JPS60264368A - Superhard ceramic and manufacture - Google Patents

Superhard ceramic and manufacture

Info

Publication number
JPS60264368A
JPS60264368A JP59120530A JP12053084A JPS60264368A JP S60264368 A JPS60264368 A JP S60264368A JP 59120530 A JP59120530 A JP 59120530A JP 12053084 A JP12053084 A JP 12053084A JP S60264368 A JPS60264368 A JP S60264368A
Authority
JP
Japan
Prior art keywords
powder
silicon nitride
oxide
weight
tlb2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59120530A
Other languages
Japanese (ja)
Inventor
吉村 寛範
直久 伊藤
賢一 西垣
光生 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP59120530A priority Critical patent/JPS60264368A/en
Publication of JPS60264368A publication Critical patent/JPS60264368A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 こ、の発明は、B4C−TlB2−窒化珪素固溶体系の
高硬度と極めて高い強度を有する超硬質セラミックスと
その製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to an ultra-hard ceramic having high hardness and extremely high strength made of a B4C-TlB2-silicon nitride solid solution system, and a method for producing the same.

〔従来技術及びその問題点〕[Prior art and its problems]

従来、B4C1TiB2ともに高硬度を有し、硬質材料
を製造するのに適した物質であるが、いずれも焼結性が
悪く強度の高い材料が得られず、実用化されていないの
が現状である。
Conventionally, both B4C1TiB2 have high hardness and are suitable for manufacturing hard materials, but both have poor sinterability and cannot produce high-strength materials, so they have not been put to practical use. .

jl + j f、Fe ’)Jjj * MA ’;
l ltj @ uj l l−is B4CFe H
’:ft属焼結体+ TiB2 Fe族金属焼結体の製
造が検討されたが、いずれの材料とも焼結中にFe族金
属の硼化物が生成され、結合金属相がなくなり、強度の
向上は極めて少なく、その−ヒ、材料の硬さが大巾に低
下してしまうという欠点を有していた。
jl + j f, Fe') Jjj * MA';
l ltj @ uj l l-is B4CFe H
': ft group sintered body + TiB2 Production of Fe group metal sintered body was considered, but with both materials, boride of Fe group metal is generated during sintering, the bonding metal phase disappears, and the strength is improved. However, the hardness of the material is greatly reduced.

また、」二記欠点を避けるために、硼化物を作らない金
属結合剤9合金績合剤あるいは炭化物結合剤が検討され
てきたが、いずれも硬度と強度の両特性を向上させるに
は到っていなかった。
In addition, in order to avoid the drawbacks mentioned in 2.1, metallic binders that do not produce borides, 9-alloy mixtures, or carbide binders have been studied, but none of them have been able to improve both hardness and strength properties. It wasn't.

〔発明の目的及び知見事項〕[Purpose of the invention and findings]

そこで、本発明者等は高硬度でかつ高強度の超硬質焼結
体を得べく研究を行なった。
Therefore, the present inventors conducted research to obtain an ultra-hard sintered body with high hardness and high strength.

まず、B4CとTiB2の二成分からなる焼結体の製造
を検討したが、この材料は各々単独の成分からなる焼結
体よりも高硬度を示すが、強度が極めて低いものであっ
た。
First, we considered manufacturing a sintered body made of two components, B4C and TiB2, but this material showed higher hardness than a sintered body made of each component alone, but had extremely low strength.

次に、B4CとTiB2の二成分に各種の金属、化合物
を添加して焼結体を製造する試験をしたところ、Fe族
金属の添加の場合は従来のB4C1TjB2の各々に添
加した場合と同様、l’i’6族金属の硼化物が生成し
て、焼結体の硬度が大巾に低下してしまった。
Next, we conducted a test to manufacture a sintered body by adding various metals and compounds to the two components of B4C and TiB2, and found that the addition of Fe group metals was similar to the case of adding each of the conventional B4C1TjB2. Borides of l'i' group 6 metals were produced, and the hardness of the sintered body was greatly reduced.

そこで、他の添加剤を検討したところ、炭化物では硬度
は向−1ニするが、強度が向上せず、窒化物の中の窒化
珪素C以下、Si3N4で示す)をB4CとTiB2の
二成分系に添加すると、硬度と強度の両方が向」ニする
ことを確認した。
Therefore, when we investigated other additives, we found that the hardness of carbide decreased by -1, but the strength did not improve. It was confirmed that both hardness and strength improve when added to

しかしながら、813N4だけの添加では材料の焼結性
が悪く、Si3N4のうちの 3〜30重量係の範囲の
量をAl2O3,Y2O3及びMgOからなる群より選
ばれた少なくとも1種の酸化物で置換すると、焼結性が
よく、しかも硬度と強度の高い焼結体が得られることを
確認した。
However, if only 813N4 is added, the sinterability of the material is poor, and if the amount of Si3N4 in the range of 3 to 30% by weight is replaced with at least one oxide selected from the group consisting of Al2O3, Y2O3, and MgO. It was confirmed that a sintered body with good sinterability and high hardness and strength could be obtained.

