JPS6023881B2 - Method of forming rough shaped steel pieces - Google Patents

Method of forming rough shaped steel pieces

Info

Publication number
JPS6023881B2
JPS6023881B2 JP14414979A JP14414979A JPS6023881B2 JP S6023881 B2 JPS6023881 B2 JP S6023881B2 JP 14414979 A JP14414979 A JP 14414979A JP 14414979 A JP14414979 A JP 14414979A JP S6023881 B2 JPS6023881 B2 JP S6023881B2
Authority
JP
Japan
Prior art keywords
rolling
slab
shaped steel
rough
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14414979A
Other languages
Japanese (ja)
Other versions
JPS5668501A (en
Inventor
輝行 中西
俊幸 阿久根
幸雄 三浦
尚志 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14414979A priority Critical patent/JPS6023881B2/en
Publication of JPS5668501A publication Critical patent/JPS5668501A/en
Publication of JPS6023881B2 publication Critical patent/JPS6023881B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Description

【発明の詳細な説明】 本発明は、粗形鋼片の成形方法に係り、特に、ウェブと
フランジを有する形鋼を圧延するための粗形鋼片を、分
塊圧延法により熱間で製造する際に用いるに好適な、粗
形鋼片の成形方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a rough-shaped steel billet, and in particular, a method for hot-producing a rough-shaped steel billet for rolling a shape steel having a web and a flange by a blooming method. The present invention relates to a method for forming a rough-shaped steel piece suitable for use in manufacturing.

従釆、H形鋼若しくは1型鋼等のウェプとフランジを有
する形鋼を圧延するための粗形鋼片を分塊圧延法にて製
造する際には、造塊された鋼塊から多数パスを費やして
粗形鋼片としていた。
When producing a rough shaped steel piece for rolling a shaped steel having a web and a flange, such as H-shaped steel or Type 1 steel, by the blooming rolling method, multiple passes are performed from the ingot-formed steel ingot. It was made into rough shaped steel pieces.

即ち、このような粗形鋼片の分塊圧延方法は、上下水平
ロールに複数の孔型を配置した高揚程2重逆転式分塊圧
延機で行なわれ、一般的な圧延手順は、第1図に示す如
くであった。即ち、まず、第1図Aに示すような直方体
状の角形鋼塊10を、第1図Bに示す如く、圧延ロール
12,14のプルヘッド孔型12−1,14−1で、造
形孔型12一2,14−2に導入可能な矩形断面を有す
る中間鋼片16となる迄フラットに圧延し、次いで、第
1図Cに示す如く、造形孔型12−2,14一2で造形
圧延して、第1図Eに示すような、所定断面形状を有す
る槌形鋼片18を得るようにしている。この造形圧延の
途中パスにおいて、造形孔型12−2,14一2の側面
12一2a,14一2aから中間鋼片の噛出し16aが
出るため、第1図Dに示す如く、ボックス孔型12−3
,14−3で随時噛出し16aを平らにするエッジング
圧延が行なわれている。又、このような圧延では、中間
鋼片16のフランジ部16bが、ウェブ部16cの延伸
作用に影響されて、同時延伸が行なわれるため、造形圧
延で造形孔型12一2,14一2のフランジ部に中間鋼
片16を充満させるためには、ゥェブ幅の大きな粗形鋼
片になるほど中間鋼片16の矩形断面の高さ日は大きい
ことが必要で、粗形鋼片18のフランジ幅hとの比H/
h‘よ、一般に2倍以上を必要とされる。従って従来は
、例えば下記第1表に示すようなパススケジユールによ
り圧延を行なっていた。表において、×印は90o転回
をあらわすものである。
That is, such a method of blooming a rough-shaped steel billet is carried out using a high-head double reversing type blooming mill in which a plurality of grooves are arranged on the upper and lower horizontal rolls, and the general rolling procedure is as follows: It was as shown in the figure. That is, first, a rectangular parallelepiped rectangular steel ingot 10 as shown in FIG. 12-2, 14-2 until it becomes an intermediate steel piece 16 with a rectangular cross section, and then shaped rolling in shaping holes 12-2, 14-2 as shown in FIG. 1C. In this way, a hammer-shaped steel piece 18 having a predetermined cross-sectional shape as shown in FIG. 1E is obtained. In the middle pass of this shaping rolling, the intermediate billets 16a come out from the side surfaces 12-2a, 14-2a of the shaping hole dies 12-2, 14-2, so that the box hole shape is formed as shown in FIG. 1D. 12-3
, 14-3, edging rolling is performed to flatten the protrusion 16a from time to time. In addition, in such rolling, the flange portion 16b of the intermediate steel piece 16 is simultaneously stretched under the influence of the stretching action of the web portion 16c. In order to fill the flange portion with the intermediate steel slab 16, it is necessary that the height of the rectangular cross section of the intermediate steel slab 16 increases as the web width increases, and the flange width of the rough steel slab 18 increases. Ratio of h/
h', generally more than twice as much is required. Conventionally, therefore, rolling was carried out using a pass schedule as shown in Table 1 below, for example. In the table, the x mark represents a 90° turn.

