JPH06124706A - Sealed nickel-zinc storage battery - Google Patents

Sealed nickel-zinc storage battery

Info

Publication number
JPH06124706A
JPH06124706A JP4296306A JP29630692A JPH06124706A JP H06124706 A JPH06124706 A JP H06124706A JP 4296306 A JP4296306 A JP 4296306A JP 29630692 A JP29630692 A JP 29630692A JP H06124706 A JPH06124706 A JP H06124706A
Authority
JP
Japan
Prior art keywords
zinc
storage battery
sealed nickel
particle size
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4296306A
Other languages
Japanese (ja)
Inventor
Kazuya Okabe
一弥 岡部
Kenkichi Fujii
健吉 藤井
Yukio Fujita
幸雄 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP4296306A priority Critical patent/JPH06124706A/en
Publication of JPH06124706A publication Critical patent/JPH06124706A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a sealed nickel-zinc storage battery having the capability of restraining the generation of hydrogen without any addition of mercury and ensuring excellent characteristics in terms of shelf life and charge and discharge cycle lifetime. CONSTITUTION:This battery uses a negative electrode of zinc mainly composed of zinc metal powder having a grain size between 10 and 25mum and zinc oxide powder having a grain size of 0.3mum or more. The generation of hydrogen can be restrained by reducing the grain size of the zinc metal powder and as a result, charge and discharge cycle lifetime after shelving can be extended.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、密閉形ニッケル−亜鉛
蓄電池に関するもので、さらに詳しく言えば、その亜鉛
極の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed nickel-zinc storage battery, and more particularly to improvement of the zinc electrode.

【0002】[0002]

【従来の技術】近年、ポータブルタイプやコードレスタ
イプのエレクトロニクス機器の普及により、再充電可能
な二次電池の需要が高まってきている。
2. Description of the Related Art In recent years, the demand for rechargeable secondary batteries has increased with the spread of portable type and cordless type electronic devices.

【0003】このような二次電池は、機器の小型化、軽
量化に伴ってエネルギー密度が高く、メンテナンスが容
易であるものが注目され、特に密閉形ニッケル−亜鉛蓄
電池が注目されている。
Such secondary batteries have attracted attention because of their high energy density and easy maintenance due to the downsizing and weight reduction of equipment, and particularly the sealed nickel-zinc storage batteries.

【0004】上記した密閉形ニッケル−亜鉛蓄電池にお
ける亜鉛負極は、亜鉛の溶解度が高いために充電時に亜
鉛のデンドライトが成長してセパレータの貫通ショート
を起こしたり、シェイプチェンジによって利用率が低下
するという問題があり、充放電サイクル寿命が短くなる
原因になっていた。
Since the zinc negative electrode in the above sealed nickel-zinc storage battery has a high solubility of zinc, the dendrite of zinc grows during charging to cause a short-circuit through the separator, or the shape change causes a decrease in the utilization rate. Which is a cause of shortening the charge / discharge cycle life.

【0005】従来、このようなデンドライトやシェイプ
チェンジの発生を防止するため、粒径が1〜10μの金
属亜鉛と粒径が0.3μ以上の酸化亜鉛を用いて電着を
均一に行うことが提案されている。
Conventionally, in order to prevent such dendrites and shape changes from occurring, metal zinc having a particle size of 1 to 10 μm and zinc oxide having a particle size of 0.3 μm or more have been used for uniform electrodeposition. Proposed.