また、B4C5TIB2及びSi3N4固溶体からなる
上記の超硬質セラミックスを製造するに際しては、B4
C粉末、TiB2粉末、513N4粉末、並びにAl2
O3粉末、Y2O3粉末及びMgO粉末からなる群より
選ばれた少なくとも1種の酸化物粉末を所定の組成に配
合し、これらの配合粉末を粉砕・混合した後、プレス成
形して圧粉体とし、この圧粉体を05atm以上の窒素
雰囲気中で普通焼結あるいはホットプレスすることによ
り、特に高硬度かつ高強度のセラミックスが得られるこ
とも確認した。
In addition, when manufacturing the above-mentioned super hard ceramics made of B4C5TIB2 and Si3N4 solid solution, B4
C powder, TiB2 powder, 513N4 powder, and Al2
At least one kind of oxide powder selected from the group consisting of O3 powder, Y2O3 powder and MgO powder is blended into a predetermined composition, these blended powders are crushed and mixed, and then press-molded to form a green compact, It has also been confirmed that ceramics with particularly high hardness and high strength can be obtained by sintering or hot pressing this green compact in a nitrogen atmosphere of 0.5 atm or higher.

5− 〔発明の構成に欠くことができない事項〕この発明は、
上記知見に基いて更に研究を重ねた結果発明されたもの
であり、 (1)■B4C、■’l”1132並びに■5i3N4
97〜70重量係に、 3〜30重量係の範囲のAA!
 203 # Y2O3及びMgOからなる群より選ば
れた少なくとも1種の酸化物を固溶させたSi3N4固
溶体の三成分からなり、その組成が第1図に示すように
三角座標において、 点A(B4C:80%、TiB2:10チ、Si3N4
固溶体:10係)。
5- [Matters essential to the structure of the invention] This invention:
It was invented as a result of further research based on the above knowledge, and (1) ■B4C, ■'l"1132 and ■5i3N4
AA in the range of 97-70 weight, 3-30 weight!
203 # Consists of three components of Si3N4 solid solution in which at least one oxide selected from the group consisting of Y2O3 and MgO is dissolved, and its composition is at point A (B4C: 80%, TiB2:10chi, Si3N4
Solid solution: Section 10).

点B (B4C:30%、 TiB2:60%、Si3
N4固溶体=10係)。
Point B (B4C: 30%, TiB2: 60%, Si3
N4 solid solution = 10 parts).

点C(B4C:30チ、TlB2 : 10チ、Si3
N4固溶体二60%) (以上、重量%)で囲まれた範囲にあることを特徴とす
る超硬質セラミックス。
Point C (B4C: 30chi, TlB2: 10chi, Si3
An ultra-hard ceramic characterized by having an N4 solid solution in a range of 260% (by weight).

(2)B4C粉末、TlB2粉末* Si3N4粉末、
並びにAlO粉末、Y2O3粉末及びMgO粉末からな
る群よ3 り選ばれた少なくとも1種の酸化物粉末を、B4C6一 −TiB2−窒化珪素と酸化物の混合物系の三角座標に
おいて、 点A’(B4C:80%、TlB2:10チ+ S i
3N4と酸化物の混合物=10係)。
(2) B4C powder, TlB2 powder* Si3N4 powder,
and at least one oxide powder selected from the group consisting of AlO powder, Y2O3 powder, and MgO powder, at point A' (B4C :80%, TlB2:10chi+S i
3N4 and oxide mixture = 10 parts).

点B’(B4C:30%+ TlB2 : 60%、S
i3N4と酸化物の混合物=10%)。
Point B' (B4C: 30% + TlB2: 60%, S
mixture of i3N4 and oxide = 10%).

点C’(B4C:30%、 TlB2 : 10%、S
i3N4と酸化物の混合物=60%) C以上、重量%)で囲まれた範囲の配合組成であり、し
かも、Si3N4粉末と酸化物粉末との配合割合が重量
比で97〜70: 3〜30である配合組成となるよう
に配合し、これら原料粉末を粉砕・混合した後、プレス
成形して圧粉体とし、この圧粉体をQ、 5 atm以
上の窒素雰囲気中で普通焼結あるいはホットプレスする
ことを特徴とする、■B4C。
Point C' (B4C: 30%, TlB2: 10%, S
Mixture of i3N4 and oxide = 60%) C or more, weight%), and the blending ratio of Si3N4 powder and oxide powder is 97 to 70:3 to 30 by weight. After pulverizing and mixing these raw material powders, they are press-formed to form a green compact, and this green compact is sintered normally or hot in a nitrogen atmosphere of Q, 5 atm or higher. ■B4C, which is characterized by pressing.

