JPS60262910A - Method for regulating level of residual pig and slag - Google Patents

Method for regulating level of residual pig and slag

Info

Publication number
JPS60262910A
JPS60262910A JP11899084A JP11899084A JPS60262910A JP S60262910 A JPS60262910 A JP S60262910A JP 11899084 A JP11899084 A JP 11899084A JP 11899084 A JP11899084 A JP 11899084A JP S60262910 A JPS60262910 A JP S60262910A
Authority
JP
Japan
Prior art keywords
slag
tapping
level
hearth
pig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11899084A
Other languages
Japanese (ja)
Other versions
JPS6260442B2 (en
Inventor
Toshinori Minagawa
皆川 俊則
Hiromi Yomo
四方 博実
Isao Ichihara
市原 勲
Kazuo Ichifuji
一藤 和夫
Kazuo Okumura
奥村 和男
Takeshi Fukutake
福武 剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11899084A priority Critical patent/JPS60262910A/en
Publication of JPS60262910A publication Critical patent/JPS60262910A/en
Publication of JPS6260442B2 publication Critical patent/JPS6260442B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/12Opening or sealing the tap holes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To keep stable furnace conditions for a long period by obtaining the maximum liquid surface level of pig and slag remaining in a blast furnace during tapping from the flow of pig-forming slag, the discharge of molten iron slag, etc., and controlling the tapping so that the obtained value may satisfy the optimum control value of liquid surface levels. CONSTITUTION:The flow rate of pig-forming slag into a hearth is obtained from operational data of a blast furnace such as the amt. and temp. of the blast and the charge of ore, and the elution loss factor (b) at the tapping hole is obtained from the discharge of molten iron slag measured by a weighing device. The maximum liquid surface level eta'max of molten iron slag during tapping is calculated with the following equation by using the liquid permeability (ks) of slag determined from molten slag data and coke data: eta'max=eta0+bVT/8, kS=f(mu, DP, epsilon, phi), and Q=V[t+b/2(t<2>/T-t)]), where eta0 is initial liquid surface level (V/KS), V is the amt. of liquid pig-forming slag, T is tapping time, (b) is the elution factor at tapping holes, (k) is liquid permeability of slag, mu is the viscosity of slag, DP is the grain size of coke at the hearth, epsilon is void ratio of the hearty, phi is a shape factor of coke, Q is the discharge at a time (t). The tapping such as lap tapping is controlled so that said calculated value may satisfy the specified control value.

Description

【発明の詳細な説明】 (技術分野) 本発明は、高炉の残銑・滓レベルの調整法にかかり、こ
の明細書で述べる技術内容は、送風量、送風温度、装入
鉱石量、などからなる操業データを用い、炉床への溶銑
・浮流入量をめる一方で秤量器により得られる溶銑・滓
の排出量を用いて一定の計算式により逐次炉床残銑・滓
レベルを算出し、このレベルを主としてラップ出銑の有
無で制御し炉況の安定を図るようにした方法についての
提案である。
[Detailed Description of the Invention] (Technical Field) The present invention relates to a method for adjusting the level of residual pig iron and slag in a blast furnace. Using operational data, calculate the amount of hot metal and floating inflow into the hearth, and calculate the level of hearth residual pig iron and slag using a fixed calculation formula using the discharge amount of hot metal and slag obtained by a weighing device. This is a proposal for a method to stabilize the furnace condition by controlling this level mainly by the presence or absence of lap tapping.

(従来の技術) 一般に高炉において出銑後の炉内残銑・滓量は、炉操業
に重大な影響を与えるものとして、従来より重要な管理
指標とされてきた。たとえば残銑・滓量が増加すると、
羽口周辺でのガスの流れる有効体積が小さくなり、送風
圧力の上昇、装入物降下の不規則につながり、炉況を悪
くして操業の安定性を欠くことになる。
(Prior Art) In general, the amount of residual pig iron and slag in a blast furnace after tapping has been regarded as an important management index since it has a significant impact on furnace operation. For example, when the amount of pig iron and slag increases,
The effective volume through which gas flows around the tuyeres becomes smaller, leading to an increase in blowing pressure and irregularity in the descent of the charge, leading to poor furnace conditions and a lack of operational stability.

