JPS6026595B2 - How to remove fluoride ions - Google Patents

How to remove fluoride ions

Info

Publication number
JPS6026595B2
JPS6026595B2 JP8219281A JP8219281A JPS6026595B2 JP S6026595 B2 JPS6026595 B2 JP S6026595B2 JP 8219281 A JP8219281 A JP 8219281A JP 8219281 A JP8219281 A JP 8219281A JP S6026595 B2 JPS6026595 B2 JP S6026595B2
Authority
JP
Japan
Prior art keywords
magnesia
adsorbent
fluorine ions
present
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8219281A
Other languages
Japanese (ja)
Other versions
JPS57197082A (en
Inventor
俶将 猪狩
正一郎 横山
柳太郎 板矢
寛臣 渡辺
恒雄 大熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP8219281A priority Critical patent/JPS6026595B2/en
Publication of JPS57197082A publication Critical patent/JPS57197082A/en
Publication of JPS6026595B2 publication Critical patent/JPS6026595B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】 本発明は水中に溶解しているフッ素イオンの除去方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing fluorine ions dissolved in water.

アルミニウムの電解精練工程、リン酸肥料の製造工程、
ステンレス鋼などのピクリング工程あるいはシリコンな
どの電気部品の洗浄工程ならびに化学実験室からの研究
廃水などからフッ素イオンを含む排水が生じる。
Aluminum electrolytic refining process, phosphate fertilizer manufacturing process,
Fluorine ion-containing wastewater is generated from pickling processes such as stainless steel, cleaning processes for electrical parts such as silicone, and research wastewater from chemical laboratories.

このようなフッ素イオン含有排水からフッ素イオンを除
去するためには、水酸化カルシウムを排水に添加して、
不溶’性のフッ化カルシウムを生成させ、これを沈殿分
離することが行われている。しかしながら、このような
沈殿反応を利用した方法では、フッ素イオンの除去率が
悪い上に、生成した沈殿の水中からの分離に著しい困難
を伴うという欠点がある。本発明者らは、従来方法にお
ける前記欠点の克服されたフッ素イオンの除去方法を関
発すべ〈鋭意研究を重ねた結果、本発明を完成するに到
った。
In order to remove fluoride ions from such fluoride ion-containing wastewater, calcium hydroxide is added to the wastewater.
Insoluble calcium fluoride is produced and separated by precipitation. However, the method using such a precipitation reaction has the disadvantage that the removal rate of fluoride ions is poor and that it is extremely difficult to separate the generated precipitate from water. The present inventors have completed the present invention as a result of intensive research into a method for removing fluorine ions that overcomes the drawbacks of conventional methods.

即ち、本発明によれば、熱分解によりマグネシア形成可
能のマグネシウム化合物を400〜700qoの温度で
焼成して形成したマグネシアを主成分とするマグネシア
系吸着剤に対し、水中に溶解するフッ素イオンを吸着さ
せ、水中から除去することを特徴とするフッ素イオンの
除去方法が提供される。
That is, according to the present invention, fluorine ions dissolved in water are adsorbed to a magnesia-based adsorbent whose main component is magnesia, which is formed by firing a magnesium compound capable of forming magnesia by thermal decomposition at a temperature of 400 to 700 qo. A method for removing fluorine ions is provided, which is characterized in that the fluorine ions are removed from water.

本発明におけるマグネシア系吸着剤とは、マグネシアを
吸着性主成分として含むもので、焼成マグネシアや、種
々の金属酸化物を含むマグネシア混合物、たとえば、マ
グネシアとアルミナの混合物、マグネシアを含む粘土鉱
物の焼成物などが包含される。
The magnesia-based adsorbent in the present invention includes magnesia as a main adsorptive component, and includes calcined magnesia, magnesia mixtures containing various metal oxides, such as mixtures of magnesia and alumina, and calcined clay minerals containing magnesia. It includes things such as things.