■TiB2並びに■5i3N497〜70重量優に、3
〜30重量%の範囲のA4□03.Y2O3及びMgO
から!:″ なる群より選ばれた少なくとも1種の酸化
物を固溶させたSi3N4固溶体の三成分からなり、そ
の組成が第1図に示す三角座標において、点A9点B及
び点Cで囲まれた範囲にある超硬質セラミックスの製造
方法 である。
■TiB2 and ■5i3N497~70 weight, 3
A4□03. in the range of ~30% by weight. Y2O3 and MgO
from! It consists of three components of Si3N4 solid solution in which at least one oxide selected from the group consisting of: This is a method for manufacturing ultra-hard ceramics within the range.

〔発明の構成要件〕[Components of the invention]

以下、この発明の構成について詳細に説明する。 Hereinafter, the configuration of the present invention will be explained in detail.

■ 超硬質セラミックス (1)成分 513N4固溶体は、5iBN497〜70重量%に、
3〜30重量%の範囲のAl2O3,Y2O3及びMg
Oからなる群より選ばれた少なくとも1種の酸化物を固
溶させたものであることが必要である。これは、酸化物
での置換度が 3重量%より少ないと、焼結性改善の効
果が充分でなく、一方、30重重量上り多いと、高温特
性が低下してしまうからである。
■ Ultra-hard ceramic (1) component 513N4 solid solution contains 5iBN497 to 70% by weight,
Al2O3, Y2O3 and Mg in the range 3-30% by weight
It is necessary that at least one oxide selected from the group consisting of O is dissolved in solid solution. This is because if the degree of substitution with the oxide is less than 3% by weight, the effect of improving sinterability will not be sufficient, while if it exceeds 30% by weight, the high temperature properties will deteriorate.

(11)組成 (a) B4C B4Cは、極めて高い硬度を有し、この発明の主体硬質
相であり、この発明の超硬質セラミックスに高い硬度ひ
いては耐摩耗性を付与する作用を有するが、B4Cの含
有量が第1図のBC線未満、すなわち30重量%未満で
は所望の効果が得られず、一方、第1図のA点を越える
、すなわち80重量受を越えると、セラミックスの焼結
性が低下し、強度が低下してしまうことから、B4Cの
含有量をBC線とA点の間(すなわち30〜80重量%
)と定めた。
(11) Composition (a) B4C B4C has extremely high hardness and is the main hard phase of this invention, and has the effect of imparting high hardness and wear resistance to the ultrahard ceramic of this invention. If the content is less than the BC line in Figure 1, that is, less than 30% by weight, the desired effect cannot be obtained, while if it exceeds point A in Figure 1, that is, exceeds 80% by weight, the sinterability of the ceramic will deteriorate. Therefore, the B4C content should be set between the BC line and the point A (i.e., 30 to 80% by weight).
).

(b) T iB 2 TiB2は、それ自体B4Cと同様高い硬度を有してい
るが、B4Cと一緒に焼結すると、きわめて高硬度のセ
ラミックスが得られ、また、B4Cのスケルトンを分断
して、この発明の超硬質セラミックスの強度を向上させ
る作用を有するが、TiB2の含有量が第1図のAC線
未満、すなわち10重量%未満では所望の効果が得られ
ず、一方、第1図のB点を越える、すなわち60重量%
を越えると、セラミックスの硬度ひいては耐摩耗性およ
び強度が低下してしまうことから、TiB2の含有量を
AC線とB点の間(すなわち10〜60重景%)と定め
た。
(b) T iB 2 TiB2 itself has high hardness like B4C, but when sintered together with B4C, a ceramic with extremely high hardness is obtained, and by dividing the skeleton of B4C, Although it has the effect of improving the strength of the ultra-hard ceramic of this invention, if the content of TiB2 is less than the AC line in FIG. 1, that is, less than 10% by weight, the desired effect cannot be obtained; over the point, i.e. 60% by weight
If the TiB2 content exceeds the range, the hardness and wear resistance and strength of the ceramic decrease. Therefore, the content of TiB2 was determined to be between the AC line and the point B (ie, 10 to 60%).

