法により熱間で製造する際に用いるに好適な、槌
形鋼片の成形方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a rough-shaped steel slab, and in particular, to hot-produce a compatible steel slab for rolling a section steel having a web and a flange by a soul rolling method. The present invention relates to a method for forming a hammer-shaped steel piece suitable for actual use.

従来、H形鋼若しくは1型鋼等のウェブとフランジを有
する形鋼を圧延するための粗形鋼片を分魂圧延法にて製
造する際には、造擁された鋼塊から多数パスを費やして
粗形鋼片としていた。
Conventionally, when manufacturing a rough section steel piece for rolling a section steel having a web and a flange, such as H section steel or 1 section steel, by the split soul rolling method, many passes were taken from the assembled steel ingot. It was made into a rough shaped steel piece.

即ち、このような槌形鋼片の分塊圧延方法は、上下水平
ロールに複数の孔型を配置した高揚程2重逆転式分塊圧
延機で行なわれ、一般的な圧延手順は、第1図に示す如
くであった。即ち、まず、第1図Aに示すような直方体
状の角形鋼塊10を、第1図Bに示す如く、圧延ロール
12,24のブルヘッド孔型12一1、14−1で、粗
形鋼片12一2,14一2に導入可能な矩形断面を有す
る中間鋼片16となる迄フラットに圧延し、次いで、第
1図Cに示す如く、粗形孔型12−2,14−2で造形
圧延して、第1図Eに示すような、所定断面形状を有す
る槌形鋼片18を得るようにしている。この造形圧延の
途中パスにおいて、粗形孔型12一2,14一2の側面
12−2a,14−2aから中間鋼片の噛出し16aが
出るため、第1図Dに示す如く、ボックス孔型12−3
,14−3で随時噛出し16aを平らにするエッジング
圧延が行なわれている。又、このような圧延では、中間
鋼片16のフランジ部16bが、ウェブ部16cの延伸
作用に影響されて、同時延伸が行なわれるため、造形圧
延で粗形孔型12一2、14一2のフランジ部に中間鋼
片16を充満させるためには、ウェブ幅の大きな粗形鋼
片になるほど中間鋼片16の矩形断面の高さ日は大きい
ことが必要で、粗形鋼片18のフランジ幅hとの比H/
h‘ま、一般に2倍以上を必要とされる。従って従来は
、例えば下記第1表に示すようなパススケジュールによ
り圧延を行なっていた。表において、X印は90o転回
をあらわすものである。
That is, this method of blooming a hammer-shaped steel piece is carried out using a high-head double reversing type blooming mill in which a plurality of grooves are arranged on the upper and lower horizontal rolls, and the general rolling procedure is as follows: It was as shown in the figure. That is, first, a square steel ingot 10 in the shape of a rectangular parallelepiped as shown in FIG. It is rolled flat until it becomes an intermediate steel piece 16 with a rectangular cross section that can be introduced into the pieces 12-2 and 14-2, and then, as shown in FIG. Shape rolling is performed to obtain a hammer-shaped steel piece 18 having a predetermined cross-sectional shape as shown in FIG. 1E. In the middle pass of this shape rolling, the intermediate steel billets 16a come out from the side surfaces 12-2a, 14-2a of the rough hole dies 12-2, 14-2, so that the box holes are formed as shown in FIG. 1D. Type 12-3
, 14-3, edging rolling is performed to flatten the protrusion 16a from time to time. In addition, in such rolling, the flange portion 16b of the intermediate steel piece 16 is simultaneously stretched under the influence of the stretching action of the web portion 16c. In order to fill the flange portion of the intermediate steel slab 16 with the intermediate steel slab 16, it is necessary that the height of the rectangular cross section of the intermediate steel slab 16 be larger as the web width becomes larger. Ratio to width h H/
h'Well, generally more than twice as much is required. Conventionally, therefore, rolling was carried out according to a pass schedule as shown in Table 1 below, for example. In the table, the X mark represents a 90° turn.

第1表このような従釆の圧延方法では、次のような欠点
があった。
Table 1 This type of secondary rolling method had the following drawbacks.

即ち、‘1’ 鋼塊10から粗形鋼片18を得るために
パス回数が多くなり、更にボックス孔型12一3,14
一3でのエッジング圧延のため90o転回回数の増加を
招き分魂圧延能率が低い。
That is, the number of passes is increased in order to obtain the rough-shaped steel slab 18 from the '1' steel ingot 10, and the box hole molds 12-3, 14 are
Because of the edging rolling at 1-3, the number of 90o turns increases, resulting in low part-rolling efficiency.

