JPS60264049A - Alkali zinc battery - Google Patents

Alkali zinc battery

Info

Publication number
JPS60264049A
JPS60264049A JP59121054A JP12105484A JPS60264049A JP S60264049 A JPS60264049 A JP S60264049A JP 59121054 A JP59121054 A JP 59121054A JP 12105484 A JP12105484 A JP 12105484A JP S60264049 A JPS60264049 A JP S60264049A
Authority
JP
Japan
Prior art keywords
zinc
carbon powder
electrode
thin layer
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59121054A
Other languages
Japanese (ja)
Inventor
Sanehiro Furukawa
古川 修弘
Shuzo Murakami
修三 村上
Yoshiki Fujiwara
藤原 孝樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59121054A priority Critical patent/JPS60264049A/en
Publication of JPS60264049A publication Critical patent/JPS60264049A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress passivation of a zinc electrode and elongate the cycle life of an alkali zinc battery by forming a thin layer made from carbon fine powder on the surface of a zinc active material layer in certain specific thickness. CONSTITUTION:A zinc electrode 1 is formed by spraying solution with carbon powder of mean particle diameter of 0.1mu or less dispersed therein on the surface of a zinc active material layer formed on a charge collector and thereby providing a thin layer 9 with thickness of 20-200mu made from carbon powder. Or, the thin layer 9 with carbon powder held in a microporous film is provided by applying dilute solution of synthetic resin suspension of carbon powder and polytetrafluoroethylene or the like to the surface of the zinc active material layer and then drying it. It is possible to suppress passivation of the zinc electrode attendant upon the process of a charge-discharge cycle and improve absorbing capability of oxygen gas, by using this zinc electrode. Therefore, the alkali zinc battery with long cycle life can be presented.

Description

【発明の詳細な説明】 イ)産業上の利用分野 本発明は銀−亜鉛重油、ニップル−亜給電池などのよう
に負極として亜鉛極を用い、電解液としてアルカリ水溶
液を用いるアルカリ亜鉛蓄植池に関し、特に亜鉛極の改
良に関する。
Detailed Description of the Invention (a) Industrial Application Field The present invention is directed to alkaline zinc storage batteries that use a zinc electrode as a negative electrode and an alkaline aqueous solution as an electrolyte, such as silver-zinc heavy oil, nipple-subfed batteries, etc. In particular, it relates to improvements in zinc electrodes.

(ロ)従来技術 負極としての亜鉛は単位itあたりのエネルギー密度が
大きく且つ安価である利点を有Tる反面、放電時に亜鉛
がアルカリ電解液に溶出して亜鉛酸イオンとなり、充電
時にこの亜鉛酸イオンが亜鉛極表面に樹枝状あるいは海
綿状に電析するため、充放電を繰り返す2電析亜鉛かセ
パレータを貫通して対極と接して内部短絡を引き起こし
サイクル寿命が短かくなる欠点がある。
(b) Conventional technology Although zinc as a negative electrode has the advantage of having a high energy density per unit of electricity and being inexpensive, on the other hand, zinc dissolves into the alkaline electrolyte during discharge and becomes zincate ions, and during charging, the zincate Since ions are deposited on the surface of the zinc electrode in a dendritic or spongy form, the two-electrode deposited zinc, which is repeatedly charged and discharged, penetrates the separator and comes into contact with the counter electrode, causing an internal short circuit and shortening the cycle life.