=9− (cl S iB N、i固溶体 Si3N4固溶体は、前記B4CおよびTiB2を強固
に結合して、この発明の超硬質セラミックスの強度を向
上させる効果を有するが、Si3N4固溶体の含有量が
AB線未満すなわち10重量%未満では、所望の効果が
得られず、一方、0点を越えると、すなわち60重量%
を越えると、セラミックスの硬さが低下し、耐摩耗性が
低下してしまうことから、Si3N4固溶体の含有量を
AB線と0点の間(すなわち、10〜60重量%)と定
めた。
=9- (cl SiB N,i solid solution The Si3N4 solid solution has the effect of strongly binding the B4C and TiB2 and improving the strength of the ultra-hard ceramic of the present invention, but the content of the Si3N4 solid solution is below the AB line. If it is less than 10% by weight, the desired effect cannot be obtained, while if it exceeds 0, i.e. 60% by weight.
If it exceeds this, the hardness of the ceramic decreases and the wear resistance decreases, so the content of the Si3N4 solid solution was determined to be between the AB line and the 0 point (that is, 10 to 60% by weight).

■ 超硬質セラミックスの製造方法 (1)原料粉末の粒度 Si3N4固溶体は、結合相としての役割を有するので
、その原料であるS l 3N4粉末、Al2O3粉末
■ Manufacturing method for ultra-hard ceramics (1) Particle size of raw material powder Since the Si3N4 solid solution has a role as a binder phase, its raw materials, S 1 3N4 powder and Al2O3 powder.

Y2O3粉末及びMgO粉末は、粒度が細かい方が望ま
しい。即ち、Si3N4粉末は平均粒径0.1〜20μ
m。
It is desirable that the Y2O3 powder and MgO powder have finer particle sizes. That is, the Si3N4 powder has an average particle size of 0.1 to 20μ
m.

酸化物粉末は平均粒径0.05〜1.5μmのものが好
ましい。そして、B4C粉末およびTiB2粉末の平均
粒径は、いずれも0.5〜5.0μmが好ましい。
The oxide powder preferably has an average particle size of 0.05 to 1.5 μm. The average particle size of both the B4C powder and the TiB2 powder is preferably 0.5 to 5.0 μm.

(II)配合組成 10− (d) B4Cの配合量 B4Cノ配合量が、B4C−TlB2−813N4 と
酸化物の混合物系の三角座標において、B’C’線未満
、すなわち30重量%未満の場合、得られるセラミック
スに高い硬度O・いては耐摩耗性を付与1″ることかで
きず、一方、A′点を越える、すなわち80重量%を越
えろと、製造の際の焼結性が低下し、得られるセラミッ
クスの強度が低下してしまうことから、B4Cの配合量
をB’ C’線とA′点の間(すなわち30〜80重量
%)と定めた。
(II) Blending composition 10- (d) B4C blending amount When the B4C blending amount is less than the B'C' line, that is, less than 30% by weight, in the triangular coordinates of the mixture system of B4C-TlB2-813N4 and oxide. If the resulting ceramic has a high hardness of 0, it is not possible to impart wear resistance of 1", while if the hardness exceeds the A' point, that is, exceeds 80% by weight, the sinterability during production decreases. Since the strength of the resulting ceramic would be reduced, the blending amount of B4C was determined to be between the B'C' line and the A' point (ie, 30 to 80% by weight).

(e) ’f’ ] B 2の配合量 TiB2の配合量が、B4C−TlB2−813N4と
酸化物の混合物系の三角座標において、A’C’線未満
、すなわち10重量%未満では、得られろセラミックス
の硬度と強度とを向−1ニさせることができず、一方、
B′点を越えろ、1−なわち60重1カを越えると、得
られろセラミックスの硬度ひいては面1摩ill’ 肝
性おJoび強度が低下してしまうことがら、T・B2の
配合量をA’ C’線とB′点の間(fなわち10〜6
0重量%)と定めた。
(e) 'f' ] B2 blending amount If the blending amount of TiB2 is less than line A'C', that is, less than 10% by weight, in the triangular coordinates of the mixture system of B4C-TlB2-813N4 and oxide, it will not be possible to obtain It is not possible to improve the hardness and strength of filter ceramics, and on the other hand,
Exceeding point B', i.e., exceeding 60% weight, will result in a decrease in the hardness of the ceramic and thus the surface resistance and strength, so the blending amount of T and B2 will be reduced. between A'C' line and B' point (f, that is, 10 to 6
0% by weight).

(f)Si3N4と酸化物の合計配合量813N4と酸
化物の合計配合量がA’ B’線未満すなわち10重量
%未満では、得られろセラミックスの強度を向上させる
ことができず、一方、C′点を越えると、すなわち60
重量%を越えると、得られるセラミックスの硬さが低下
し、而」摩耗性が低下してしまうことがら、Si3N4
と酸化物の合計配合量をA’ B’線とC′点の間(¥
なわち、10〜60重i′%)と定めた。
(f) Total blending amount of Si3N4 and oxide 813 If the total blending amount of Si3N4 and oxide is less than the A'B' line, that is, less than 10% by weight, the strength of the resulting ceramic cannot be improved; ’ point, that is, 60
If Si3N4
and the total amount of oxides between the A'B' line and the C' point (¥
That is, it was determined to be 10 to 60 weight i'%).