従来、かかる炉内の残留溶銑・溶滓量については、炉頂
から装入される鉱石、コークスの造銑・造滓量と排出さ
れた出銑・滓量との差をめるというマテリアルバランス
から残銑量、残滓量を推定し、あらかじめ定めた基準値
を越えた場合はラップ出銑(2本の出銑口を同時に開孔
している状態)の実施あるいは炉況に変動が生じた時に
送風量を制御(低下)するという出銑時制御を行ってい
る。
Conventionally, the amount of residual hot metal and slag in such a furnace has been determined by material balance, which is the difference between the amount of iron and slag made from ore and coke that is charged from the top of the furnace and the amount of tapped iron and slag that is discharged. The amount of residual pig iron and slag are estimated from the amount, and if the amount exceeds a predetermined standard value, lap tapping (a state in which two tap holes are opened at the same time) or changes in furnace conditions occur. At times, the amount of air blown is controlled (reduced) during tapping.

(発明が解決しようとする問題点) しかし、実際の残銑・滓レベルとは異なった単なる量的
な収支管理では、バランス量しかみていないため、液面
のレベルが上った時においても、造銑・滓量と排出量と
のバランスさえとれていれば炉床での残銑・滓状況は1
良好′という判断となり、ひいてはレベル上昇による炉
況異常のケースを見逃すというような場合があった。
(Problem to be solved by the invention) However, simple quantitative balance management, which is different from the actual level of residual pig iron and slag, only looks at the balance amount, so even when the liquid level rises, As long as the amount of pig iron/slag and the amount of discharge are balanced, the situation of residual pig iron/slag at the hearth will be 1.
In some cases, the condition was judged to be 'good', and cases of abnormal furnace conditions due to the level rising were overlooked.

本発明の目的は、従来のマリテリアルバランスによる残
銑・滓量の推定とそれにもとづく操業制御のもつ問題点
を克服することにあり、長期に安定した炉況の維持が実
現される技術を提案するものである。
The purpose of the present invention is to overcome the problems of estimating the amount of residual pig iron and slag using conventional material balance and controlling operations based on the estimation, and proposes a technology that can maintain stable furnace conditions over a long period of time. It is something to do.

(問題点を解決するための手段) 本発明レベル調整法は、送風量、送風温度、装入鉱石量
などからなる操業データを用い炉床への溶銑・浮流入量
をめる一方で秤量器により得られる溶銑・滓排出量を用
いてプロセスコンピュータシミュレートすることにより
逐次炉床残°銑・滓レベルをめていき、このレベルをラ
ップ出銑の採否あるいは送風量の増減制御に反鋏させて
い〈技術である。
(Means for solving the problem) The level adjustment method of the present invention uses operational data consisting of air flow rate, air blowing temperature, amount of charged ore, etc. to calculate the amount of molten pig iron and floating inflow to the hearth, and uses a weighing machine to By simulating the process computer using the hot metal and slag discharge amount obtained by the method, the level of remaining iron and slag in the hearth is successively determined, and this level is used to control whether to adopt lap tapping or increase or decrease the air blow rate. It's a technology.

(作 用) 炉床での溶銑・滓レベルの従来の一般的な考え方は、第
2図に示すようなフラットなものと想定し、残銑・滓量
=液面レベルと考えていた。しかし本発明者らの最近の
研究成果によると、一般には出銑中は第8図のようにス
ラグ液面が出銑中の出銑口の反対側で最も高いレベルと
なり、出銑口寄りでは低いレベルとなり、また、スラブ
粘性デツトマン部位のコークス粒径などにより、その液
面形状が変化することが判った。
(Function) The conventional general concept of the level of hot metal and slag in the hearth was to assume that it was flat as shown in Figure 2, and that the amount of residual pig iron and slag = liquid level. However, according to the recent research results of the present inventors, during tapping, the slag liquid level generally reaches its highest level on the opposite side of the taphole during tapping, as shown in Figure 8, and on the opposite side of the taphole during tapping, as shown in Figure 8. It was found that the shape of the liquid surface changed depending on the coke particle size at the slab viscous detoxification site.

このことから本発明者らは、境界要素法を用いて炉床の
スラグメタル2相流れを解析した結果、液面の形状はお
およそ第8図に示すようなイメージであり、出銑中のそ
の最高レベルは次式で推定できることが判った。
Based on this, the present inventors analyzed the two-phase flow of slag metal in the hearth using the boundary element method, and found that the shape of the liquid level was approximately as shown in Figure 8, and that It was found that the highest level can be estimated using the following formula.