本発明におけるマグネシア系吸着剤は、水酸化マグネシ
ウムや炭酸マグネシウム、塩基性炭酸マグネシウム(ヒ
ドロオキシ炭酸マグネシウム)などの加熱により分解し
、マグネシアを形成する任意のマグネシウム化合物を原
料とし、これを慣用の手段により焼成することによって
形成される。
The magnesia-based adsorbent in the present invention is made from any magnesium compound that decomposes by heating to form magnesia, such as magnesium hydroxide, magnesium carbonate, or basic magnesium carbonate (hydroxymagnesium carbonate), and is processed by conventional means. It is formed by firing.

この場合、高められた吸着能を持つマグネシアを得るに
は、その焼成温度として、400〜700℃、好ましく
は550〜650午○という制限された範囲の温度を選
定することが必要である。焼成温度がこれより高くなる
と、得られるマグネシアの吸着館は著しく低下し、また
吸着後に焼成してもその吸着能は再生されず、劣化する
。焼成温度が前記温度よりも低くなると得られるマグネ
シアは吸着能の著しく低いもので実際の使用に適したも
のではない。焼成時間は40〜60分で十分である。本
発明におけるマグネシア系吸着剤は、30〜200メッ
シュ、好ましくは60〜90メッシュの粒度で使用され
、その粒径がこれより小さくなると吸着能が低下する傾
向を示す。また、このマグネシァ系吸着剤は、通常の軽
焼マグネシアに比べ、その結晶度は小さく、またその見
掛比重は0.47〜0.37程度であり、著しく低い。
さらに、本発明のマグネシア系吸着剤は、水溶液中で使
用する場合すぐれた沈降性を示す。前記のマグネシア系
吸着剤は、カオリン (N2Si20(OH)4)、酸化第二鉄(Fe203
)、酸化カルシウム(Ca○)及びアルミナ(AI20
3)の中から選ばれる金属酸化物の少なくとも1種を混
合することにより、その吸着能を損なわずにその量を増
大させ得をとともに、その吸着能を改良することができ
る。
In this case, in order to obtain magnesia with increased adsorption capacity, it is necessary to select a calcination temperature within a limited range of 400 to 700°C, preferably 550 to 650 o'clock. If the calcination temperature is higher than this, the adsorption capacity of the resulting magnesia will be significantly reduced, and even if the magnesia is calcined after adsorption, its adsorption capacity will not be regenerated and will deteriorate. When the calcination temperature is lower than the above temperature, the resulting magnesia has extremely low adsorption capacity and is not suitable for actual use. A firing time of 40 to 60 minutes is sufficient. The magnesia-based adsorbent in the present invention is used with a particle size of 30 to 200 mesh, preferably 60 to 90 mesh, and when the particle size is smaller than this, adsorption capacity tends to decrease. Further, this magnesia-based adsorbent has a lower crystallinity than ordinary light calcined magnesia, and its apparent specific gravity is approximately 0.47 to 0.37, which is extremely low.
Furthermore, the magnesia-based adsorbent of the present invention exhibits excellent sedimentation properties when used in an aqueous solution. The above-mentioned magnesia-based adsorbents include kaolin (N2Si20(OH)4), ferric oxide (Fe203
), calcium oxide (Ca○) and alumina (AI20
By mixing at least one metal oxide selected from 3), the amount of the metal oxide can be increased without impairing the adsorption ability, and the adsorption ability can be improved.