(g)Si3N4と酸化物の配合割合 513N4粉末と酸化物粉末との配合割合は重量比で9
7〜70: 3〜30であることが必要である。これは
、813N4粉末が97重量%を越え、 。
(g) Blending ratio of Si3N4 and oxide 513 The blending ratio of N4 powder and oxide powder is 9 by weight.
7-70: Must be 3-30. This means that the 813N4 powder exceeds 97% by weight.

酸化物粉末が 3重量係未満の配合割合では、製造の際
の焼結性が向上せず、一方、513N4粉末が70M量
受未満で酸化物粉末が30重量%を越える配合割合では
、得られるセラミックスの高温特性が低下してしまうか
らである。
If the amount of oxide powder is less than 3% by weight, the sinterability during production will not improve, while if the amount of 513N4 powder is less than 70M and the amount of oxide powder is more than 30% by weight, the sinterability will not be improved. This is because the high-temperature properties of ceramics will deteriorate.

(ii:) 粉砕・混合 粉砕・混合は通常の方法、すなわち、ボールミル中ニお
いて湿式(例えばアルコール中)で、例えば96時間の
条件で行なわれる。
(ii:) Grinding and Mixing The grinding and mixing are carried out in a conventional manner, that is, in a ball mill in a wet manner (for example, in alcohol), for example, for 96 hours.

(1v) 成形 成形は、好ましくは、プレス圧力1.0〜30Kg/ 
mAでプレス成形することにより行なわれる。
(1v) Molding is preferably performed at a press pressure of 1.0 to 30 kg/
This is done by press molding at mA.

(■)焼結 焼結は、Q、 5 atm以上の窒素雰囲気中で行なう
ことが必要である。Q、 5 atm未満の窒素雰囲気
で焼結を行なうと、813N40分解が激しく、得られ
る上列ミックス中に空孔ができ゛て、セラミックスの強
度を低下させてしまうので、焼結雰囲気はQ、5atr
n以」−の窒素雰囲気と定めた。
(■) Sintering Sintering must be carried out in a nitrogen atmosphere of Q, 5 atm or higher. Q. If sintering is performed in a nitrogen atmosphere of less than 5 atm, the 813N40 decomposes violently, creating pores in the resulting upper row mix and reducing the strength of the ceramic. 5atr
The nitrogen atmosphere was defined as "n" or more.

焼結は、普通焼結あるいはホットプレスすることにより
行なわれる。普通焼結は1750〜1950℃の温度で
、1〜10時間行なうことが望ましい。
Sintering is usually performed by sintering or hot pressing. Normally, sintering is preferably carried out at a temperature of 1750 to 1950°C for 1 to 10 hours.

ホットプレスの場合には、プレス圧力100〜400υ
、温度1700〜1950℃で0.5〜5時間行なうこ
とが望ましい。
In the case of hot press, press pressure 100~400υ
It is desirable to carry out the process at a temperature of 1700 to 1950°C for 0.5 to 5 hours.

窒素雰囲気中での普通焼結あるいはホットプレスにより
、超硬質セラミックスを製造した後に、13− 更に熱間静水圧プレスを行なうことは、強度がより一層
向上するので好ましい。
After producing ultra-hard ceramics by normal sintering or hot pressing in a nitrogen atmosphere, it is preferable to further perform hot isostatic pressing in order to further improve the strength.

〔実施例〕〔Example〕

次に実施例にもとづいて、この発明の超硬質セラミック
ス及びその製造方法について具体的に説明する。
Next, the ultra-hard ceramic of the present invention and its manufacturing method will be specifically explained based on Examples.

実施例 原料粉末として、平均粒径15μmのB4C粉末。Example B4C powder with an average particle size of 15 μm was used as the raw material powder.

同2.0 μITIのTiB2粉末、同0.7 p m
の513N4粉末。
TiB2 powder with 2.0 μITI, 0.7 pm
513N4 powder.

同0.5 p rnのAl2O3粉末、同Q、4.fj
mのY2O3粉末。
Al2O3 powder of 0.5 p rn, same Q, 4. fj
m of Y2O3 powder.