第1表このような従来の圧延方法では、次のような欠点
があった。
Table 1 These conventional rolling methods had the following drawbacks.

即ち‘1’鋼塊10から粗形鋼片18を得るためにパス
回数が多くなり、更にボックス孔型12一3,14−3
でのエッジング圧延のため900転回回数の増加を招き
分塊圧延能率が低い。
That is, the number of passes is increased to obtain the rough shaped steel slab 18 from the '1' steel ingot 10, and the box hole molds 12-3, 14-3 are
Because of the edging rolling, the number of rotations increases by 900, resulting in low blooming efficiency.

■ ウェブ部の圧下が主体となるため、ウェブ部18c
の延伸がフランジ部18bに比べて著しく大きく、第2
図に示すウェブトング18dが大きくなり、この部分の
切り捨てによる歩止に低下が大きい。
■ Since the web part is mainly rolled down, the web part 18c
The extension of the second part is significantly larger than that of the flange part 18b.
The web tongs 18d shown in the figure are larger, and the yield is greatly reduced due to cutting off this portion.

【3} ゥェブ部18cの圧下が主体となるため、鋼塊
1川こ存在するブローホール、スキンホール或いは横割
れなどの表面欠陥の圧着が、フランジ部18bでは不十
分で、粕形鋼片18での表面癖除去の手入工程が必要と
なる。
[3] Since the webbing portion 18c is mainly rolled down, surface defects such as blowholes, skin holes, or transverse cracks that exist in the steel ingot are not sufficiently crimped at the flange portion 18b, and the scrap-shaped steel billet 18 A cleaning process is required to remove surface imperfections.

前記のような問題点を解消する為、特殊形状の孔型を有
する圧延ロールを用いることも考えられるが、設備費等
が掛り経済的ではない。
In order to solve the above-mentioned problems, it is conceivable to use rolling rolls having specially shaped holes, but this is not economical due to equipment costs and the like.

本発明は、前記従来の欠点を解消するべくなされたもの
で、従来から槌形鋼片の成形用に用いられているブルヘ
ッド孔型及び造形孔型を有する圧延ロールをそのまま用
いて、高能率で歩止りの高い良質な粗形鋼片を経済的に
得ることができる粗形鋼片の成形方法を提供することを
目的とする。
The present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional method, and uses a rolling roll having a bullhead hole type and a forming hole type, which has been conventionally used for forming hammer-shaped steel pieces, as it is, to achieve high efficiency. It is an object of the present invention to provide a method for forming a rough-shaped steel piece that can economically obtain a high-quality rough-shaped steel piece with a high yield.