【0006】[0006]

【発明が解決しようとする課題】上記した従来の密閉形
ニッケル−亜鉛蓄電池では、金属亜鉛の粒径が小さいた
め、表面積が大きくなり、保存時に金属亜鉛の腐食によ
って水素を発生させやすく、水銀を添加してこのような
水素の発生を抑制していた。しかしながら、水銀を使用
することは環境上好ましいものではなく、水銀に代わる
他の物質も種々提案されているが、コスト面で満足でき
ないという問題があった。
In the above-mentioned conventional sealed nickel-zinc storage battery, since the particle size of metallic zinc is small, the surface area is large, and hydrogen is easily generated due to corrosion of metallic zinc during storage, so that mercury is not generated. It was added to suppress the generation of such hydrogen. However, the use of mercury is not environmentally preferable, and various other substances in place of mercury have been proposed, but there was a problem that the cost was not satisfactory.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、酸化亜鉛および金属亜鉛を主成分とする
亜鉛負極と、ニッケル正極と、前記亜鉛負極とニッケル
正極との間に介挿されたセパレータと、このセパレータ
に含浸された電解液とを有する極群からなる密閉形ニッ
ケル−亜鉛蓄電池において、金属亜鉛粉末の粒径が10
〜25μで、酸化亜鉛粉末の粒径が0.3μ以上である
ことを特徴とするものである。
In order to solve the above problems, the present invention provides a zinc negative electrode containing zinc oxide and metallic zinc as main components, a nickel positive electrode, and an interposing between the zinc negative electrode and the nickel positive electrode. In a sealed nickel-zinc storage battery consisting of a group of electrodes having a charged separator and an electrolytic solution impregnated in the separator, the particle size of the metal zinc powder is 10
.About.25 .mu., And the particle size of the zinc oxide powder is 0.3 .mu.m or more.

【0008】[0008]

【作 用】従って、本発明は、均一な電着を損なうこと
なく金属亜鉛の粒子の表面積を減少させることができる
ので、水素の発生を抑制することができる。
[Operation] Therefore, according to the present invention, since the surface area of the metallic zinc particles can be reduced without impairing the uniform electrodeposition, the generation of hydrogen can be suppressed.

【0009】また、本発明は、金属亜鉛のBET法によ
る比表面積が0.1m2 /g以下にすることにより、そ
の表面積の増大を小さくすることができる。
Further, according to the present invention, by increasing the specific surface area of metallic zinc by the BET method to 0.1 m 2 / g or less, the increase in the surface area can be reduced.

【0010】また、本発明は、酸化亜鉛粉末の粒径を
0.3μ以上にしているので、接触による水素の発生を
抑制することができる。
Further, according to the present invention, since the particle size of the zinc oxide powder is 0.3 μm or more, generation of hydrogen due to contact can be suppressed.

【0011】[0011]

【実施例】以下本発明の詳細を実施例により説明する。EXAMPLES The details of the present invention will be described below with reference to examples.

【0012】本発明の密閉形ニッケル−亜鉛蓄電池に用
いる亜鉛負極は、粒径が10〜25μ(平均粒径17
μ)の金属亜鉛粉末20重量%と、粒径が0.3μ以上
の酸化亜鉛粉末80重量%とにポリテトラフルオロエチ
レン粒子を混合し、エタノール等の有機溶媒を用いて混
練して乾燥させる。なお、上記金属亜鉛粉末は、還元雰
囲気下で金属亜鉛を蒸発させてから冷却して凝集したも
ので、得られる金属亜鉛粒子が球状であるため、その表
面積の増大を最小限にすることができ、BET法による
比表面積を0.1m2 /g以下にすることによって水素
の発生を抑制することが可能である。
The zinc negative electrode used in the sealed nickel-zinc storage battery of the present invention has a particle size of 10 to 25 μ (average particle size of 17).
20% by weight of metallic zinc powder of (μ) and 80% by weight of zinc oxide powder having a particle size of 0.3 μ or more are mixed with polytetrafluoroethylene particles, kneaded with an organic solvent such as ethanol and dried. The metallic zinc powder is obtained by evaporating metallic zinc in a reducing atmosphere and then cooling and agglomerating it. Since the resulting metallic zinc particles are spherical, the increase in the surface area can be minimized. It is possible to suppress the generation of hydrogen by setting the specific surface area by the BET method to 0.1 m 2 / g or less.