このため、遊離する電解液を極力少なくすることで亜鉛
酸イオンの溶出を抑制するために、電解液量を規制する
方法が採用されている。ところか特に高率放電や低温で
の放電を行なうと、充放電の際に亜鉛は円滑に酸化、還
元されなくなる。これは、高率放電では反応速度が早い
ため多量のべ解液を必要とし電解液不足が生じるからで
あり、低温での放電ではイオンの移動が遅(なるη)ら
である。また、この際極板表面の反応性の大小が顕著に
現われ、反応性の小さいところでは1解液不足が生じる
というF’JX解液の不均一分布が生じる。
Therefore, in order to suppress the elution of zincate ions by minimizing the amount of liberated electrolyte, a method of regulating the amount of electrolyte has been adopted. However, especially when performing high-rate discharge or low-temperature discharge, zinc cannot be smoothly oxidized and reduced during charging and discharging. This is because the reaction rate is fast in high-rate discharge, which requires a large amount of electrolyte, resulting in a shortage of electrolyte, and in low-temperature discharge, the movement of ions is slow (η). In addition, at this time, the reactivity of the electrode plate surface becomes noticeably different, and a non-uniform distribution of the F'JX solution occurs in that one solution is insufficient in areas where the reactivity is small.

電解液が不足すると放電の際に炬鉛は電子伝導性の低い
酸化亜鉛となり不動態化し、更に反応が進むとこの酸化
亜鉛が拒鉛極表面に緻密な層を形成し反応性を低ドさせ
る。
If the electrolyte is insufficient, during discharge, the lead becomes passivated as zinc oxide, which has low electronic conductivity, and as the reaction progresses further, this zinc oxide forms a dense layer on the surface of the lead electrode, reducing reactivity. .

このようfl不動態化現象を防止する方法として、特開
昭50−119941号公報では亜鉛活物質層表面に不
織布を配し、その表面に真空蒸着法でカーボンのiI!
膜層を形成せしめることが提案されている。しかしなが
ら、活物質層表面に不織布を配してその表面にカーボン
の蒸着膜を配した場合には、カーボンの蒸着膜ではおぎ
なえない鷹解液の保液性は向上させられるものの、rI
i、iにより活物質である亜鉛が不織布内外に溶出して
しまい充電の際に元の位置に析出しに(いため電池反応
に関与する活物質量が減少すると共に極板変形か生じる
という問題点があった。
As a method for preventing such a fl passivation phenomenon, Japanese Patent Application Laid-open No. 119941/1983 discloses that a nonwoven fabric is placed on the surface of the zinc active material layer, and carbon is applied to the surface of the surface by vacuum evaporation.
It has been proposed to form a membrane layer. However, when a nonwoven fabric is placed on the surface of the active material layer and a carbon vapor-deposited film is placed on the surface, the liquid retention of the falcony solution, which cannot be achieved with the carbon vapor-deposited film, can be improved.
Due to i and i, zinc, which is an active material, is eluted into and out of the nonwoven fabric and deposited in its original position during charging (thus, the amount of active material involved in the battery reaction decreases and deformation of the electrode plate occurs. was there.

P→ 発明の目的 本発明はかかる点に濫み亜鉛極の不動態化を抑制すると
共(乙より睡期にわたるサイクル寿命を得んとするもの
である。
P→ Purpose of the Invention The present invention overcomes this problem and aims to suppress the passivation of the zinc electrode (as well as to obtain a cycle life extending over the sleep period).

に)発明の構成 本発明者等は鋭意研究を重ねた結果、亜鉛極表面に形成
する4f@の厚み及び薄層を形成する4導性粉末の粒子
径を適宜選択することにより、不!lI/I態化を抑制
するだけでなく穐鉛負極のガス吸収も円滑に行なわせし
めサイクル寿命を大巾に向上させ得ることを見い出した
。即ち、本発明のアルカIJ =i鉛蓄電池は亜鉛活物
質を主体とする活物質層表面に、平均粒径061μ以下
の炭素粉末からなる薄層を備え、且つ該薄1−の厚みが
20〜200μである亜鉛極を有するものである。また
、前記4層は炭素粉末を単に亜鉛極表面1こ付着させて
形成することもできるか、ある程度の撥水性を荷する合
成樹脂の微孔性膜に炭素粉末に保持せしめて形成すると
ガス吸収がより円滑に行なうことができ効果的である。
B) Structure of the Invention As a result of extensive research, the present inventors have found that by appropriately selecting the thickness of 4f@ to be formed on the surface of the zinc electrode and the particle size of the 4-conducting powder forming the thin layer, the present inventors have successfully solved the problem. It has been found that the cycle life can be greatly improved by not only suppressing the lI/I formation but also smoothing the gas absorption of the amorphous lead negative electrode. That is, the Alka IJ =i lead-acid battery of the present invention has a thin layer made of carbon powder with an average particle size of 061 μm or less on the surface of an active material layer mainly composed of zinc active material, and the thickness of the thin layer is 20 to 20 μm. It has a zinc electrode of 200μ. The above four layers can be formed by simply attaching carbon powder to the surface of the zinc electrode, or by holding carbon powder in a microporous membrane of synthetic resin that has a certain degree of water repellency, which absorbs gas. can be carried out more smoothly and effectively.