■ ウェブ部の庄下が主体となるため、ウェプ部18c
の延伸がフランジ部18bに比べて著しく大きく、第2
図に示すウェブトング18dが大きくなり、この部分の
切り捨てによる歩止り低下が大きい。
■ Since Shoshita of the web part is the main part, the web part 18c
The extension of the second part is significantly larger than that of the flange part 18b.
The web tongs 18d shown in the figure become larger, and the yield decreases significantly due to cutting off this portion.

【3’ウェブ部18cの圧下が主体となるため、鋼塊1
01こ存在するブローホール、スキンホール或いは横割
れなどの表面欠陥の圧着が、フランジ部18bでは不十
分で、槌形鋼片18での表面癖除去の手入工程が必要と
なる。
[3' Since the reduction is mainly of the web part 18c, the steel ingot 1
The flange portion 18b is insufficient in crimping existing surface defects such as blowholes, skin holes, or horizontal cracks, and a maintenance process for removing surface irregularities using the hammer-shaped steel piece 18 is required.

前記のような問題点を解決するため、発明者等は、連続
鋳造製のスラブを使用し、スラブの幅方向の裸返し圧下
(エッジング圧延)を、第1図のフルヘツド孔型12−
1,14一1或いはボックス孔型12一3,14−3で
行なって、いわゆるドッグボーン形断面形状の中間鋼片
とし、しかる後、粗形孔型12一2,14一2で造形し
て、所定断面形状の粗形鋼片とする粗形鋼片の成形方法
を提案し、粗形鋼片の歩止り向上や表面癖手入工程の省
略などに大きな効果をあげているが、圧延能率の点では
従来法に比べて大きな改善はみられず、特にエッジング
圧延は、操作者の熟練を要し被圧延材のねじれにより圧
延続行不可能となる場合もみられ、更に改善が望まれて
いた。
In order to solve the above-mentioned problems, the inventors used a slab made by continuous casting and carried out bare back rolling (edging rolling) in the width direction of the slab using the full-head hole type 12-1 shown in FIG.
1, 14-1 or box hole molds 12-3, 14-3 to obtain an intermediate steel piece with a so-called dogbone cross-sectional shape, and then shaped with rough hole molds 12-2, 14-2. proposed a method for forming rough-shaped steel slabs into rough-shaped steel slabs with a predetermined cross-sectional shape, and achieved great effects in improving the yield of rough-shaped steel slabs and omitting the surface roughening process, but the rolling efficiency No significant improvement was seen compared to the conventional method in terms of edging rolling, and in particular, edging rolling required operator skill and there were cases where rolling could not be continued due to twisting of the rolled material, so further improvements were desired. .

本発明は、前記のような問題点をすべて解決するべくな
されたものであり、高能率で歩止りの高い良質な粗形鋼
片を得ることができる粗形鋼片の成形方法を提供するこ
とを目的とする。
The present invention has been made in order to solve all of the above-mentioned problems, and it is an object of the present invention to provide a method for forming a rough-shaped steel billet that can obtain a high-quality rough-shaped steel billet with high efficiency and a high yield. With the goal.

本発明は、槌形鋼片の成形方法において、板状スラブに
対して、孔型幅が異なる複数のボックス孔型を有する圧
延ロールを用いて、狭幅孔型から広幅孔型へと、孔型に
入る前の被圧延材の最大断面厚より50〜15仇岬の幅
広と順次孔型幅の異なるボックス孔型により、スラブ幅
方向圧下を繰返し行ない、スラブの幅方向両端部に幅広
がりを生ぜしめて、ドックボーン形断面形状の中間鋼片
とする第1の圧延工程と、該中間鋼片を、造形孔型を有
する圧延ロールにより圧延し、所定断面形状の粗形鋼片
とする第2の圧延工程と、を設けることにより、前記目
的を達成したものである。
The present invention is a method for forming a hammer-shaped steel piece, in which holes are formed in a plate-shaped slab from a narrow hole type to a wide hole type using a rolling roll having a plurality of box hole types with different hole widths. The width of the slab is expanded at both ends in the width direction by repeatedly rolling down the slab in the width direction using box holes that are 50 to 15 mm wider than the maximum cross-sectional thickness of the material to be rolled before entering the mold, and the hole widths are sequentially different. a first rolling process to produce an intermediate steel piece with a dog-bone cross-sectional shape, and a second rolling process in which the intermediate steel piece is rolled by a rolling roll having a forming hole to form a rough-shaped steel piece with a predetermined cross-sectional shape. The above object has been achieved by providing a rolling step.