【0013】上記乾燥時に金属亜鉛が酸化してその微粒
子が金属亜鉛の表面に形成されないようにするため、前
記溶媒からできるだけ水を除去してからペースト状にす
る。
In order to prevent the metallic zinc from being oxidized and forming fine particles on the surface of the metallic zinc during the above drying, water is removed from the solvent as much as possible and then the paste is formed.

【0014】次に、上記ペーストを厚みが0.1mmの
銅集電体に塗布し、乾燥、プレスして厚みが1mm、活
物質密度が2.0〜3.8g/cm3 の亜鉛負極とす
る。
Next, the paste is applied to a copper current collector having a thickness of 0.1 mm, dried and pressed to form a zinc negative electrode having a thickness of 1 mm and an active material density of 2.0 to 3.8 g / cm 3. To do.

【0015】こうして得られた亜鉛負極4枚と、シンタ
ー式ニッケル正極3枚とに微孔性ポリプロピレンセパレ
ータとセルロースとを組み合わせた補液層を挟んで配置
し、電解液として比重が1.3〜1.4の水酸化リチウ
ムを添加した水酸化カリウム水溶液を用いて容量が7A
hの本発明の密閉形ニッケル−亜鉛蓄電池を製作した。
The thus-obtained four zinc negative electrodes and three sinter-type nickel positive electrodes are arranged with a replenisher layer composed of a combination of a microporous polypropylene separator and cellulose sandwiched therebetween, and the specific gravity of the electrolyte is 1.3 to 1 Using an aqueous solution of potassium hydroxide to which lithium hydroxide of 4 is added, the capacity is 7A.
The sealed nickel-zinc storage battery of the present invention of h was manufactured.

【0016】上記した本発明電池Aと、同じ方法で得た
粒径が1〜10μ(平均粒径4μ、比表面積0.36m
2 /g)の金属亜鉛を用いた比較電池Bと、還元雰囲気
下で溶融亜鉛をノズルから噴霧して得た粒径が40〜7
4μの金属亜鉛(比表面積0.08m2 /g)を用いた
従来電池Cと、上記本発明電池Aに用いた金属亜鉛の1
0%を空気酸化して0.3μ以下の酸化亜鉛を形成して
なる比較電池Dと、還元雰囲気下で金属亜鉛を蒸発させ
てから冷却して凝集した粒径が25〜40μ(平均粒径
35μ、比表面積0.07m2 /g)の金属亜鉛を用い
た比較電池Eとについて、充放電サイクル数、保存特性
を調査した。なお、還元雰囲気下で溶融亜鉛をノズルか
ら噴霧して得た金属亜鉛は、粒子の粒径が40μ以上と
いう大粒子になるという特徴がある。
The particle size obtained by the same method as the battery A of the present invention was 1 to 10 μ (average particle size 4 μ, specific surface area 0.36 m).
2 / g) of comparative battery B using metallic zinc and a particle size of 40 to 7 obtained by spraying molten zinc from a nozzle under a reducing atmosphere.
1 of the conventional battery C using 4 μm of metallic zinc (specific surface area 0.08 m 2 / g) and the metallic zinc used in the battery A of the present invention.
Comparative battery D in which 0% is air-oxidized to form zinc oxide of 0.3 μm or less, and the particle size of agglomerated by cooling after evaporating metallic zinc in a reducing atmosphere is 25 to 40 μm (average particle size The number of charge / discharge cycles and the storage characteristics of the comparative battery E using metallic zinc having a thickness of 35 μ and a specific surface area of 0.07 m 2 / g) were investigated. The metallic zinc obtained by spraying molten zinc from a nozzle under a reducing atmosphere is characterized in that it has a large particle size of 40 μm or more.