本発明は、相形鋼片の成形方法に於いて、板状鋼片(以
下スラブと称する)に対して、ブルヘツド孔型により、
スラブ幅方向に1パス当り10〜50柵の圧下量で圧下
を繰返し行ない、スラブの幅方向両端部に幅広がりを生
ぜしめてドッグボーン形断面形状の中間鋼片とする第1
の圧延工程と、該中間鋼片を、造形孔型により圧延し、
所定断面形状の粗形鋼片とする第2の圧延工程と、を設
けることにより、前記目的を達成したものである。以下
図面を参照して、本発明に係る粗形鋼片の成形方法の実
施例を詳細に説明する。本発明による粗形鋼片の圧延で
は、角型鋼塊の代り‘こ、第3図に示すような、板幅l
s、板厚bの連続鋳造製の板状スラブ20が、所定長さ
に切断され、均熱炉若し〈は加熱炉に装入され所定温度
迄加熱された後、第4図に示す如く、従釆と同様のロー
ル孔型を有する圧延ロール12,14により圧延される
。第4図は、灼熱炉から抽出された厚みbのスラブ20
1こ対して、圧延ロール12,14のブルヘッド孔型1
2一1,14一1で、スラブの幅方向圧下(以下エッジ
ング圧延と称する)を行なっている状態を示す。図に於
ける斜線部Aは、エッジング圧延によりスラブに幅広が
りが生じた部分を示している。このブルヘッド孔型12
一1,14−1によるエッジング圧延を繰返すことによ
って、スラブ幅方向両端部の幅広がりは、第5図に示す
如く順次大きくなり、次第に大きなドッグボーンが形成
される。フルヘツド孔型12−1,14一1によるエッ
ジング圧延が繰返され、スラブ幅isが、第5図に示す
ドッグボーンの高さld(ls>ld)迄庄下され、造
形孔型12一2,14−2に導入するに適した、高さl
d、フランジ幅Wd、ウェブ厚さtsのドッグボーン形
断面形状となった中間鋼片22は、第6図に示す如く、
造形孔型12一2.14一2に導入され、圧延されて、
第7図に示すような、ウェブ高さそs、フランジ幅W8
、ウェブ厚さbの所定の断面形状を有する粗形鋼片24
とされる。
The present invention is a method for forming a similar steel piece, in which a plate-shaped steel piece (hereinafter referred to as a slab) is formed using a bullhead hole molding method.
The first step is to repeatedly roll down the slab in the width direction at a rolling reduction of 10 to 50 fences per pass to widen the width at both ends of the slab in the width direction to create an intermediate slab with a dogbone cross-sectional shape.
a rolling step, and rolling the intermediate steel piece through a shaped hole die;
The above object is achieved by providing a second rolling process for forming a rough-shaped steel piece with a predetermined cross-sectional shape. DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the method for forming a rough shaped steel piece according to the present invention will be described in detail below with reference to the drawings. In the rolling of rough-shaped steel slabs according to the present invention, instead of square steel ingots, rolling of steel slabs with a width of l as shown in FIG.
A plate-shaped slab 20 made of continuous casting having a thickness of s and a plate thickness of b is cut into a predetermined length, charged into a soaking furnace or a heating furnace, and heated to a predetermined temperature, as shown in FIG. , and is rolled by rolling rolls 12 and 14 having the same roll hole shape as the secondary shaft. Figure 4 shows a slab 20 of thickness b extracted from a scorching furnace.
1, the bullhead hole type 1 of the rolling rolls 12 and 14
2-1 and 14-1 show the state in which the slab is being rolled in the width direction (hereinafter referred to as edging rolling). The shaded area A in the figure indicates the area where the width of the slab has expanded due to edging rolling. This bullhead hole type 12
By repeating the edging rolling by steps 11 and 14-1, the width of both ends of the slab in the width direction gradually increases as shown in FIG. 5, and a gradually larger dogbone is formed. The edging rolling with the full-head hole molds 12-1, 14-1 is repeated, and the slab width is is reduced to the dogbone height ld (ls>ld) shown in FIG. Height l suitable for introducing into 14-2
d, flange width Wd, and web thickness ts.
Introduced into the forming hole mold 12-2, 14-2 and rolled,
As shown in Figure 7, web height s, flange width W8
, a rough shaped steel piece 24 having a predetermined cross-sectional shape with a web thickness b
It is said that

なお、上記の圧延工程において、ブルヘッド孔型12−
1,14−1の他に、ボックス孔型12−3,14−3
も必要に応じて利用される。
In addition, in the above rolling process, the bullhead hole type 12-
In addition to 1, 14-1, box hole type 12-3, 14-3
are also used as needed.