以下図面を参照して、本発明に係る相形鋼片の成形方法
の実施例を詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the method for forming a compatible steel piece according to the present invention will be described in detail below with reference to the drawings.

第3図は、従釆のブルヘッド孔型の代わりに、スラブの
幅方向圧下(以下エッジング圧延と称する)用にボック
ス孔型を複数個配設した分塊ロ−ル孔型を使用した、本
発明の圧延手順を示す。本発明による粗形鋼片の圧延で
は、連続鋳造製の板状スラブ(以下スラブを称する)が
、所定長さに切断され、灼熱炉若し〈は加熱炉に装入さ
れ、所定温度迄加熱された後、第3図の分塊ロール孔型
で圧延される。
Figure 3 shows a book using a blooming roll type with a plurality of box holes for rolling down the slab in the width direction (hereinafter referred to as edging rolling) instead of the secondary bullhead type. The rolling procedure of the invention is shown. In rolling a rough shaped steel billet according to the present invention, a plate-shaped slab made by continuous casting (hereinafter referred to as a slab) is cut into a predetermined length, charged into a scorching furnace or a heating furnace, and heated to a predetermined temperature. After that, it is rolled in the blooming roll mold shown in FIG.

スラブは、目的の粗形鋼片寸法に応じて適当な幅にスI
Jットしたものを用いてもよい。第3図Aは、均熱炉か
ら抽出された厚みtsのスラブ20を、圧延ロール22
,24に形成された第1のボックス孔型22一1,24
−1でエッジング圧延をしている状態を示す。図におけ
る斜線部Aは、エッジング圧延によりスラブに幅広がり
が生じた部分を示しており、幅広がりにより形成された
ドッグボーン断面形状でのフランジ幅W,nが孔型幅1
,と略等しくなる迄、最初のボックス孔型22一1,2
4一1により複数回のパスが行なわれる。次いで、第3
図Bに示す如く、2番目のボックス孔型22−2,24
一2で、ドックポーン断面形状でのフランジ幅W2nが
、該第2のボックス孔型22一2,24−2の孔型幅1
2と略等しくなる迄複数回のパスが行なわれる。第3図
Cは、スラブのエッジング圧延を行なう最終ボックス孔
型22一n,24−n(第3図の場合は22−3,24
一3)での圧延状態を示しているが、ここでもドッグボ
ーンの最大フランジ中W地(エッジ圧延により形成され
る最終フランジ中)が孔型幅3 に略等しくなる迄エッ
ジング圧延を繰り返す。
The slab is cut into an appropriate width according to the target rough shape steel slab size.
You may also use a J-cut one. FIG. 3A shows a slab 20 with a thickness ts extracted from a soaking furnace and rolled onto a rolling roll 22.
, 24 first box hole mold 22-1, 24
-1 indicates the state of edging rolling. The shaded area A in the figure shows the part where the width of the slab is widened due to edging rolling, and the flange width W, n in the dogbone cross-sectional shape formed by the widening is the hole width 1.
, the first box hole type 22-1, 2
4-1, multiple passes are performed. Then the third
As shown in Figure B, the second box hole type 22-2, 24
12, the flange width W2n in the cross-sectional shape of the dock pawn is the hole width 1 of the second box hole mold 22-2, 24-2.
Multiple passes are performed until the value is approximately equal to 2. FIG. 3C shows the final box hole molds 22-n, 24-n (22-3, 24-n in the case of FIG. 3) for performing edging rolling of the slab.
The rolling state in step 13) is shown, and the edging rolling is repeated here as well until the maximum flange center W area of the dogbone (in the final flange formed by edge rolling) becomes approximately equal to the groove width 3.