および同O06μmのMgO粉末を用意し、第1表に示
される配合組成に配合して、ボールミルにて96時時間
式(変性アルコール中)で粉砕・混合し、乾燥した後、
プレス圧力20Ky/−でプレス成形して圧粉体とし、
この圧粉体を第1表に示されろ条件にて焼結して、第1
表に示されるセラミックス組成を有する本発明超硬質セ
ラミックスNo、1〜25と組成が本発明の範囲から外
れる比較超硬質セラミックスNo、1’〜9′を製造し
た。
and the same O06μm MgO powder were prepared, blended into the composition shown in Table 1, ground and mixed in a ball mill for 96 hours (in denatured alcohol), and dried.
Press molded at a press pressure of 20Ky/- to form a green compact,
This green compact was sintered under the conditions shown in Table 1.
Invention ultra-hard ceramics Nos. 1 to 25 having the ceramic compositions shown in the table and comparative ultra-hard ceramics Nos. 1' to 9' having compositions outside the scope of the present invention were manufactured.

ついで、本発明超硬質セラミックスと比較超硬14− 質セラミックスσ)ロックウェルA硬さと抗折力を測定
し、同じく第1表て示した。
Next, the Rockwell A hardness and transverse rupture strength of the ultrahard ceramics of the present invention and the comparative ultrahard 14-quality ceramics σ) were measured, and are also shown in Table 1.

第1表かられかるように、組成がこの発明の範囲から外
れる比較超硬質セラミックスは、ロックウェルA硬さが
約937以下であり、抗折力が約58Kr/−以下であ
るのて対し、本発明超硬質セラミックスは、ロックウェ
ルA硬さが022〜946で、しかも抗折力が72〜9
5Kg/−という硬度が良好乃至優れており、極めて高
強度のもので゛ある。
As can be seen from Table 1, the comparative ultra-hard ceramics whose composition is outside the scope of the present invention have a Rockwell A hardness of about 937 or less and a transverse rupture strength of about 58 Kr/- or less, whereas The ultra-hard ceramic of the present invention has a Rockwell A hardness of 022 to 946 and a transverse rupture strength of 72 to 9.
It has a good to excellent hardness of 5 kg/-, and has extremely high strength.

〔発明の用途〕[Use of invention]

次に、本発明超硬質セラミックスと比較超硬質セラミッ
クスからISO規格5NP432の形状の切削チップを
切り出し、下記の条件にて、高速切削試験を行なった。
Next, cutting tips having a shape according to ISO standard 5NP432 were cut from the ultra-hard ceramics of the present invention and the comparative ultra-hard ceramics, and a high-speed cutting test was conducted under the following conditions.

く切削試験条件〉 被削材:Fe12(ブリネル硬さ: 1.60 )の丸
棒 切削速度:280rn/分 送り : O,15mm / rev 15− 389− 切込み :1.5mm 切削時間:15分 同様て、従来焼結体として、鋳鉄の切削に通常用いられ
る、KOIのWCC超超硬合金組成はV:92%、’r
ac : 2%、Co:6%)、TiC基サーすット(
組成はT;c : 70%9Mo2C:15%、Ni:
15%)、A1203−TIC系セラミックス(組成は
Al2O3ニア0%、TiC:30%) s S l 
3N4系セラミツクス(組成は813N4:93%、Y
2O3:5%。
Cutting test conditions> Work material: Fe12 (Brinell hardness: 1.60) round bar Cutting speed: 280rn/min Feed: O, 15mm/rev 15-389- Depth of cut: 1.5mm Cutting time: 15 minutes Same Therefore, the composition of KOI's WCC cemented carbide, which is conventionally used as a sintered body for cutting cast iron, is V: 92%, 'r
ac: 2%, Co: 6%), TiC-based surfactant (
The composition is T;c: 70%9Mo2C: 15%, Ni:
15%), A1203-TIC ceramics (composition is Al2O3 near 0%, TiC: 30%) s S l
3N4 ceramics (composition is 813N4:93%, Y
2O3: 5%.

MgO: 2%)からの切削チップをも用いて、上記の
高速切削試験を行なった。
The high-speed cutting tests described above were also carried out using cutting inserts made from MgO (2%).

これらの切削試験では、切削チップJ)フランク摩耗幅
とクレータ−摩耗深さを測定し、第2表に示した。
In these cutting tests, the cutting tip J) flank wear width and crater wear depth were measured and are shown in Table 2.

第2表かられかるよって、本発明超硬質セラミックスは
、従来焼結体に比べて、切削チップとして用いたとき、
きわめてすぐれた耐摩耗性を有している。
As can be seen from Table 2, the ultra-hard ceramics of the present invention, when used as a cutting tip, compared to conventional sintered bodies,
It has extremely good wear resistance.

また、組成が本発明力範囲から外れろ比較超硬質セラミ
ックスと比べても、すぐれた切削特性を18− 示している。
Furthermore, even when compared with comparative ultra-hard ceramics whose compositions are outside the range of the present invention, they exhibit excellent cutting properties.