本発明に於ける、板状スラブ(寸法ts×ls)からド
ッグボ−ン形断面形状の中間鋼片(寸法b×Wd×ld
)を経て、第7図に示す所望の断面形状の粗形鋼片(寸
法tB×WB×そ8)に至る、幅、厚みの変化を模式的
に示すと第8図に示す如くとなる。本発明に用いられる
板状スラブの寸法(ts×ls)は、所望の粗形鋼片形
状に応じて、分魂圧延能率、分塊圧延歩止り等を考慮し
て選定されている。
In the present invention, an intermediate steel piece having a dogbone cross-sectional shape (dimensions b x Wd x ld
), and then the desired cross-sectional shape of the rough-shaped steel piece (dimensions tB x WB x 8) is obtained as shown in Fig. 7. Changes in width and thickness are schematically shown in Fig. 8. The dimensions (ts×ls) of the plate-shaped slab used in the present invention are selected in accordance with the desired shape of the rough steel slab, taking into account the bulk rolling efficiency, the blooming yield, and the like.

スラブはこの目的に沿って連続鋳造製スラブを必要な幅
に切断して使用しても良い。本発明による圧延を無理な
く達成する為には、エッジング圧延に於ける1パス当り
の圧下量の選定が、所望の粕形鋼片形状を得る為のスラ
ブ寸法の選定に関連して重要であり、本発明者等の実験
結果によると、圧延続行可能限界は第9図に示す如くで
あった。
For this purpose, the slab may be used by cutting a continuously cast slab to the required width. In order to smoothly achieve rolling according to the present invention, the selection of the amount of reduction per pass in edging rolling is important in relation to the selection of slab dimensions to obtain the desired shape of the slab. According to the experimental results of the present inventors, the limit for continuing rolling was as shown in FIG.

図に於いて、0印は菱形変形が4・であり圧延続行が可
能な場合、×印は菱形変形が大であり圧延続行が不可能
な場合をそれぞれ示す。第9図から明らかな如く、スラ
ブに圧延続行不能な大きなねじれや菱形変形が生じない
為には、1パス当りの圧下量に上限が存在し、スラブサ
イズ署によっても変化するが、いわゆるスラブとしての
機・鰍線持する、妙約2以上の領域では、最大5仇岬程
度である。
In the figure, a 0 mark indicates a case where the diamond-shaped deformation is 4.0 and it is possible to continue rolling, and an x mark indicates a case where the rhombic deformation is large and rolling cannot be continued. As is clear from Fig. 9, there is an upper limit to the amount of reduction per pass in order to prevent large twists and diamond-shaped deformations that would make it impossible to continue rolling to occur in the slab, and although this varies depending on the slab size, the so-called slab In areas of Myojo 2 or higher, where the machine and the fish line are held, the maximum is about 5 Capes.

一方、従釆法による粗形鋼片の圧延能率を下回らない為
には、1パス当りの庄下量は1仇岬以上である必要があ
る。従って、1パス当りの圧下量の好適な値は、第9図
に斜線Bで示す範囲、即ち圧下量10〜5仇岬の範囲が
適当である。前記のような本発明に係る圧延方法の1実
施例として、スラブ幅ls=1500肌、スラブ厚さt
s=3皿岬の板状スラブを用いて、製品高さ70仇岬、
フランジ幅300帆のH形鋼用の粗形鋼片(ウェブ高さ
そ8=915肌、フランジ幅W8=44仇舷、ワェブ厚
さtB=14仇舷)を圧延する具体的な実施例を以下に
示す。
On the other hand, in order not to fall below the rolling efficiency of rough-shaped steel slabs by the conventional method, the amount of reduction per pass needs to be 1 or more. Therefore, the preferred value of the rolling reduction per pass is within the range shown by the diagonal line B in FIG. 9, that is, the range of rolling reduction from 10 to 5 degrees. As an example of the rolling method according to the present invention as described above, the slab width ls=1500 skin, the slab thickness t
Using a plate-shaped slab with s = 3 saucers, the product height is 70mm,
A specific example of rolling a rough shaped steel piece for H-section steel with a flange width of 300 sails (web height 8 = 915 skin, flange width W8 = 44 sail, web thickness tB = 14 sail) is shown below. Shown below.