(ホ)実施例 酸化亜鉛粉末800重量、亜鉛粉末10重量%、添加剤
として酸化カドミウム粉末5重量%及び結着剤としてフ
ッ素樹脂粉末5型盪%を充分混合した復水を加えて混練
し、しかる後ローラーによりシート状に形成したものを
鍋等よりなる集電体の両面に配設して加圧成型を行ない
乾燥して集電体表面に亜鉛活物質層を形成する。次いで
平均粒径が0.02〜0.04μの炭素粉末(日本EC
製)を分散した1d液をスプレーがンに、よりOjl記
橿鉛活劇實、118反向に・唱1り小ら吹き付け50μ
の炭素粉末によるl’jJ層を表面に有する頃鉛極を得
る。
(e) Example 800% by weight of zinc oxide powder, 10% by weight of zinc powder, 5% by weight of cadmium oxide powder as an additive, and 5% of fluororesin powder as a binder were thoroughly mixed with condensate and kneaded. Thereafter, the sheet formed by rollers is placed on both sides of a current collector made of a pot or the like, pressure molded, and dried to form a zinc active material layer on the surface of the current collector. Next, carbon powder with an average particle size of 0.02 to 0.04μ (Japan EC
Using a spray gun, spray 50μ of the 1D solution dispersed with
A lead electrode is obtained when the surface has an l'jJ layer of carbon powder.

こうして(14tこ亜鉛極と公用の焼粘式ニッケル正極
とを組み合わせて大発明の二yfルー亜鉛蓄電池へを作
製(、r二。・/−1図はこの苓七池の断面図であり、
(1)は亜鉛極、(2)はニッケル極、(3)はセパレ
−タ、(4)は保液層、(5)は部槽、(6)は心槽蓋
、+7++81AiE、負極端子、(9)は炭素粉末層
である。
In this way, a 2YF zinc storage battery of great invention was created by combining a 14t zinc electrode and a publically used sintered nickel positive electrode.
(1) is a zinc electrode, (2) is a nickel electrode, (3) is a separator, (4) is a liquid retention layer, (5) is a cistern, (6) is a cisternal lid, +7++81AiE, negative electrode terminal, (9) is a carbon powder layer.

また、削記犬素扮未に平均粒径0.1μの炭素粉末(ア
セチレンブラック二遣気化学工業#)を用いその他はく
ぜ也IAIと同一の本発明(池fB)を作製し、更に比
較のため亜鉛極表面に炭素粉末層を形成せすその111
は心池四と同一の比較電池(q及び前記炭素粉末に平均
粒径10μの天然黒鉛(日本黒鉛製)を用いその他は屯
池四と同一の比較電池CD+を作製した。
In addition, the present invention (IkefB), which is otherwise the same as Kuzeya IAI, was prepared by using carbon powder (Acetylene Black Nikkei Kagaku Kogyo #) with an average particle size of 0.1μ in the cutting dog Mogami, and further For comparison, a carbon powder layer is formed on the surface of a zinc electrode, part 111.
A comparative battery CD+ was prepared which was the same as Shinchi-4 (q) and natural graphite (manufactured by Nippon Graphite) with an average particle size of 10 μm was used as the carbon powder, and otherwise the same as Tonchi-4.