上記のようなボックス孔型部を有する圧延ロール22,
24を用いて、第3図Dの造形孔型22一4,24一4
の孔型中園4に導入できるドッグボーン高さh3(h3
≦14)迄繰り返しエッジング圧延され、矩形断面形状
の板状スラブからドッグボーン断面形状の中間鋼片26
に成形される。
A rolling roll 22 having a box hole portion as described above,
24, the forming hole molds 22-4, 24-4 of FIG.
Dog bone height h3 (h3
≦14) Repeated edging rolling is performed to produce an intermediate steel piece 26 with a dogbone cross section from a plate slab with a rectangular cross section.
is formed into.

第3図Dは、このドッグボーン型断面形状の中間鋼片2
6を、造形孔型22−4,24−4で所望の粗形鋼片に
形成している状態を示している。
Figure 3D shows the intermediate steel piece 2 with this dogbone cross-sectional shape.
6 is shown being formed into a desired rough shaped steel piece using the forming hole molds 22-4 and 24-4.

上記の圧延方法においては、第4図に示す所望の粗形鋼
片断面形状(ウェブ高さHB、フランジ幅WB、ゥェブ
厚さtB)に応じて、ボックス孔型の数及び孔型幅を選
定すれば、偏平なスラブを、ねじれ、菱形変形を生ずる
ことなく、エッジング圧延が可能であるが、又、第5図
に示す、使用するスラブの寸法(幅W3,厚みts)も
この目的に沿って選定しうる。発明者の実験によると、
ボックス孔型群でエッジング圧延を行なう際に、孔型幅
及び1パス当りのエッジング圧下重によって、偏平なス
ラブが菱形変形を起こして圧延続行が不可能となる限界
領域は、第6図に示す如くであった。図において、0印
は1パス当りの圧下量が20肋、口印は、4仇蚊、△印
は6物舷、×印は8W舷の場合をそれぞれ示している。
図から明らかな如く、それぞれのボックス孔型の幅1,
〜lnと、該孔型での1パス目に入る被圧延材の最大フ
ランジ幅Wo,〜Wn‐M(Wo,は使用するスラブの
厚みtsと一致する)との差が15仇舷以内であれば、
菱形変形の懸念なく、能率良くエッジング圧延が続行で
きる。なお5瓜舷以下になるとこの圧延の効果は4・さ
くなる。前記のような本発明に係る圧延方法の1実施例
として、スラブ幅Ws=150仇岬、スラブ厚さts=
31比舷の板状スラブを用いて製品高さ70仇舷、フラ
ンジ幅30仇岬のH形鋼用組形鋼片(ウヱブ高さHB=
915風、フランジ幅WB=44仇舷、ウェブ厚さtB
=14WC)を圧延する具体的な実施例を以下に示す。
In the above rolling method, the number of box holes and the hole width are selected according to the desired cross-sectional shape of the rough steel strip (web height HB, flange width WB, web thickness tB) shown in Fig. 4. By doing so, it is possible to edging-roll a flat slab without twisting or diamond-shaped deformation, but the dimensions of the slab used (width W3, thickness ts) shown in Fig. 5 are also adjusted according to this purpose. It can be selected according to According to the inventor's experiments,
When edging rolling is performed in a box slot group, the critical region where the flat slab undergoes rhombic deformation due to the slot width and the edging reduction weight per pass, making it impossible to continue rolling, is shown in Figure 6. It was like that. In the figure, the 0 mark indicates a reduction of 20 rods per pass, the mouth mark indicates a 4-barrel, the △ symbol indicates a 6-barrel, and the × symbol indicates a 8-barrel.
As is clear from the figure, the width of each box hole type is 1,
The difference between ~ln and the maximum flange width Wo, ~Wn-M (Wo, corresponds to the thickness ts of the slab to be used) of the rolled material entering the first pass in the groove is within 15 m. if there is,
Edging rolling can be continued efficiently without worrying about rhombic deformation. Note that the effect of this rolling decreases by 4. As an example of the rolling method according to the present invention as described above, the slab width Ws=150 Qianqi, the slab thickness ts=
Using a plate-like slab with a diameter of 31 mm, the product height was 70 mm, and the flange width was 30 mm.
915 wind, flange width WB = 44 broadside, web thickness tB
A specific example of rolling 14WC) is shown below.