下記第2表に、使用した孔型群の寸法諸示を、下記第3
表にパススケジュールをそれぞれ示す。第2表 第3表 (×印は900転回をあらわす) 本実施例に於ける板状スラブからドッグボーン型断面形
状の中間鋼片を経て粕形鋼片に至る迄のゥェプ高さ、フ
ランジ幅及びウェブ厚さの変イa伏況を第10図に示す
Table 2 below shows the dimensions of the hole groups used, and Table 3 below shows the dimensions of the hole groups used.
Each pass schedule is shown in the table. Table 2 Table 3 (x indicates 900 turns) Weap height and flange width from the plate-shaped slab to the dogbone-shaped cross-sectional intermediate steel slab to the dreg-shaped steel slab in this example Figure 10 shows the changes in web thickness.

図から、0.7%〜3.3%という極軽圧下によって、
非常に大きな幅広がりを生じていることがわかる。第1
1図は、造形孔型12一2,14一2に導入される前の
ドッグボーン型断面形状の中間鋼片のフランジ最大幅の
長さ方向分布を示す。図から明らかな如く、エッジング
圧延では長さの延伸が主体でフランジ幅広がりが少ない
ため、圧延先後端からそれぞれ70物肋程は幅広がりが
少なく、フランジ幅が小となっている。第12図に、こ
のドッグボーン型中間鋼片を造形孔型12一2,14一
2で仕上げ圧延した粗形鋼片のフランジ幅の長さ方向分
布を示す。図から明らかな如く、第11図で見られたフ
ランジ幅の不足部分は著しく短か〈なっており、良好な
形状が得られている。又、ウェブ部は、ドッグボーン型
中間鋼片に於いては、第13図Aに示す如くであったの
に対し、粗形鋼片に於いては第13図Bに示す如くとな
り、やはり良好な形状になっている。これは、ブルヘッ
ド孔型ではフランジ部の圧下だけ、造形孔型ではドッグ
ボーン型中間鋼片のウェブ部主体の圧下となる為、造形
孔型でゥェブを圧下する際に、ウェブクロップが伸び、
自由変形する中間鋼片先後端部が造形孔型のフランジ部
に充満し易いことによるものである。本実施例において
は、偏平矩形断面形状を有する板状スラブとして、造塊
法で製造される鋼塊に比べて、ブローホール、スキンホ
ール或いは横割れなどの表面欠陥のはるかに少ない表面
性状の優れた連続鋳造製スラブを用いているので、相形
鋼片の表面に発生する表面癖も減少し、粗形鋼片での表
面庇除去の手入工程が省略できる。
From the figure, by extremely light reduction of 0.7% to 3.3%,
It can be seen that a very large spread has occurred. 1st
FIG. 1 shows the longitudinal distribution of the maximum width of the flange of an intermediate steel piece having a dogbone cross-sectional shape before being introduced into the forming hole molds 12-2, 14-2. As is clear from the figure, in edging rolling, the length is mainly stretched and the flange width is not widened, so the width is not widened and the flange width is small for about 70 degrees from the rear end of the rolling tip. FIG. 12 shows the longitudinal distribution of the flange width of a roughly shaped steel piece obtained by finishing rolling this dogbone type intermediate steel piece in the forming hole dies 12-2 and 14-2. As is clear from the figure, the portion where the flange width is insufficient as seen in FIG. 11 is significantly shortened, and a good shape is obtained. In addition, the web portion of the dog-bone type intermediate slab was as shown in Figure 13A, while that of the coarse-shaped slab was as shown in Figure 13B, which is also good. It has a shape. This is because in the bullhead hole type, only the flange part is rolled down, and in the shaped hole type, the web part of the dogbone type intermediate piece is mainly rolled down, so when the web is rolled down with the shaped hole type, the web crop stretches,
This is due to the fact that the freely deformed leading and trailing ends of the intermediate steel piece tend to fill the flange of the forming hole. In this example, the plate-shaped slab with a flat rectangular cross-sectional shape has excellent surface properties with far fewer surface defects such as blowholes, skin holes, and transverse cracks than steel ingots manufactured by the ingot method. Since a slab made by continuous casting is used, the surface roughness that occurs on the surface of the comparable steel piece is also reduced, and the maintenance process of removing the surface eaves of the rough steel piece can be omitted.