【0017】図1は、上記各電池について、周囲温度2
5℃において、放電電流を1.4A、放電深度を100
%とし、充電電流を0.7A、充電量を放電量の105
%とした時の充放電サイクル数と放電容量との関係を示
したものである。
FIG. 1 shows the ambient temperature 2 for each of the above batteries.
At 5 ° C, the discharge current is 1.4A and the discharge depth is 100.
%, The charging current is 0.7 A, and the charging amount is 105% of the discharging amount.
It shows the relationship between the number of charge / discharge cycles and the discharge capacity when it is defined as%.

【0018】図1から、本発明電池Aと、比較電池B,
Dは充放電サイクル数が250サイクル以上になること
がわかる。
From FIG. 1, the battery A of the present invention and the comparative battery B,
It can be seen that D has a charge / discharge cycle number of 250 or more.

【0019】図2は、上記各電池について、周囲温度6
0℃において、20日間放置した時の重量の変化を示し
たものである。
FIG. 2 shows an ambient temperature of 6 for each of the above batteries.
It shows the change in weight when left for 20 days at 0 ° C.

【0020】図2から、本発明電池Aと比較電池Eとは
ほとんど重量の変化がないことがわかる。このことは、
還元雰囲気下で溶融金属亜鉛を蒸発させてから冷却して
凝集することによって得た粒子の比表面積が0.1m2
/g以下であり、このような金属亜鉛粒子を用いた場合
には水素の発生量を少なくできることを意味している。
It can be seen from FIG. 2 that the battery A of the present invention and the comparative battery E show almost no change in weight. This is
The specific surface area of the particles obtained by evaporating the molten metal zinc in a reducing atmosphere, then cooling and agglomerating is 0.1 m 2
/ G or less, which means that the amount of hydrogen generated can be reduced when such metal zinc particles are used.

【0021】図3は、上記放置した電池について、周囲
温度25℃において、放電電流を1.4A、放電深度を
100%とし、充電電流を0.7A、充電量を放電量の
105%とした時の放電容量の関係を示したものであ
る。
FIG. 3 shows the discharge current of the above left battery at 25 ° C., the discharge current was 1.4 A, the discharge depth was 100%, the charge current was 0.7 A, and the charge amount was 105% of the discharge amount. It shows the relationship of the discharge capacity at the time.

【0022】図3から、本発明電池Aは放置後の性能も
優れていることがわかる。
It can be seen from FIG. 3 that the battery A of the present invention has excellent performance after being left alone.

【0023】上記した結果から、本発明電池Aは、金属
亜鉛の表面積を小さくしたことにより、水素の発生を抑
制することができ、これによって放置後の充放電サイク
ル寿命を向上させることができる。
From the above results, in the battery A of the present invention, generation of hydrogen can be suppressed by reducing the surface area of the metallic zinc, and thereby the charge / discharge cycle life after leaving can be improved.

【0024】[0024]

【発明の効果】上記した如く、本発明の密閉形ニッケル
−亜鉛蓄電池は、保存特性と充放電サイクル寿命とにす
ぐれ、しかも水銀を添加しなくても水素の発生を抑制す
ることができる。
As described above, the sealed nickel-zinc storage battery of the present invention has excellent storage characteristics and charge / discharge cycle life, and can suppress the generation of hydrogen without adding mercury.

【図面の簡単な説明】[Brief description of drawings]

【図1】充放電サイクル数と放電容量との関係を示した
図である。
FIG. 1 is a diagram showing the relationship between the number of charge / discharge cycles and the discharge capacity.

【図2】放置後の重量変化の関係を示した図である。FIG. 2 is a diagram showing a relationship of a change in weight after standing.