この場合、添加する金属酸化物量は、マグネシアと添加
金属酸化物の総重量に対し、1〜4の重量%、好ましく
は10〜3の重量%である。本発明における殊に好まし
い添加剤はァルミナである。この混合吸着剤はより高め
られた性能を有し、また再生による吸着力の低下が防止
され、さらに良好な沈降性を示すという利点を有する。
このような混合吸着剤は、前記マグネシアに対し、対応
する金属水酸化物を500〜700ooで焼成してあら
かじめ形成した金属酸化物を混合することにより、及び
前記マグネシア形成原料と金属水酸化物をあらかじめ混
合し、この混合物を400〜700qoの温度で焼成す
ることにより調製される。本発明の方法を実施するには
、前記したマグネシァ系吸着剤にフッ素イオンを溶解す
る水を接触させることによって実施される。この場合の
接触方式としては、粉末添加法、流動法などがあり、ま
た操作方式はバッチ式、連続式のいずれも採用し得る。
たとえば、フッ素イオンを粉末添加法により除去するに
は、マグネシア系吸着剤の微粉末を直接水中に添加混合
してその中に含まれるフッ素イオンを吸着させた後、生
成した懸濁物質を沈降分離させる。次に得られたスラリ
ーを脱水し、固形物として回収する。また、本発明の方
法はカラム法により実施されるが、この場合には、前記
した吸着剤粉末を適当な粒度に成形あるいは造粒したの
ち、カラムに充填し、このカラム中にフッ素イオンを溶
解する水を通水する。マグネシア系吸着剤の使用量は、
水中に溶解するフッ素イオンに対して、重量で5“音以
上、通常25〜50ぴ音である。フッ素イオンとしては
、F‐の他、フッ素を含むイオン、例えば、BFZ,B
F30H−をも包含される。本発明は、フッ素イオンを
含む種々の排水から、その中に含まれるフッ素イオンを
除去するために適用される。
In this case, the amount of metal oxide added is 1 to 4% by weight, preferably 10 to 3% by weight, based on the total weight of magnesia and added metal oxide. A particularly preferred additive in the present invention is alumina. This mixed adsorbent has the advantage of having improved performance, preventing a decrease in adsorption power due to regeneration, and exhibiting better sedimentation properties.
Such a mixed adsorbent is produced by mixing the magnesia with a metal oxide previously formed by firing the corresponding metal hydroxide at 500 to 700 oo, and by mixing the magnesia forming raw material and the metal hydroxide. It is prepared by pre-mixing and firing this mixture at a temperature of 400-700 qo. The method of the present invention is carried out by bringing water in which fluorine ions are dissolved into contact with the magnesia-based adsorbent described above. In this case, the contact method includes a powder addition method, a fluidization method, etc., and either a batch method or a continuous method can be adopted as the operation method.
For example, to remove fluoride ions using the powder addition method, fine powder of a magnesia-based adsorbent is directly added and mixed into water, the fluoride ions contained therein are adsorbed, and the resulting suspended matter is separated by sedimentation. let The resulting slurry is then dehydrated and recovered as a solid. The method of the present invention is carried out by a column method, but in this case, the adsorbent powder described above is molded or granulated to an appropriate particle size and then packed into a column, in which fluorine ions are dissolved. The water is passed through. The amount of magnesia-based adsorbent used is
With respect to fluorine ions dissolved in water, the weight is 5" or more, usually 25 to 50 phons. In addition to F-, fluorine ions include ions containing fluorine, such as BFZ, B
Also included is F30H-. INDUSTRIAL APPLICABILITY The present invention is applied to remove fluoride ions contained therein from various wastewaters containing fluoride ions.

本発明によれば、水中からのフッ素イオンの除去は、沈
殿反応によらず、吸着反応によるものであるから、汝渡
8反応によりフッ素イオンを除去する際に見られたよう
な沈殿分離に伴う困難はなく、またスラッジの副生も生
じない。次に本発明を実施例によりさらに詳細に説明す
る。
According to the present invention, the removal of fluorine ions from water is not based on a precipitation reaction but on an adsorption reaction. There are no difficulties and no sludge by-product occurs. Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 市販の水酸化マグネシウム(関東化学(株)製)を60
0qoで1時間焼成して吸着剤を調製した。
Example 1 Commercially available magnesium hydroxide (manufactured by Kanto Chemical Co., Ltd.) was
An adsorbent was prepared by baking at 0qo for 1 hour.