1 max := 1o+ bV−T / s (1)
ks = f (PT Dpl erφ)(2)式中;
ヲmaX :最高液面レベル 10: 初期液面レベル(v/kF1)V:造銑滓液量
 T:出銑時間 b:出銑口の溶損率 に、 jスラグ通液性 μニスラグ粘性Dp:炉床コー
クス粒径 1:炉床空隙率 φ:フークス形状係数 上記(1)式のうちη。(V/に8)は、出銑停止時の
液面レベルを表わし、またbV 、T/aは、出銑中の
液面変動レベルを表わしている。ここでVは、送風量、
送風温度・・・などの高炉操業データよりめられ、k8
は、スラグ成分、コークス粒径などにより決定される定
数である。またbは、以下の方法でめられる。
1 max := 1o+ bV-T/s (1)
ks = f (PT Dpl erφ) (2) in the formula;
WomaX: Maximum liquid level 10: Initial liquid level (v/kF1) V: Iron slag volume T: Tapping time b: Erosion loss rate of the taphole, j Slag liquid permeability μ Nisslag viscosity Dp : Hearth coke particle size 1 : Hearth porosity φ : Fuchs shape factor η in the above equation (1). (V/8) represents the liquid level when tapping is stopped, and bV and T/a represent the liquid level fluctuation level during tapping. Here, V is the amount of air flow,
Determined from blast furnace operation data such as air blowing temperature, k8
is a constant determined by slag components, coke particle size, etc. Moreover, b can be determined by the following method.

溶銑・滓の排出量は、秤量器を用い調査した結果、次式
のようにシュミレートできることが判った。
As a result of investigating the discharge amount of hot metal and slag using a weighing device, it was found that it can be simulated as shown in the following equation.

b t ” (8) Q=v(t+7(〒−1)) t:出銑時間Tにおける成る時刻、従って(8)式より
t時刻の排出量Qが得られれば、bの推定が可能である
。なお出銑時間Tは、スラダ液面低下端が出銑口に到達
した時間の出銑止めまでの時間をもって表わすと仮定し
た。
b t ” (8) Q=v(t+7(〒-1)) t: Time in the tapping time T. Therefore, if the emission amount Q at time t is obtained from equation (8), it is possible to estimate b. It is assumed that the tap time T is expressed as the time from the time when the lower end of the slurry liquid level reaches the tap hole until the tap stops.

本発明は、まず以上に述べたr−夕を用い、プロセスコ
ンピュータにより(1)〜(3)式をi[算り、、ff
l銑中における溶銑・滓の最高液面レベルの変動を逐次
求めることが第1段階である。そのフローを第8図に示
した。入力データ゛は、通常高炉操業に用いる操業デー
タ、溶銑・滓データ、コークスデータ、溶銑・滓排出量
であり、これらは常時プル七スコンピュータに取り込ま
れ、オンラインで液面最高レベルの表示を行う。出銑状
況にトラブル等が生じたりして排出量が(8)式から大
きくずれた場合のために、実績値に合うようにbを強制
的に補正する1修正人力”のフィードバック回路を設け
ておく。
The present invention first uses the above-mentioned r-unit to calculate equations (1) to (3) by a process computer, i [calculate, ff
The first step is to sequentially determine the fluctuations in the maximum liquid level of hot metal and slag in the pig iron. The flow is shown in Figure 8. The input data are operational data, hot metal/slag data, coke data, and hot metal/slag discharge amounts normally used for blast furnace operation, and these are constantly input into the pull-down computer and display the highest liquid level online. In case a problem occurs in the tapping situation and the emission amount deviates significantly from equation (8), a feedback circuit of ``1 correction manual input'' is installed to forcibly correct b to match the actual value. put.

第4図はディスプレイ表示の一例を示す。これにより操
業者は、液面のレベル上昇をいちはや〈察知できるよう
になり、ラップ出銑や減風などの適切なアクションを取
ることによって出銑制御を行って常に適正レベルにする
ことが可能となる。
FIG. 4 shows an example of a display display. This makes it possible for operators to immediately detect increases in the liquid level, and by taking appropriate actions such as lap tapping and wind reduction, they can control the tapping to always maintain the appropriate level. Become.