即ち、従来法においては、粗形鋼片の表面癖を除去せず
に製品迄圧延した場合の高さ70比豚、フランジ幅30
0柳のH形鋼における表面庇による不合格率が0.8%
、表面源による手入率が26.3%であったのに対し、
本実施例においては、表面癖による不合格率が0.2%
、表面泥による手入率が11.1%と、いずれも著しく
減少していることが確認された。
That is, in the conventional method, when a rough shaped steel piece is rolled into a product without removing surface roughness, the height ratio is 70 and the flange width is 30.
0.8% failure rate due to surface eaves in H-shaped steel made of Yanagi
, whereas the access rate from surface sources was 26.3%.
In this example, the rejection rate due to surface irregularities was 0.2%.
It was confirmed that the maintenance rate due to surface mud was 11.1%, which was a significant decrease in both cases.

これにより、熱鋼片をそのまま製品圧延工程へ移送する
、いわゆるホットチャージ或いはダイレクトローリング
の採用が可能となり、省エネルギーに対する寄与も大で
ある。なお本発明に用いられる偏平矩形断面形状を有す
る板状スラブは連続鋳造製スラブに限定されず、造塊法
によって製造された鋼塊を、周知の分塊圧延法で成形し
た板状スラブを用いることも勿論可能である。以上説明
した通り、本発明によれば、従釆から粗形鋼片の成形用
に用いられている圧延ロールをそのまま用いて、良質の
粗形鋼片を、高能率で歩止り高く経済的に得ることがで
きるという優れた効果を有する。発明者等の実験による
と、従釆例におけるスケールロスが2.0%、クロツプ
率が6.0%であったのに対し、本発明による成形方法
によれば、スケールロスが1.5%、クロップ率が1.
8%に低減でき、歩止りは従来の92.0%に対して、
96.7%と4.7%もの大幅な歩止り向上が達成でき
た。
This makes it possible to use so-called hot charging or direct rolling, in which the hot steel billet is directly transferred to the product rolling process, which greatly contributes to energy saving. Note that the plate-shaped slab having a flat rectangular cross-sectional shape used in the present invention is not limited to a slab made by continuous casting, but a plate-shaped slab formed by forming a steel ingot produced by an ingot-forming method by a well-known blooming rolling method can be used. Of course, this is also possible. As explained above, according to the present invention, high-quality rough-shaped steel billets can be produced economically with high efficiency and high yield by using the rolling rolls used for forming rough-shaped steel billets from secondary moldings as they are. It has the excellent effect of being able to obtain According to experiments conducted by the inventors, the scale loss was 2.0% and the crop rate was 6.0% in the conventional example, while the scale loss was 1.5% in the molding method of the present invention. , the crop rate is 1.
The yield can be reduced to 8%, compared to the conventional 92.0%.
A significant yield improvement of 96.7% and 4.7% was achieved.