下記第2表に、使用した孔型群の寸法諸元を、下記第3
表にパススケジュールをそれぞれ示す。第2表 第3表 (×印は900転回をあらわす) 本実施例における各孔型での圧延時のスラブ幅圧下(ゥ
ェプ高さ変化)に対する幅広がり(フランジ幅)の推移
及びゥェブ厚さの変イQ伏況を第7図に示す。
Table 2 below shows the dimensions of the hole groups used.
Each pass schedule is shown in the table. Table 2 Table 3 (X indicates 900 turns) Changes in width spread (flange width) and web thickness with respect to slab width reduction (weave height change) during rolling in each hole type in this example Figure 7 shows the strange Q situation.

図から1%〜4%という極軽圧下によって、非常に大き
な幅広がりが生じていることが判る。第8図は、ボック
ス孔型22−3,24−3終了後のドッグボーン形中間
鋼片のフランジ聡の長手方向分布を示す。図から明らか
な如く、圧延先後端からそれぞれ700肋ほどは幅広が
りが少なく、フランジ幅が小となっている。第9図に、
このドッグボーン形中間鋼片を造形孔型22一4,24
一4で仕上げ圧延した粗形鋼片のフランジ幅の長さ方向
分布を示す。図から明らかな如く、第8図で見られたフ
ランジ幅の不足部分は著しく短くなっており、クロツプ
形状は、鋼抜かる圧延された粗形鋼片にくらべても著し
く改善されている。これは、造形孔型でドッグボーンの
ウェプ部の圧下する際に、自由変形する中間鋼片先後端
部が造形孔型のフランジ部に充満しやすいことによるも
のである。本実施例においては、偏平矩形断面形状を有
する板状スラブとして、造塊法で製造される鋼塊に比べ
て、ブローホール、スキンホール或いは横割れなどの表
面欠陥のはるかに少ない表面性状の優れた連続鋳造製ス
ラブを用いているので、粗形鋼片の表面に発生する表面
癖も減少し、粗形鋼片での表面庇除去の手入工程が省略
できる。
It can be seen from the figure that an extremely light reduction of 1% to 4% causes a very large width expansion. FIG. 8 shows the longitudinal distribution of the flange thickness of the dogbone intermediate steel piece after the box hole molds 22-3 and 24-3 are completed. As is clear from the figure, the width spread is small for about 700 ribs from the rear end of the rolling tip, and the flange width is small. In Figure 9,
This dogbone-shaped intermediate steel piece is formed into hole molds 22-4, 24.
14 shows the longitudinal distribution of the flange width of the rough-shaped steel piece finished rolled in step 14. As is clear from the figure, the shortened portion of the flange width seen in FIG. 8 has been significantly shortened, and the crop shape has been significantly improved compared to the rolled rough shaped steel piece. This is because, when the web portion of the dogbone is rolled down in the forming hole mold, the leading and rear end portions of the intermediate steel piece, which are freely deformed, tend to fill the flange portion of the forming hole mold. In this example, the plate-shaped slab with a flat rectangular cross-sectional shape has excellent surface properties with far fewer surface defects such as blowholes, skin holes, and transverse cracks than steel ingots manufactured by the ingot method. Since a continuously cast slab is used, the surface roughness that occurs on the surface of the rough-shaped steel piece is also reduced, and the maintenance process of removing the surface eaves of the rough-shaped steel piece can be omitted.

即ち、従来法においては、粗形鋼片の表面庇を除去せず
に製品迄圧延した場合の高さ70仇舷、フランジ幅30
0肋のH形鋼における表面庇による不合格率が0.8%
、表面波による手入率が26.3%であったのに対し、
本実施例においては、表面癖による不合格率が0.1%
、表面癖による手入率が9.5%と、いずれも著しく減
少していることが確認された。
That is, in the conventional method, when a rough shaped steel billet is rolled into a product without removing the surface eaves, the height is 70 m and the flange width is 30 m.
The rejection rate due to surface eaves in zero-rib H-beams is 0.8%.
, whereas the treatment rate by surface waves was 26.3%,
In this example, the rejection rate due to surface irregularities was 0.1%.
It was confirmed that the maintenance rate due to surface imperfections was 9.5%, which was a significant decrease in both cases.