【図3】放置後の充放電サイクル数と放電容量との関係
を示した図である。
FIG. 3 is a diagram showing a relationship between the number of charge / discharge cycles after leaving and the discharge capacity.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化亜鉛及び金属亜鉛を主成分とする亜
鉛負極と、ニッケル正極と、前記亜鉛負極とニッケル正
極との間に介挿されたセパレータと、このセパレータに
含浸された電解液とを有する極群からなる密閉形ニッケ
ル−亜鉛蓄電池において、金属亜鉛粉末の粒径が10〜
25μで、酸化亜鉛粉末の粒径が0.3μ以上であるこ
とを特徴とする密閉形ニッケル−亜鉛蓄電池。
1. A zinc negative electrode containing zinc oxide and metallic zinc as main components, a nickel positive electrode, a separator interposed between the zinc negative electrode and the nickel positive electrode, and an electrolytic solution impregnated in the separator. In the sealed nickel-zinc storage battery including the group of poles, the metal zinc powder has a particle size of 10 to 10
A sealed nickel-zinc storage battery, characterized in that the particle size of the zinc oxide powder is 25 μm and 0.3 μm or more.
【請求項2】 金属亜鉛のBET法による比表面積が
0.1m2 /g以下であることを特徴とする請求項第1
項記載の密閉形ニッケル−亜鉛蓄電池。
2. The specific surface area of metallic zinc according to the BET method is 0.1 m 2 / g or less.
The sealed nickel-zinc storage battery according to the item.
JP4296306A 1992-10-07 1992-10-07 Sealed nickel-zinc storage battery Pending JPH06124706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4296306A JPH06124706A (en) 1992-10-07 1992-10-07 Sealed nickel-zinc storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4296306A JPH06124706A (en) 1992-10-07 1992-10-07 Sealed nickel-zinc storage battery

Publications (1)

Publication Number Publication Date
JPH06124706A true JPH06124706A (en) 1994-05-06

Family

ID=17831847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4296306A Pending JPH06124706A (en) 1992-10-07 1992-10-07 Sealed nickel-zinc storage battery

Country Status (1)

Country Link
JP (1) JPH06124706A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002035617A3 (en) * 2000-10-06 2002-12-05 Pk Bauelemente Rechargeable zinc nickel battery
JP2015046335A (en) * 2013-08-29 2015-03-12 独立行政法人国立高等専門学校機構 Zinc secondary battery suppressed in generation of dendrite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002035617A3 (en) * 2000-10-06 2002-12-05 Pk Bauelemente Rechargeable zinc nickel battery
JP2015046335A (en) * 2013-08-29 2015-03-12 独立行政法人国立高等専門学校機構 Zinc secondary battery suppressed in generation of dendrite

Similar Documents

Publication Publication Date Title
JPS5935359A (en) Zinc electrode
JPH06124706A (en) Sealed nickel-zinc storage battery
KR101551700B1 (en) Zinc air cell, anode for zinc air cell and method of preparing the same
JP3404929B2 (en) Non-aqueous electrolyte battery
JPH04259764A (en) Lithium secondary battery
JPS61208755A (en) Pasted negative cadmium plate for sealed alkaline storage battery
JP3575578B2 (en) Alkaline secondary battery
JP3461923B2 (en) Negative electrode material for battery and method of manufacturing the same, negative electrode body and secondary battery using the same
JP3087275B2 (en) Sealed lead-acid battery
JPS5933756A (en) Zinc electrode
JPS5832362A (en) Alkaline zinc secondary battery
JPH079806B2 (en) Zinc electrode for alkaline storage battery
JPH079807B2 (en) Zinc electrode for alkaline storage battery
JPS6089068A (en) Nonaqueous electrolyte secondary battery
JP2518090B2 (en) Lead acid battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPS5942775A (en) Zinc electrode
JP2762730B2 (en) Nickel-cadmium storage battery
JPH1083830A (en) Alkaline secondary battery
JPH0265056A (en) Nonaqueous secondary battery
JPS58137964A (en) Alkaline zinc storage battery
JPS58163160A (en) Alkaline zinc storage battery
JPS5971265A (en) Alkali zinc lead storage battery
JPS6134231B2 (en)
JPH0373991B2 (en)