要するに本発明は上述のようにして% waxがまるこ
とから、imaxに管理値を設けておけば、この管理値
を基準にして、それを超えると予想される場合にラップ
出銑を行うなどの速やかな出銑制御をとることができる
。この管理値としては、最高液面レベルRが羽口レベル
まで到達しないように; R= 17 InaX −HTH/ HoT −HTH
< 0 、841 (4)としてR>0.82の場合は
ラップ出銑を行う。なオ、HoT:羽口レベル高さ’ 
HTH’出銑ロレベル高さ、上記の0.82の値は、羽
ロレペル直前の値を示しており、0が出銑口レベルまで
溶滓が降下した状態であって、一方1は羽口まで溶滓が
上昇した状態を示している。すなわち、液面レベルRが
0.82に達すると予想される場合は、ラップ出銑を行
い、円滑な操業が阻害されるのを防止するのである。
In short, the present invention calculates the %wax as described above, so if a control value is set for imax, this control value can be used as a standard, and if it is expected to exceed it, lap iron tapping can be performed. Rapid tap control can be achieved. This control value is such that the highest liquid level R does not reach the tuyere level; R = 17 InaX -HTH/HoT -HTH
<0, 841 (4) If R>0.82, lap tapping is performed. Nao, HoT: Tuyere level height'
HTH' taphole level height, the value of 0.82 above indicates the value just before the tuyere level, where 0 is the state where the slag has descended to the taphole level, while 1 is the state where the slag has descended to the tuyere level. This shows a state in which the slag has risen. That is, when the liquid level R is expected to reach 0.82, lap tapping is performed to prevent smooth operations from being disturbed.

なお、本発明は、溶銑・滓のレベル、排出スピード等の
解析もできることから、高炉操業に対して次のような利
用分野が開ける。
Furthermore, since the present invention can also analyze the level of hot metal and slag, discharge speed, etc., the following fields of application can be opened for blast furnace operation.

■ 出銑時間(T)、溶銑・滓の排出量(Q)が予め予
測できることから、1回の出銑に必要な溶銑鍋、滓鍋の
配車数を正確に把握でき、従来、余裕をもって配車して
いたのに対し、適切な配車数とすることが可能となる。
■ Since the tapping time (T) and the discharge amount of hot metal and slag (Q) can be predicted in advance, it is possible to accurately determine the number of hot metal ladle and slag ladle required for one tap, and the number of hot metal ladle and slag ladle required for one tap can be accurately determined. This makes it possible to allocate an appropriate number of vehicles.

■ 出銑口溶損率すがめることにより、各種出銑口閉塞
材の性能比較を係数すで行うことが可能である。
■ By observing the taphole erosion rate, it is possible to compare the performance of various taphole plugging materials.

■ スラグ通液性に8=f(μt Dp、ε、φ)によ
り、k8を最大とするためのスラグ組成の設計、コーク
ス粒径がめる他、k8を一定とするためのスラグ粘性と
コークス粒径の組み合わせ方法などが簡単にめられる。
■ Based on 8=f (μt Dp, ε, φ) for slag liquid permeability, design of slag composition to maximize k8, coke particle size, and slag viscosity and coke particle size to keep k8 constant. You can easily see how to combine them.

(実施例) 第5図は、従来の残銑・滓管理化(マテリアルバランス
による)で出銑・滓の作業を行った例である。残銑・滓
量の管理基準を200tとして、200tを超えた段階
でラップ出銑を行ったが、送風圧力の上昇、変動を生じ
て炉の不調を招いたにれは、残銑・滓量を一律に200
tと定めてもに、 (スラグ通液性)などにより、最高
液面レベルが変わるため、炉が順調であったり不調とな
ったり一律には管理できないからであると想定された。
(Example) Fig. 5 is an example of tapping and slag operations performed using conventional residual pig iron and slag management (based on material balance). The control standard for the amount of residual pig iron and slag was 200 tons, and lap tapping was performed when the amount exceeded 200 tons. However, the amount of residual pig iron and slag was uniformly 200
It was assumed that this was because even if t was set, the maximum liquid level changes depending on factors such as (slag liquid permeability), so it is not possible to uniformly control whether the furnace is going well or not.

第6図には、従来の方法にもとづく残銑・滓量と送風圧
力変動指数の関係を示したが、残銑・滓量が増加するに
つれて送風圧力変動指数が上昇する傾向が見られるもの
の、その傾向については明確ではない。
Figure 6 shows the relationship between the amount of residual pig iron and slag and the blowing pressure fluctuation index based on the conventional method. Although there is a tendency for the blowing pressure fluctuation index to increase as the amount of residual pig iron and slag increases, The trend is not clear.