これにより、熱鋼片をそのまま製品圧延工程へ移送する
、いわゆるホットチャージ或いはダイレクトローリング
の採用が可能となり、省エネルギーに対する寄与も大で
ある。なお本発明に用いられる偏平矩形断面形状を有す
る板状スラブは連続鋳造製スラブに限定されず、造塊法
によって製造された鋼塊を、周知の分塊圧延法で成形し
た板状スラブを用いることも勿論可能である。以上説明
した通り、本発明によれば、良質の粗形鋼片を、高能率
で歩止り高く得ることができるという優れた効果を有す
る。発明者等の実験によると、従来例におけるスケール
ロスが2.0%、クロップ率が6.0%であったのに対
し、本発明による成形方法によれば、スケールロールが
1.5%、クロップ率が0.8%に低減でき、歩止りは
従来の92.0%に対して、967%と4.7%もの大
幅な歩止り向上が達成できた。
This makes it possible to use so-called hot charging or direct rolling, in which the hot steel billet is directly transferred to the product rolling process, which greatly contributes to energy saving. Note that the plate-shaped slab having a flat rectangular cross-sectional shape used in the present invention is not limited to a slab made by continuous casting, but a plate-shaped slab formed by forming a steel ingot produced by an ingot-forming method by a well-known blooming rolling method can be used. Of course, this is also possible. As explained above, the present invention has the excellent effect of being able to obtain high-quality rough-shaped steel pieces with high efficiency and a high yield. According to experiments conducted by the inventors, the conventional example had a scale loss of 2.0% and a crop rate of 6.0%, whereas according to the molding method of the present invention, the scale loss was 1.5% and the crop rate was 6.0%. The cropping rate could be reduced to 0.8%, and the yield was 967%, a significant improvement of 4.7% compared to the conventional 92.0%.

これは、主として第9図に示す如く、クロップ部が著し
く短くできたことによるものである。又、圧延能率に関
しては、第1表に示す従来例に対して、第3表に示す本
発明の実施例においては、パス回数及び反転回数を大幅
に減らすことができるので、分塊圧延能率が約40%向
上している。
This is mainly due to the fact that the cropped portion can be made extremely short, as shown in FIG. Regarding rolling efficiency, compared to the conventional example shown in Table 1, in the embodiment of the present invention shown in Table 3, the number of passes and the number of reversals can be significantly reduced, so the efficiency of blooming is improved. This is an improvement of about 40%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来法による粗形鋼片の圧延手順を示す工程
図、第2図は、従来法で製造された粗形鋼片先端のトン
グ状クロッブを示す斜視図、第3図は、本発明に係る粗
形鋼片の成形方法の実施例の圧延手順を示す工程図、第
4図は、絹形鋼片の所定断面形状の1例を示す断面図、
第5図は、板状スラブの断面形状の1例を示す断面図、
第6図は、スラブ幅方向圧下時の菱形変形防止に有効な
孔型幅と圧下量の関係を示す線図、第7図は、本発明の
実施例における、ウェブ高さとウェブ厚さ及びフランジ
幅の関係を示す糠図、第8図は、同じく前記実施例にお
ける、ドッグボーン形中間鋼片のフランジ幅の圧延長手
方向分布を示す線図、第9図は、同じく前記実施例にお
ける、粗形鋼片のフランジ幅の圧延長さ方向分布を示す
線図である。 20・・・・・・スラブ、22,24・・・・・・圧延
ロール、22−1,24−1,22−2,24−2,2
2−3,24一3・・・…ボックス孔型、22一4,2
4一4・・・・・・造形孔型、26・・・・・・中間鋼
片。 簾1図鰭2図 第3図 第4図 第5図 第6図 第7図 第8図 第9図
FIG. 1 is a process diagram showing the procedure for rolling a rough-shaped steel billet by a conventional method, FIG. 2 is a perspective view showing a tongue-shaped clot at the tip of a rough-shaped steel billet produced by a conventional method, and FIG. FIG. 4 is a process diagram showing the rolling procedure of an embodiment of the method for forming a rough-shaped steel billet according to the present invention, and FIG.
FIG. 5 is a cross-sectional view showing an example of the cross-sectional shape of a plate-like slab;
FIG. 6 is a diagram showing the relationship between the hole width and the amount of reduction effective for preventing diamond-shaped deformation during reduction in the width direction of the slab, and FIG. Fig. 8 is a bran diagram showing the relationship between the widths, and Fig. 8 is a diagram showing the distribution of the flange width of the dog-bone intermediate steel piece in the longitudinal direction of rolling, also in the above embodiment, and Fig. 9 is a diagram showing the longitudinal distribution of the flange width of the dogbone-shaped intermediate steel piece, also in the above embodiment. FIG. 2 is a diagram showing the distribution of the flange width of a rough shaped steel piece in the rolling length direction. 20... Slab, 22, 24... Roll, 22-1, 24-1, 22-2, 24-2, 2
2-3, 24-3...Box hole type, 22-4, 2
4-4... Molding hole type, 26... Intermediate steel piece. Blind 1 Figure Fin 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 1 板状スラブに対して、孔型幅が異なる複数のボツク
ス孔型を有する圧延ロールを用いて、狭幅孔型から広幅
孔型へと、孔型に入る前の被圧延材の最大断面厚さより
50〜150mmの幅広と順次孔型幅の異なるボツクス
孔型により、スラブ幅方向圧下を繰返し行ない、スラブ
の幅方向両端部に幅広がりを生ぜしめてドツグボーン形
断面形状の中間鋼片とする第1の圧延工程と、該中間鋼
片を、造形孔型を有する圧延ロールにより圧延し、所定
断面形状の粗形鋼片とする第2の圧延工程と、を有する
ことを特徴とする粗形鋼片の成形方法。
1 For a plate-shaped slab, using a rolling roll having multiple box holes with different hole widths, increase the maximum cross-sectional thickness of the material to be rolled before entering the hole from a narrow hole to a wide hole. The slab is repeatedly rolled down in the width direction using a box hole type with a wide width of 50 to 150 mm and a hole width that is different sequentially, and the width is expanded at both ends of the slab in the width direction to produce an intermediate steel piece with a dogbone cross-sectional shape. A rough-shaped steel billet comprising: a rolling step, and a second rolling step of rolling the intermediate steel billet with a rolling roll having a shaped hole to obtain a rough-shaped steel billet with a predetermined cross-sectional shape. molding method.
JP14415079A 1979-11-06 1979-11-06 Method of forming rough shaped steel pieces Expired JPS6026601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14415079A JPS6026601B2 (en) 1979-11-06 1979-11-06 Method of forming rough shaped steel pieces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14415079A JPS6026601B2 (en) 1979-11-06 1979-11-06 Method of forming rough shaped steel pieces