上述した本発明電池(〜及び出)と比較電池(q及びI
)lを用い、放4屯流を1Cとしたときの放電特性図を
第2図に、土た1 / 4 CIは流で5時(ト11光
嶋し満充屯とした後、1/4C屯流で放、[い電池・α
圧が12Vに達する時点で放心停止するサイクル条件で
充放屯を繰り返したときのサイクル特性図を第6図に示
す。
The above-mentioned batteries of the present invention (- and out) and comparative batteries (q and I
Figure 2 shows the discharge characteristic diagram when the discharge current is 1C, using the 1/4 ton flow. Released in the torrent stream, [battery α
FIG. 6 shows a cycle characteristic diagram when charging and discharging were repeated under cycle conditions in which the battery stopped in an daze when the pressure reached 12V.

第2図からj区池IA) tB)及び(ロ)は亜鉛極表
面に炭素粉末ji噌を持たない114池(qに比し放r
a屯圧が高く、炭素粉末による4屯性同上で電池内抵抗
が怪減さることがわかる。
From Figure 2, the ponds in ward j (IA) tB) and (b) are 114 ponds (compared to q) that do not have carbon powder on the surface of the zinc electrode.
It can be seen that the internal resistance of the battery is significantly reduced when the a-tonne pressure is high and the four-tonne pressure due to the carbon powder is the same as above.

このように本発明1池IAI tB)のサイクル寿命が
比較+lX/lt!1QID++こ比し向上する理由は
本発明上池の亜鉛極表面に形成した薄層に用いた炭素粉
末の粒径が01μ以下とこまかいため均一で密着性の長
い炭素粉末層が形成されるため、極板表面に於ける4’
rg 性及び含液性が同上し、亜鉛極表面に於ける4池
反応が均一化して起こり、活物質の不動態化が抑制され
ているからと考えられる。これに対して比較4 /In
 IQでは、炭素粉末による薄層を侍たないため亜鉛極
表面に於ける不、動態化が早期に進行するのでサイクル
寿命が短く、比較電池[Dlでは平均粒径の大きな天然
黒鉛を使用しているためサイクル初期に於いCは第2因
に示吏ように炭素粉末層による効果が伺えるが、充放電
サイクルが進むと、炭素粉末の粒径が大きいが故に活物
質層との密着性が悪く亜鉛極表面から脱落が生じ、その
結果亜鉛極表面に導電性及び含液性にむらが起こり電流
の不均一分布が進行して極板変形が生じサイクル寿命は
あまり改善されない。
In this way, the cycle life of the present invention (IAI tB) is +lX/lt! The reason for the improvement over 1QID++ is that the particle size of the carbon powder used for the thin layer formed on the surface of the zinc electrode of the upper pond of the present invention is fine, less than 0.1 μm, so that a uniform and long adhesive carbon powder layer is formed. 4' on the surface of the electrode plate
This is thought to be because the rg properties and liquid impregnation properties are the same as above, and the four-cell reaction on the surface of the zinc electrode occurs uniformly, suppressing passivation of the active material. On the other hand, comparison 4 /In
In IQ, since the thin layer of carbon powder is not present, the passivation and mobilization on the surface of the zinc electrode progresses early, resulting in a short cycle life. Therefore, at the beginning of the cycle, the carbon powder layer has an effect on C as shown in the second factor, but as the charge/discharge cycle progresses, the adhesion with the active material layer decreases due to the large particle size of the carbon powder. Unfortunately, the zinc electrode falls off from the surface, resulting in uneven conductivity and liquid impregnation on the surface of the zinc electrode, resulting in non-uniform distribution of current and deformation of the electrode plate, which does not significantly improve cycle life.

次いで亜鉛極表面の炭素粉末からする1専層を合成樹脂
の微孔性膜に炭素粉末を保持させて形成した他実線側を
以下に示し説明する。
Next, the solid line side, in which one exclusive layer of carbon powder on the surface of the zinc electrode is formed by holding carbon powder in a microporous synthetic resin membrane, will be shown and explained below.