これは、主として第12図、第13図Bに示す如く、ク
ロツプ部が著しく短くできたことによるものである。又
、圧延能率に関しては、第1表に示す従釆例に対して、
第3表に示す本発明の実施例においては、転回回数を大
幅に減らすことができるので、パス回数は若干増加して
いるものの、分塊圧延能率では約10%の向上が期待で
きる。
This is mainly due to the fact that the cropped portion can be made extremely short, as shown in FIGS. 12 and 13B. In addition, regarding rolling efficiency, for the subordinate examples shown in Table 1,
In the examples of the present invention shown in Table 3, the number of turns can be significantly reduced, so although the number of passes is slightly increased, it is expected that the blooming efficiency will be improved by about 10%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来法による粗形鋼片の圧延手順を示す工程
図、第2図は、従来法で製造された粗形鋼片先端のトン
グ状クロップを示す斜視図、第3図は、本発明に係る粗
形鋼片の成形方法で用いられる板状スラブの断面形状を
示す断面図、第4図は、本発明により、板状スラブをエ
ッジング圧延している状態を示す断面図、第5図は、本
発明のエッジング圧延により、板状スラブの断面形状が
変化していく状態を示す断面図、第6図は、本発明によ
り、ドッグボーソ型断面形状の中間鋼片を造形圧延して
いる状態を示す断面図、第7図は、本発明によって得ら
れる粗形鋼片の断面形状の一例を示す断面図、第8図は
、本発明に於ける、圧延進行状態と、ウェブ高さ、ウェ
ブ厚さ及びフランジ幅の関係を示す線図、第9図は、本
発明のエッジング圧延に於ける1パス当りの庄下量の限
界を示す糠図、第10図は、本発明の実施例に於ける、
圧延進行状態と、ゥェブ高さ、ウェブ厚さ及びフランジ
幅の関係を示す線図、第11図は、前記実施例に於ける
、ドッグボーン型中間鋼片のフランジ最大幅の圧延長さ
方向分布を示す線図、第12図は、同じく前記実施例に
於ける、粗形鋼片のフランジ幅の圧延長さ方向分布を示
す線図、第13図Aは、同じく前記実施例に於ける、ド
ッグボーン型中間鋼片の平面形状を示す平面図、第13
図Bは、同じく粗形鋼片の平面形状を示す平面図である
。 12,14・・・・・・圧延ロール、12一1,14一
1・・・・・・フルヘツド孔型、12−2,14−2・
…・・造形孔型、20・・・・・・スラブ、22・…・
・中間鋼片、24・・・・・・粗形鋼片。 第2図 第3図 第5図 第l図 第6図 第7図 第は図 第9図 第 10 図 第1l図 第4図 第8図 第13 図
FIG. 1 is a process diagram showing the procedure for rolling a rough-shaped steel billet by a conventional method, FIG. 2 is a perspective view showing a tongue-shaped crop at the tip of a rough-shaped steel billet produced by a conventional method, and FIG. FIG. 4 is a cross-sectional view showing the cross-sectional shape of a plate-like slab used in the method for forming a rough-shaped steel billet according to the present invention, and FIG. Fig. 5 is a cross-sectional view showing how the cross-sectional shape of a plate-like slab changes due to the edging rolling of the present invention, and Fig. 6 is a cross-sectional view showing how the cross-sectional shape of a plate-like slab is shape-rolled according to the present invention. FIG. 7 is a cross-sectional view showing an example of the cross-sectional shape of a rough shaped steel piece obtained by the present invention, and FIG. 8 is a cross-sectional view showing the rolling progress state and web height in the present invention. , a diagram showing the relationship between web thickness and flange width, FIG. 9 is a bran diagram showing the limit of the amount of reduction per pass in edging rolling of the present invention, and FIG. In the example,
FIG. 11, a diagram showing the relationship between the rolling progress state, web height, web thickness, and flange width, shows the distribution of the maximum width of the flange of the dog-bone type intermediate steel billet in the rolling length direction in the above example. FIG. 12 is a diagram showing the distribution of the flange width of the rough shaped steel piece in the rolling length direction, also in the above example, and FIG. 13A is a diagram showing the distribution in the rolling length direction, also in the above example. 13th plan view showing the planar shape of the dogbone type intermediate steel piece
FIG. B is a plan view showing the planar shape of the roughly shaped steel piece. 12, 14... Roll roll, 12-1, 14-1... Full head hole type, 12-2, 14-2.
...Form hole mold, 20...Slab, 22...
・Intermediate steel billet, 24... Rough shaped steel billet. Figure 2 Figure 3 Figure 5 Figure l Figure 6 Figure 7 Figure 9 Figure 10 Figure 1 l Figure 4 Figure 8 Figure 13