Publications (2)

Publication Number Publication Date
JPS5668502A JPS5668502A (en) 1981-06-09
JPS6026601B2 true JPS6026601B2 (en) 1985-06-25

Family

ID=15355372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14415079A Expired JPS6026601B2 (en) 1979-11-06 1979-11-06 Method of forming rough shaped steel pieces

Country Status (1)

Country Link
JP (1) JPS6026601B2 (en)

Also Published As

Publication number Publication date
JPS5668502A (en) 1981-06-09

Similar Documents

Publication Publication Date Title
JPS641201B2 (en)
US4420961A (en) Method for producing beam blank for universal beam
JPS6020081B2 (en) Method of forming rough shaped steel pieces
JP2003534923A (en) Method and apparatus for reducing crop loss in rolling slabs and ingots
JP2004358541A (en) Method for manufacturing shaped bloom and caliber roll
JPS6026601B2 (en) Method of forming rough shaped steel pieces
JPS5819361B2 (en) Manufacturing method of rough shaped steel billet
JPS6023881B2 (en) Method of forming rough shaped steel pieces
JPS5837042B2 (en) Manufacturing method of shaped steel
JPS5918124B2 (en) Manufacturing method of rough shaped steel billet
JP2512240B2 (en) Rough rolling method for Z-shaped steel sheet pile
JPS63171255A (en) Non-solidified rolling method
JPH0216162B2 (en)
JPS5919766B2 (en) Manufacturing method of H-beam steel
US4201075A (en) Method of rolling section billets
JPS5835763B2 (en) Method for producing dog-bone type rough-shaped steel pieces from flat slabs
JPS5937121B2 (en) Hot rolling method for steel billet
JPH0675722B2 (en) Hot width rolling method for metal slabs
JPH07265902A (en) Forming method for shaped bloom
SU900882A1 (en) Method of producing sections and plate for localizing segregation zones
JPH03169457A (en) Short wall mold in strip continuous casting machine
JP2529493B2 (en) Method for producing rough billet for H-section steel
SU1228932A1 (en) Method of producing sheets
SU1520115A1 (en) Method of manufacturing isotropic electrical-sheet steel
JPS5942563B2 (en) Method of forming rough shaped steel pieces