前述の果屯体に形成した亜鉛活物質層表面に、平均粒径
が0.02〜0.04μの炭素粉末(日本EC製)と、
ポリテトラフルオロエチレンM%7i[(ダイキン工業
11160重量襲)を0.1〜1.0重量%に稀釈した
ものとを、重滑比で1=1で混合した溶液を薄く塗布し
、次いで80℃程度の温度で乾燥せしめて炭素粉末によ
る薄層を表面に有する亜鉛極を得る。こうして得た亜梧
題を用いその池は電池(5)と同様の本発明電池(al
を作製する。
Carbon powder (manufactured by Japan EC) with an average particle size of 0.02 to 0.04μ is placed on the surface of the zinc active material layer formed on the fruit conduit described above,
A thin solution of polytetrafluoroethylene M%7i [(Daikin Industries 11160 weight ratio) diluted to 0.1 to 1.0% by weight was mixed at a weight ratio of 1=1, and then 80% A zinc electrode having a thin layer of carbon powder on the surface is obtained by drying at a temperature of about .degree. Using the sub-challenge obtained in this way, the pond was constructed using the battery of the present invention (al
Create.

また炭素粉末に平均粒径0.1μの炭素粉末(1気化学
工業製)を用いその他は′4池ta+と同一の本発明1
池(bl、炭素粉末に平均粒径1Qμの天然黒鉛(日本
黒鉛製)を用いその他は電池ialと同一の比較電池t
dl及び目1述の電池但)と同一の比較電池+c+を1
乍製した。
In addition, carbon powder with an average particle size of 0.1μ (manufactured by 1Ki Kagaku Kogyo) was used as the carbon powder, and the other aspects were the same as '4 Ike ta+.
Comparative battery t, which is the same as battery ial, except that natural graphite (manufactured by Nippon Graphite) with an average particle size of 1Qμ is used as the carbon powder.
dl and the same comparison battery as the battery described in item 1) +c+.
It was manufactured.

これらの電池を用い前述同様放4fi流を1Cとしたと
きの放電特性図を第4図に、また前述同様のサイクル条
件で充放電を行なったときのサイクル特性図及び電解液
減少量を示す図面を第5図及び第6図に夫々示す。
Figure 4 shows a discharge characteristic diagram using these batteries when the discharge 4fi current is set to 1C as described above, and a cycle characteristic diagram and a diagram showing the amount of electrolyte decrease when charging and discharging are performed under the same cycle conditions as described above. are shown in FIGS. 5 and 6, respectively.

第4図より合成樹脂からなる微孔性膜に炭素粉末を保持
した薄層を有する1亜鉛極を備えた1a池は、前述した
合成樹脂、す1らなる微孔性膜を用いない亜鉛極を備え
た電池と同様炭素粉末による効果があり、第5図に於い
ても本発明屯池憤)及びtblは比較電池tel及び+
dlに比しサイクル寿命が向上していることがわかる。
Figure 4 shows that a pond 1a equipped with a zinc electrode having a thin layer holding carbon powder on a microporous membrane made of a synthetic resin is a zinc electrode without a microporous membrane made of the synthetic resin described above. As in the case of the battery equipped with the carbon powder, the carbon powder has the same effect, and in FIG.
It can be seen that the cycle life is improved compared to dl.