〔発明の総括的効果〕[Overall effect of the invention]

以上のように、この発明の超硬質セラミックスは、高硬
度かつ高強度の特性を有し、高速切削等高能率加工です
ぐれた特性を発揮するので、実用上、きわめて重要な材
料である。
As described above, the ultra-hard ceramic of the present invention has characteristics of high hardness and high strength, and exhibits excellent characteristics in high-efficiency machining such as high-speed cutting, so it is an extremely important material in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、B4C9TiB2及び窒化珪素固溶体の三成
分系の組成を表わす三角座標であり、点A、B及びC並
びにAを結ぶ実線で囲まれた範囲が、この発明の超硬質
セラミックスの組成範囲である。 そして、点1から18までと点19〜22と点23〜2
5、それから点1′から9′までは、実施例の、それぞ
れ本発明超硬質セラミックス及び比較超硬、質セラミッ
クスの対応するNo、の組成な表わす点である。 出願人 三菱金属株式会社 代理人 富 1)和 夫 外1名 20− 第1仄 □
FIG. 1 shows triangular coordinates representing the composition of a ternary system of B4C9TiB2 and silicon nitride solid solution, and the range surrounded by solid lines connecting points A, B, and C and A is the composition range of the ultrahard ceramic of the present invention. It is. Then, points 1 to 18, points 19 to 22, and points 23 to 2
5. Points 1' to 9' are points representing the corresponding composition numbers of the ultra-hard ceramics of the present invention and the comparative ultra-hard ceramics, respectively, in the examples. Applicant Mitsubishi Metals Co., Ltd. Agent Tomi 1) Kazuo and 1 other person 20- 1st □

Claims (1)

【特許請求の範囲】 (])■B4C、■TlB2並びに■窒化珪素97〜7
0重量係に、3〜30重量%の範囲のA12o3゜Y2
O3及びMgOからなる群より選ばれた少なくとも1種
の酸化物を固溶させた窒化珪素固溶体力三成分からなり
、その組成が第1図に示すように三角座標において、 点A (B4C:80%、TiB2 :10%、窒化珪
素固溶体=10係、)、゛ 点B (B、C:30%、TiB2:60%、窒化珪素
固溶体:10チ)。 点C(B C:30%= TlB2 :]−0%、窒化
珪素固溶体=60係) (以」二、重量%)で囲まれた範囲にあることを特1 
− 徴どする超硬質セラミックス。 (2) B4C粉末、TlB2粉末、窒化珪素粉末、並
びにAl2O3粉末、¥203粉末及びM、0粉末から
なる群より選ばれた少なくとも1種の酸化物粉末を、B
4C−TlB2−窒化珪素と酸化物の混合物系の三角座
標において、 点A’(B4C:80%、 TlB2 : 10%、窒
化珪素と酸化物の混合物:10係)。 点B’(B4C:30係、 TlB2 : 60係、窒
化珪素と酸化物の混合物:10係)。 点C’ (B4C: 30%、 TlB2 : lI−
0係、窒化珪素と酸化物の混合物=60係) (以」二、重量%)で囲まれた範囲の配合組成であり、
しかも、窒化珪素粉末と酸化物粉末との配合割合が重量
比で97〜70: 3〜30である配合組成となるよう
に配合し、これら原料粉末を粉砕・混合した後、プレス
成形1−て圧粉体とし、この圧粉体を0.5 atrn
以」−の窒素雰囲気中で普通焼結あるいはホットプレス
することを特徴とする、■B4C9■TiB2並びに■
窒化珪素97〜70重用俤に、 3〜3.OM量係の範
囲のAl1203.Y2O3及びMgOからなる群より
選ばれた少なくとも1種の酸化物を固溶させた窒化珪素
固溶体の三成分がらなり、その組成が第1図に示す三角
座標において、点A9点B及び点Cで囲まれた範囲にあ
る超硬質セラミックスの製造方法。
[Claims] (]) ■B4C, ■TlB2 and ■Silicon nitride 97-7
0 weight percent, A12o3°Y2 in the range of 3 to 30% by weight
A silicon nitride solid solution containing at least one oxide selected from the group consisting of O3 and MgO is composed of three components, and its composition is as shown in Figure 1 in triangular coordinates at point A (B4C:80 %, TiB2: 10%, silicon nitride solid solution = 10%, ), point B (B, C: 30%, TiB2: 60%, silicon nitride solid solution: 10%). Point C (B C: 30% = TlB2:]-0%, silicon nitride solid solution = 60%) (hereinafter referred to as 2% by weight)
− Ultra-hard ceramics with special characteristics. (2) At least one oxide powder selected from the group consisting of B4C powder, TlB2 powder, silicon nitride powder, Al2O3 powder, ¥203 powder, and M, 0 powder,
In the triangular coordinates of the 4C-TlB2-silicon nitride and oxide mixture system, point A' (B4C: 80%, TlB2: 10%, silicon nitride and oxide mixture: 10 units). Point B' (B4C: ratio of 30, TlB2: ratio of 60, mixture of silicon nitride and oxide: ratio of 10). Point C' (B4C: 30%, TlB2: lI-
0 ratio, mixture of silicon nitride and oxide = 60 ratio) (hereinafter referred to as 2, weight%),
In addition, the silicon nitride powder and oxide powder are blended in a weight ratio of 97 to 70:3 to 30, and after pulverizing and mixing these raw material powders, press forming 1-1. The compacted powder is 0.5 atrn.
■B4C9■TiB2 and ■characterized by normal sintering or hot pressing in a nitrogen atmosphere of
In addition to silicon nitride 97-70, 3-3. Al1203 in the range of OM quantity. It consists of three components of a silicon nitride solid solution in which at least one oxide selected from the group consisting of Y2O3 and MgO is dissolved, and its composition is at points A, B, and C in the triangular coordinates shown in Figure 1. A method of manufacturing ultra-hard ceramics within the enclosed range.
JP59120530A 1984-06-12 1984-06-12 Superhard ceramic and manufacture Pending JPS60264368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59120530A JPS60264368A (en) 1984-06-12 1984-06-12 Superhard ceramic and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59120530A JPS60264368A (en) 1984-06-12 1984-06-12 Superhard ceramic and manufacture