そこで、本発明に従う残銑・浮液面レベルの直接制御を
行った。このレベル制御は、前記(4)式に示したR値
を管理基準としてレベル調整をしたのであるが、その結
果を第7図にレベルCR)と送風圧力変動指数との関係
として示した。両者には強い一定の関係性が認められ、
特にRが0.82のとき急激に送風圧力が上昇するので
、これを残銑・滓の管理基準として採用したことの正し
いことが確められた。これにより、第4図に示したよう
に、最高液面レベルを推測し、プロセスコンピュータ・
により、R値が0.82を超えると予想される場合には
直ちにラップ出銑を開始し、一方既にR値が0.82を
越えたときには、送風圧力の上昇の如何にかかわらず減
風(2〜5%)を行って対処した。
Therefore, the level of residual pig iron and floating liquid level was directly controlled according to the present invention. This level control was performed using the R value shown in equation (4) as a management standard, and the results are shown in FIG. 7 as a relationship between the level CR) and the blowing pressure fluctuation index. A strong and certain relationship is recognized between the two,
In particular, when R is 0.82, the blowing pressure rises rapidly, so it was confirmed that this was adopted as the control standard for pig iron residue and slag. As a result, as shown in Figure 4, the highest liquid level is estimated and the process computer
Therefore, if the R value is expected to exceed 0.82, lap tapping will be started immediately, while if the R value has already exceeded 0.82, air reduction ( 2% to 5%).

そのときのフローを第8図に示す。The flow at that time is shown in FIG.

(発明の効果) 以上説明したように、本発明は% max 、 R値を
使用することにより、早期に残銑・滓レベルの上昇およ
び炉況不調誘起の可能性を検出できるので・(ラップ出
銑の判断が早期に行なうことができ、操業者が事前に炉
況不調におちいらないようにアクションをとることが可
能となった。従って、長期に安定した炉況を維持するこ
とができる。
(Effects of the Invention) As explained above, the present invention uses % max and R value to detect the possibility of an increase in the level of residual pig iron and slag and the induction of furnace condition at an early stage. Pig status can be determined early, allowing operators to take action in advance to prevent furnace conditions from falling into trouble.Therefore, stable furnace conditions can be maintained over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に従うプ冒セスコンピュータを用いる
% wax算出フロー図、 第2図は、従来の溶銑・滓レベル推定図、第8図は、粘
性等を考慮した本発明者らの予測した溶銑・滓しベルノ
図、 第4図は、出銑中における最高液面レベル推移図、 第6図は、従来の溶銑・滓量管理による送風圧力上昇の
例を示すグラフ、 第6図は、従来の残銑・滓量と送風圧力変動指数の関係
を示すグラフ、 第7図は、本発明に従うRと送風圧力変動指数の関係を
示すグラフ、 第8図は、本発明のアクションフロー図である。 特許出願人 川崎製鉄株式会社 第1図 第2図 第3図 第4図 −晴間 第5図 残a、滓量を 第7図 岸U狛シNル尺 第8図
Fig. 1 is a flowchart for calculating % wax using a process computer according to the present invention, Fig. 2 is a diagram of conventional hot metal/slag level estimation, and Fig. 8 is a prediction made by the present inventors in consideration of viscosity, etc. Figure 4 is a graph showing the transition of the maximum liquid level during tapping. Figure 6 is a graph showing an example of the increase in blowing pressure due to conventional hot metal and slag volume management. FIG. 7 is a graph showing the relationship between R and the blowing pressure fluctuation index according to the present invention; FIG. 8 is an action flow diagram of the present invention. It is. Patent Applicant: Kawasaki Steel Corporation Figure 1 Figure 2 Figure 3 Figure 4 - Haruma Figure 5 Amount of slag Figure 7 Bank U Komashi N Le Measure Figure 8

Claims (1)

【特許請求の範囲】 L 下記式より計算される高炉内炉床残銑・滓レベルに
つき、出銑中におけるその残銑・滓の最高液面レベル%
 maxをめ、その値が最適液面レベル管理値を満足す
るように出銑時制御を行うことを特徴とする高炉の残銑
・滓レベルの調整法。 記 7Imax = 10+bV−T / s (1)kB
 ” f (1’+ Dp t ’ rφ) (2)b
 リ Q=v(t +1(−y−t )) (8)式中: i
 max :最高液面レベルlo:初期液面レベル(V
/kI3) V:造銑滓液量 T:出銑時間 b:出銑口の溶損率 kBニスラグ通液性 μニスラグ粘性 Dp:炉床コークス粒径 6=炉床空隙率 φ:コークス形状係数 Qit時刻の排出量
[Claims] L Maximum liquid level % of the residual pig iron and slag during tapping, with respect to the level of the residual pig iron and slag on the hearth in the blast furnace calculated from the following formula.
A method for adjusting the level of residual pig iron and slag in a blast furnace, characterized by performing control at the time of tapping so that the value satisfies an optimum liquid level control value. Note 7Imax = 10+bV-T/s (1)kB
” f (1'+ Dp t ' rφ) (2) b
LiQ=v(t+1(-y-t)) (8) In formula: i
max: Maximum liquid level lo: Initial liquid level (V
/kI3) V: Iron slag amount T: Tapping time b: Erosion rate of taphole kB Nisslag liquid permeability μ Nisslag viscosity Dp: Hearth coke particle size 6 = hearth porosity φ: Coke shape factor Qit time emissions
JP11899084A 1984-06-12 1984-06-12 Method for regulating level of residual pig and slag Granted JPS60262910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11899084A JPS60262910A (en) 1984-06-12 1984-06-12 Method for regulating level of residual pig and slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11899084A JPS60262910A (en) 1984-06-12 1984-06-12 Method for regulating level of residual pig and slag