第5図に於ける4池fb)のサイクル寿命が第3(2)
に於ける4池113)のサイクル寿命より若干延びてい
るのは微孔性膜の骨格に炭素粉末が保持されていたrこ
め卯鉛極表面への結着力が増したためと考えられ、電池
(C)が電池(qと同様余りサイクル寿命が廷びなかっ
たのは炭素粉末の粒径が図からは炭素粉末からなる薄層
を有する亜鉛極を備えた4池ta+ tbl td)の
凰解液減少啜が低(抑えられていることがわかるが、こ
れは微多孔性膜の骨格が優れた防水性を博するフッ素樹
脂であるため、充電時に正極より発生する酸素力′スを
効率よく吸収して電池内部ガス圧の上昇を防止している
ためである。
The cycle life of 4 ponds fb) in Figure 5 is 3rd (2).
The reason why the cycle life is slightly longer than that of the four-cell battery (113) is thought to be due to the fact that the carbon powder is retained in the framework of the microporous membrane, which increases its adhesion to the surface of the lead electrode. C) is a battery (similar to q, the cycle life was not very long because the particle size of the carbon powder is 4-cell TA + TBL TD) equipped with a zinc electrode having a thin layer of carbon powder as shown in the figure. It can be seen that the decrease in volume is low (suppressed), and this is because the microporous membrane skeleton is made of a fluororesin that has excellent waterproof properties, so it efficiently absorbs the oxygen force generated from the positive electrode during charging. This is because the internal gas pressure of the battery is prevented from increasing.

尚、炭素粉末からなる薄層を形成するには平均粒径0.
1μ以Fの炭素粉末を用いることが望ましく、薄層の厚
みに関しては、20μより薄(なると効果が余りみられ
ず200μを越えると亜鉛極表面の導磁性及び含液性が
かなり高くなり、活物質層トのバランスがくずれると共
に活物質の充填域を減らずことになるため、20LL乃
至200μとすることが・塁ましい。
Note that in order to form a thin layer of carbon powder, the average particle size is 0.
It is desirable to use carbon powder with a thickness of 1 μF or less, and the thickness of the thin layer should be less than 20 μm (if the thickness is less than 20 μm, the effect will not be seen much; if it exceeds 200 μm, the magnetic permeability and liquid impregnation property of the zinc electrode surface will be considerably high, making it difficult to activate). It is preferable to set the thickness to 20LL to 200μ because the balance of the material layer will be lost and the area filled with active material will not be reduced.

(へ)発明の効果 木発明植池は活物質−の表面に平均粒径0.1μ以下の
炭素粉末からなる厚み20〜200μの薄層をnTる亜
鉛極を備えたアルカリ亜鉛蓄電池であるθ)ら、充放電
サイクルの遅過に伴う亜鉛極の不動態化を抑制すると共
に酸素がス吸収能力が同上し、より挾期にわたるサイク
ル寿命が得られる効果がある。
(f) Effects of the Invention Ueike is an alkaline zinc storage battery equipped with a zinc electrode and a thin layer of 20 to 200μ thick made of carbon powder with an average particle size of 0.1μ or less on the surface of an active material. ), it has the effect of suppressing passivation of the zinc electrode due to a delay in the charge/discharge cycle, as well as increasing the oxygen absorption capacity and obtaining a cycle life that lasts for a longer period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のアルカリ亜鉛溶4池の断面図、第2図
及び第4図は放電特性図、第3図及び第5四βl +a
l fbl・・・本発明電池、[Q [+ +a fd
+・・・比較電池、+11・・・M g Mi 、f2
)・・・ニッケル極、f3+・・・セパレータ。 (4)・・・保液層、(9)・・・炭素粉末層。 出願人 三洋電8i味式会社 代理人 弁理士佐野静夫 第2図 第3図 すイク)シ(閃) 第4図
Figure 1 is a cross-sectional view of the alkaline zinc molten pond of the present invention, Figures 2 and 4 are discharge characteristic diagrams, Figures 3 and 5 are βl +a
l fbl...Battery of the present invention, [Q [+ +a fd
+...Comparison battery, +11...M g Mi, f2
)...Nickel electrode, f3+...Separator. (4)...liquid retaining layer, (9)...carbon powder layer. Applicant Sanyo Electric 8i Aji Company Agent Patent Attorney Shizuo Sano Figure 2 Figure 3 Suiku) Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1) 亜鉛活物jtを主体とする活勿質層表面に。 平均粒径0.1μ以下の炭素粉末からなる薄層を備え、
且つ該薄層の厚みが20〜200μである亜鉛極を有す
るアルカリ亜鉛蓄電池。
(1) On the surface of an active matrix layer mainly composed of active zinc jt. Equipped with a thin layer of carbon powder with an average particle size of 0.1μ or less,
and an alkaline zinc storage battery having a zinc electrode in which the thin layer has a thickness of 20 to 200μ.
(2)前記薄層は合成樹脂からなる微孔性膜に炭素粉末
が保持されたものである特許請求の範囲第(1)項記載
のアルカリ亜鉛蓄電池。
(2) The alkaline zinc storage battery according to claim (1), wherein the thin layer is a microporous membrane made of synthetic resin in which carbon powder is held.
JP59121054A 1984-06-12 1984-06-12 Alkali zinc battery Pending JPS60264049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59121054A JPS60264049A (en) 1984-06-12 1984-06-12 Alkali zinc battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59121054A JPS60264049A (en) 1984-06-12 1984-06-12 Alkali zinc battery