Publications (1)

Publication Number Publication Date
JPS60264368A true JPS60264368A (en) 1985-12-27

Family

ID=14788553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59120530A Pending JPS60264368A (en) 1984-06-12 1984-06-12 Superhard ceramic and manufacture

Country Status (1)

Country Link
JP (1) JPS60264368A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146762A (en) * 1984-12-14 1986-07-04 バレナイト・インコーポレイテッド Antiabrasive silicon nitride base product
US4957884A (en) * 1987-04-27 1990-09-18 The Dow Chemical Company Titanium diboride/boron carbide composites with high hardness and toughness
EP2636659A1 (en) * 2010-11-04 2013-09-11 Krosakiharima Corporation High rigidity ceramic material and method for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146762A (en) * 1984-12-14 1986-07-04 バレナイト・インコーポレイテッド Antiabrasive silicon nitride base product
US4957884A (en) * 1987-04-27 1990-09-18 The Dow Chemical Company Titanium diboride/boron carbide composites with high hardness and toughness
EP2636659A1 (en) * 2010-11-04 2013-09-11 Krosakiharima Corporation High rigidity ceramic material and method for producing same
EP2636659A4 (en) * 2010-11-04 2014-05-14 Krosakiharima Corp High rigidity ceramic material and method for producing same

Similar Documents

Publication Publication Date Title
CN112647006B (en) Tungsten carbide-based hard alloy and preparation method thereof
JPS5860677A (en) Manufacture of high tenacity silicon nitride sintered body
EP0392381B1 (en) Silicon nitride ceramics containing a metal silicide phase
JPS60264368A (en) Superhard ceramic and manufacture
JPS61146762A (en) Antiabrasive silicon nitride base product
JPS5833187B2 (en) Manufacturing method of ceramic materials for tools
JPH0411506B2 (en)
JP3010774B2 (en) Alumina-based ceramics
JP2863829B2 (en) High toughness, high strength, high hardness alumina-based composite material
JPS60255670A (en) Superhard ceramic and manufacture
JPH05279121A (en) Sintered compact of tungsten carbide-alumina and its production
JP3232599B2 (en) High hardness cemented carbide
JP2778179B2 (en) Manufacturing method of silicon nitride based sintered material with high toughness and high strength
JPS6197167A (en) Silicon nitride sintered body and manufacture
JP3481702B2 (en) Cubic boron nitride sintered body using hard alloy as binder and method for producing the same
JPS60226459A (en) Super hard ceramic and manufacture
JPH06340941A (en) Nano-phase composite hard material and its production
JP2925899B2 (en) Ceramic cutting tool and its manufacturing method
JPS593073A (en) Sialon base sintered material for cutting tool and antiabrasive tool
JPS6150909B2 (en)
JP2003081677A (en) Dispersion-enhanced cbn-based sintered compact and method of producing the same
JPS6335706B2 (en)
JPS6119586B2 (en)
JP2932738B2 (en) Method for producing cubic boron nitride based ultra-high pressure sintered material having high toughness
JPH01219140A (en) Cutting tool made of tungsten carbide-based sintered hard alloy