Claims (1)

【特許請求の範囲】 1 スラブに対して、ブルヘツド孔型により、スラブ幅
方向に1パス当り10〜50mmの圧下量で圧下を繰返
し行ない。 スラブの幅方向両端部に幅広がりを生ぜしめてドツグボ
ーン形断面状の中間鋼片とする第1の圧延工程と、該中
間鋼片を、造形孔型により圧延し、所定断面形状の粗形
鋼片とする第2の圧延工程と、を有することを特徴とす
る粗形鋼片の成形方法。
[Claims] 1. A slab is repeatedly rolled down in the width direction of the slab by a bullhead hole type at a rolling reduction amount of 10 to 50 mm per pass. A first rolling step of widening both ends of the slab in the width direction to produce an intermediate steel piece with a dogbone-shaped cross-section; and rolling the intermediate steel piece through a forming hole to form a rough-shaped steel piece with a predetermined cross-sectional shape. A method for forming a rough-shaped steel billet, comprising: a second rolling step.
JP14414979A 1979-11-06 1979-11-06 Method of forming rough shaped steel pieces Expired JPS6023881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14414979A JPS6023881B2 (en) 1979-11-06 1979-11-06 Method of forming rough shaped steel pieces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14414979A JPS6023881B2 (en) 1979-11-06 1979-11-06 Method of forming rough shaped steel pieces

Publications (2)

Publication Number Publication Date
JPS5668501A JPS5668501A (en) 1981-06-09
JPS6023881B2 true JPS6023881B2 (en) 1985-06-10

Family

ID=15355348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14414979A Expired JPS6023881B2 (en) 1979-11-06 1979-11-06 Method of forming rough shaped steel pieces

Country Status (1)

Country Link
JP (1) JPS6023881B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628628B2 (en) * 1985-05-20 1994-04-20 オリンパス光学工業株式会社 Endoscope

Also Published As

Publication number Publication date
JPS5668501A (en) 1981-06-09

Similar Documents

Publication Publication Date Title
JPS641201B2 (en)
JPS6020081B2 (en) Method of forming rough shaped steel pieces
KR100775950B1 (en) Method for Reducing Crop Losses During Metal Ingot Rolling And Metal Ingot And Bottom Block
US4420961A (en) Method for producing beam blank for universal beam
JP2004358541A (en) Method for manufacturing shaped bloom and caliber roll
JPS6023881B2 (en) Method of forming rough shaped steel pieces
JPS5819361B2 (en) Manufacturing method of rough shaped steel billet
JPS5837042B2 (en) Manufacturing method of shaped steel
JPS589701A (en) Production of rough shape ingot
JPS6026601B2 (en) Method of forming rough shaped steel pieces
JP3339466B2 (en) H-section steel and its rolling method
JPS5937121B2 (en) Hot rolling method for steel billet
JP2004322105A (en) Method for manufacturing wide flange shape and grooved roll
JP2004098102A (en) Method and equipment for manufacturing flat bar
JPH04288903A (en) Method for rough rolling z shaped steel sheet pile
JP2012071346A (en) Method of manufacturing h-section steel and h-section steel manufacturing equipment
JPH07124602A (en) Rolling method of rough billet for z-shaped steel short pile
US1885861A (en) Method of making rails
JPS61119302A (en) Hot rough rolling method of billet for h-beam
JPS5919766B2 (en) Manufacturing method of H-beam steel
JPS5835763B2 (en) Method for producing dog-bone type rough-shaped steel pieces from flat slabs
JPH0335802A (en) Production of rough shape billet for shape steel
SU900882A1 (en) Method of producing sections and plate for localizing segregation zones
JPS5942563B2 (en) Method of forming rough shaped steel pieces
JPS5881501A (en) Preventing method for temperature drop of slab