Publications (2)

Publication Number Publication Date
JPS60262910A true JPS60262910A (en) 1985-12-26
JPS6260442B2 JPS6260442B2 (en) 1987-12-16

Family

ID=14750274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11899084A Granted JPS60262910A (en) 1984-06-12 1984-06-12 Method for regulating level of residual pig and slag

Country Status (1)

Country Link
JP (1) JPS60262910A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294315A (en) * 2001-04-03 2002-10-09 Kawasaki Steel Corp Method for estimating slag level in furnace
JP2015206107A (en) * 2014-04-08 2015-11-19 新日鐵住金株式会社 Blast furnace status analyzer, blast furnace status analysis method and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108982320B (en) * 2018-07-10 2021-03-02 中国海洋石油集团有限公司 Method for calculating permeability of reservoir with complex pore structure by using particle size parameters

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49130809A (en) * 1973-04-24 1974-12-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49130809A (en) * 1973-04-24 1974-12-14

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294315A (en) * 2001-04-03 2002-10-09 Kawasaki Steel Corp Method for estimating slag level in furnace
JP2015206107A (en) * 2014-04-08 2015-11-19 新日鐵住金株式会社 Blast furnace status analyzer, blast furnace status analysis method and program

Also Published As

Publication number Publication date
JPS6260442B2 (en) 1987-12-16

Similar Documents

Publication Publication Date Title
KR102136562B1 (en) Exhaust weight estimation method and exhaust weight estimation device
CN104004876B (en) A kind of converter charging autocontrol method and system
JPS60262910A (en) Method for regulating level of residual pig and slag
JP2015086461A (en) Blast furnace operation method
TW201639971A (en) Method for controlling a blast furnace having high aluminum slag
CN114036706A (en) Method and device for adjusting operating state of blast furnace
JPS6324044B2 (en)
JP3794211B2 (en) Method for evaluating mud material at blast furnace outlet and opening method for outlet
KR101572391B1 (en) Method for assuming and controlling coke size in bottom part of blast furnace
JP7193032B1 (en) Supplied heat amount estimation method, supplied heat amount estimation device, and blast furnace operation method
WO2022009617A1 (en) Method for controlling hot metal temperature, operation guidance method, method for operating blast furnace, method for producing hot metal, device for controlling hot metal temperature, and operation guidance device
JP7140305B1 (en) Supplied heat amount estimation method, supplied heat amount estimation device, supplied heat amount estimation program, and method of operating blast furnace
JP7107050B2 (en) Blast furnace operation method
JP5862470B2 (en) Blast furnace resting method
WO2023276353A1 (en) Supply heat quantity estimation method, supply heat quantity estimation device, supply heat quantity estimation program, and blast furnace operation method
JP2023131619A (en) Molten iron temperature measurement method and blast furnace operation method
JPS5856729B2 (en) Blowing control method for pure oxygen top-blown converter
WO2023276357A1 (en) Supplied heat quantity estimation method, supplied heat quantity estimation device, supplied heat quantity estimation program, and operation method for blast furnace
KURIHARA et al. Low fuel rate operation of the blast furnace test operation with 100% agglomerated ore
KR100423454B1 (en) Method for controlling the temperature of center portion of burden materials in blast furnace
JPS60208405A (en) Operating method of blast furnace
JP2001073013A (en) Method for deciding variation of furnace heat in blast furnace
CN113201611A (en) Method for judging temperature change trend in blast furnace ironmaking
JPH09227911A (en) Operation of blast furnace
RU2176272C1 (en) Method of blast-furnace smelting