この吸着剤(粒度30〜100メッシュ)の種種の量を
、フッ素イオン51の9/夕を含むモデル廃水(フッ化
カリウム水溶液)200の‘に加え、90分間、10仇
pmで燈拝した後、内容物をロ別し、得られたロ液につ
いて、ランタンーアリザリンコンプキソン法(JISS
KOI02)に従って、フッ素濃度を測定した。
Various amounts of this adsorbent (particle size 30-100 mesh) were added to model wastewater (potassium fluoride aqueous solution) 200 mm containing fluoride ions 9 mm/51 mm, and after being illuminated at 10 PM for 90 minutes. The contents were filtrated, and the obtained filtrate was subjected to the lanthanum-alizarin Compkisson method (JISS
Fluorine concentration was measured according to KOI02).

その結果を次表に示す。表−1 実施例 2 モデル廃水として、フッ素イオン20.5の9ノクを含
むものを用いた以外は実施例1と同様にして実験操作を
行った。
The results are shown in the table below. Table 1 Example 2 Experimental operations were carried out in the same manner as in Example 1, except that model wastewater containing 20.5% of fluorine ions was used.

その結果を次表に示す。表一2 実施例 3 モデル廃水として、フッ素イオン40.0のo/夕を含
むもの(pH5.7)を用いた以外は実施例1と同様に
して実験操作を行った。
The results are shown in the table below. Table 12 Example 3 Experimental operations were carried out in the same manner as in Example 1, except that model wastewater containing 40.0 fluorine ions (pH 5.7) was used.

その結果を表−3に示す。表−3 比較例 1 吸着剤として、市販の水酸化マグネシウム(関東化学(
株)製)を用いた以外は実施例3と同様にして実験操作
を行った。
The results are shown in Table-3. Table 3 Comparative Example 1 Commercially available magnesium hydroxide (Kanto Chemical Co., Ltd.) was used as an adsorbent.
The experimental operation was carried out in the same manner as in Example 3, except that the same procedure was used as in Example 3.

その結果を表−4に示す。表一4 この表−4の結果と、実施例3における表−3の結果と
を比較することにより、本発明で用いるマグネシア吸着
剤は、禾焼成の水酸化マグネシウムよりも、フッ素イオ
ンに対してすぐれた吸着効果を示すことがわかる。
The results are shown in Table 4. Table 14 By comparing the results in Table 4 with the results in Table 3 in Example 3, it was found that the magnesia adsorbent used in the present invention has a higher fluoride ion content than calcined magnesium hydroxide. It can be seen that it exhibits an excellent adsorption effect.

比較例 2 吸着剤として酸化カルシウム(Ca○)を用い、かつモ
デル廃水としてフッ素イオン滋.3の9ノクを含むもの
を用いた以外は実施例1と同様にして実験操作を行った
Comparative Example 2 Calcium oxide (Ca○) was used as an adsorbent, and fluorine ion chloride was used as a model wastewater. Experimental operations were carried out in the same manner as in Example 1, except that a sample containing 9 nocs of 3 was used.

その結果を表−5に示す。表一5この表−5の結果を前
記実施例1〜3の結果と比較することにより、本発明で
用いるマグネシア吸着剤は、酸化カルシウム(Ca○)
よりも、フッ素イオンに対してすぐれた吸着能を有する
ことがわかる。
The results are shown in Table-5. Table 15 By comparing the results of Table 5 with the results of Examples 1 to 3, it was found that the magnesia adsorbent used in the present invention contains calcium oxide (Ca○).
It can be seen that it has an excellent adsorption ability for fluorine ions.

実施例 4 実廃水としてフッ素イオンを含むと同時にリン酸および
油分、界面活性剤を含んでいるA社の未処理廃水を対象
とした。
Example 4 The untreated wastewater of Company A, which contains fluorine ions as well as phosphoric acid, oil, and surfactant, was used as actual wastewater.