Publications (1)

Publication Number Publication Date
JPS60264049A true JPS60264049A (en) 1985-12-27

Family

ID=14801693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59121054A Pending JPS60264049A (en) 1984-06-12 1984-06-12 Alkali zinc battery

Country Status (1)

Country Link
JP (1) JPS60264049A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62295353A (en) * 1986-06-13 1987-12-22 Matsushita Electric Ind Co Ltd Enclosed type nickel-hydrogen storage battery
WO2006079280A1 (en) * 2005-01-28 2006-08-03 Byd Company Limited A zinc negative electrode for zinc-nickel secondary batteries, a preparation method thereof, and a zinc-nickel secondary battery containing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62295353A (en) * 1986-06-13 1987-12-22 Matsushita Electric Ind Co Ltd Enclosed type nickel-hydrogen storage battery
JPH0677450B2 (en) * 1986-06-13 1994-09-28 松下電器産業株式会社 Sealed nickel-hydrogen battery
WO2006079280A1 (en) * 2005-01-28 2006-08-03 Byd Company Limited A zinc negative electrode for zinc-nickel secondary batteries, a preparation method thereof, and a zinc-nickel secondary battery containing the same

Similar Documents

Publication Publication Date Title
CN108520985B (en) Method for prolonging cycle life of zinc battery and application thereof
US3945847A (en) Coherent manganese dioxide electrodes, process for their production, and electrochemical cells utilizing them
US3785868A (en) Zinc electrode
US4427751A (en) Alkaline battery
JP2653415B2 (en) Battery provided with gas diffusion electrode and method for charging and discharging the same
US5004657A (en) Battery
US3288642A (en) Rechargeable dry cell having gelled electrolyte
CN1117408C (en) Alkaline storage battery
JPH05303978A (en) Sealed nickel-zinc battery
JPS60264049A (en) Alkali zinc battery
CN213150817U (en) Copper current collector
JP2871077B2 (en) Manufacturing method of negative electrode for non-aqueous electrolyte secondary battery
JPH09180708A (en) Alkaline dry cell
JP3116681B2 (en) Non-sintered nickel electrode and its manufacturing method
CN101165960B (en) Solar energy nickel-hydrogen charging battery manufacture process
JP3309463B2 (en) Cylindrical nickel-metal hydride storage battery
JPS61208755A (en) Pasted negative cadmium plate for sealed alkaline storage battery
JPS62283571A (en) Nonaqueous solvent secondary cell
JPH07235303A (en) Nickel pole for alkaline storage battery and its manufacture
CA1102409A (en) Battery plates covered with porous thermoplastic resin
JPS60240056A (en) Alkaline-manganese cell
JPH06124706A (en) Sealed nickel-zinc storage battery
JPS62108467A (en) Alkaline zinc storage battery
JPH02155167A (en) Alkaline secondary battery
JPS6364263A (en) Nonaqueous electrolytic solution cell