Claims (1)

【特許請求の範囲】[Claims] 1 熱分解によりマグネシア形成可能のマグネシウム化
合物を400〜700℃の温度で焼成して形成したマグ
ネシアを主成分とするマグネシア系吸着剤に対し、水中
に溶解するフツ素イオンを吸着させ、水中から除去する
ことを特徴とするフツ素イオンの除去方法。
1 A magnesia-based adsorbent whose main component is magnesia, which is formed by firing a magnesium compound that can form magnesia through thermal decomposition, at a temperature of 400 to 700°C, adsorbs fluorine ions that dissolve in water and removes them from the water. A method for removing fluorine ions, characterized by:
JP8219281A 1981-05-29 1981-05-29 How to remove fluoride ions Expired JPS6026595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8219281A JPS6026595B2 (en) 1981-05-29 1981-05-29 How to remove fluoride ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8219281A JPS6026595B2 (en) 1981-05-29 1981-05-29 How to remove fluoride ions

Publications (2)

Publication Number Publication Date
JPS57197082A JPS57197082A (en) 1982-12-03
JPS6026595B2 true JPS6026595B2 (en) 1985-06-24

Family

ID=13767563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8219281A Expired JPS6026595B2 (en) 1981-05-29 1981-05-29 How to remove fluoride ions

Country Status (1)

Country Link
JP (1) JPS6026595B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340872A (en) * 2000-06-05 2001-12-11 Japan Organo Co Ltd Method for treating wastewater containing boron and/or fluorine
JP4336148B2 (en) * 2003-06-12 2009-09-30 宇部マテリアルズ株式会社 Magnesium oxide powder and method for producing the same
JP2008080223A (en) * 2006-09-27 2008-04-10 Nisshoku Corp Fluoride ion capturing material and its using method
JP2013031795A (en) * 2011-08-01 2013-02-14 Sumitomo Osaka Cement Co Ltd Elution-reducing material, and method for production thereof
JP2018149520A (en) * 2017-03-14 2018-09-27 オルガノ株式会社 Water treatment method, magnesium agen for water treatment, and method for producing magnesium agent for water treatment
JP7116395B2 (en) * 2018-03-07 2022-08-10 オルガノ株式会社 Water treatment method and water treatment equipment
JP2019155216A (en) * 2018-03-07 2019-09-19 オルガノ株式会社 Water treatment method and water treatment equipment

Also Published As

Publication number Publication date
JPS57197082A (en) 1982-12-03

Similar Documents

Publication Publication Date Title
Tokunaga et al. Removal of fluoride ions from aqueous solutions by multivalent metal compounds
WO2005087664A1 (en) Hydrotalcite-like substance, process for producing the same and method of immobilizing hazardous substance
JP4336148B2 (en) Magnesium oxide powder and method for producing the same
US4707270A (en) Process for treating waste water containing phosphorus compounds and/or organic cod substances
JP4558633B2 (en) Wastewater treatment method containing fluoride ions
JPS6026595B2 (en) How to remove fluoride ions
CN110548477B (en) Adsorbing material and preparation method and application thereof
JP2018149520A (en) Water treatment method, magnesium agen for water treatment, and method for producing magnesium agent for water treatment
JP2005193167A (en) Drainage purification method and purification method
CN107265472A (en) A kind of modified clay and preparation method thereof
JP2001340872A (en) Method for treating wastewater containing boron and/or fluorine
JPH0657354B2 (en) Simultaneous removal method of arsenic and silicon
JP2005028272A (en) Phosphorus-component adsorbent and method for wastewater treatment by using the adsorbent
JP3105347B2 (en) How to treat phosphate sludge
JPH07196323A (en) Production of cobalt oxide of low sodium content
JPS591113B2 (en) How to remove phosphorus
JPS6150673B2 (en)
JP2004345912A (en) Heavy metal-free magnesium oxide and method for preparing raw material for the same
JP2005162513A (en) Manufacturing method of zeoliting soil from soil derived from municipal waterworks, waste water treatment method and treatment method of used zeoliting soil
JPH0218906B2 (en)
JPH0221941A (en) Phosphorus adsorbent and production thereof
KR102369230B1 (en) Adsorbent manufacturing method, adsorbent and treatment method
JPH0919680A (en) Water purifying agent and its production
JP4392493B2 (en) Method for removing and recovering phosphorus
JP2006263603A (en) Method for treating boron-containing water