JPS60261138A - Positioning device - Google Patents

Positioning device

Info

Publication number
JPS60261138A
JPS60261138A JP59116508A JP11650884A JPS60261138A JP S60261138 A JPS60261138 A JP S60261138A JP 59116508 A JP59116508 A JP 59116508A JP 11650884 A JP11650884 A JP 11650884A JP S60261138 A JPS60261138 A JP S60261138A
Authority
JP
Japan
Prior art keywords
light
board
polarized light
plate
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59116508A
Other languages
Japanese (ja)
Other versions
JPH0145216B2 (en
Inventor
Akiyoshi Suzuki
章義 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59116508A priority Critical patent/JPS60261138A/en
Publication of JPS60261138A publication Critical patent/JPS60261138A/en
Publication of JPH0145216B2 publication Critical patent/JPH0145216B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To improve the accuracy of positioning by preventing an adverse effect on the detection of positions due to the mutual interference of scattered light from each body to be positioned. CONSTITUTION:A lambda/2 board 10 and a lambda/4 board 11 are arranged at the prestage of a polarizing beam splitter 5. The board 10 and the board 11 are turned freely centering around an optical path P, and positioned at desired angles. The board 10 changes the direction of polarized light of projecting light to the direction of polarized light of incident light. The board 11 alters the start of polarized light before and behing a transmission through the board 11. Consequently, elliptically polarized light is changed into linearly polarized light in the desired direction by the functioning of the board 11 and the direction of polarized light by the functioning of the board 10 in reflected light from a wafer 4. Accordingly, light from the wafer 4 is cut completely by a direction reflected signal from a mask 3, thus preventing interference.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は複数の物体の相対的位置合わせ装置、特には半
導体露光装置におけるマスク(若しくはレチクル)とウ
ェハーの位置合わせ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a device for relative positioning of a plurality of objects, and particularly to a device for positioning a mask (or reticle) and a wafer in a semiconductor exposure apparatus.

〔従来技術〕[Prior art]

近年、ICの微細化が進み、マスク(又はレチクル)と
ウェハーの位置合わせ精度は0.1μmオーダーの値が
必要とされる迄になってきている。
In recent years, the miniaturization of ICs has progressed, and the alignment accuracy between a mask (or reticle) and a wafer has come to be required to be on the order of 0.1 μm.

特にステッパーと呼ばれる装置ではその必要性が □高
い。例をステッパーにとると、位置合わせの方式として
オファクシヌ方式とTTL方式があり、前者は高スルー
プツト性、後者は高精度という事で特徴づけられる。
This is especially necessary for devices called steppers. Taking a stepper as an example, there are two types of positioning methods: the Ofax method and the TTL method, the former being characterized by high throughput and the latter by high precision.

本発明は例えばこのTTL方式に適用できるものである
。TTL方式としては、例えば本出願人による特開昭5
6−24504号公報に記載された装置が知られている
。TTL方式で高精度を得るために問題となるのは、マ
スクの信号とウエノ1−の信号を如何にして分離し、独
立して検知するかという事である。特にマスク信号はマ
スクの信号がウエノ1−からの反射光の影響を受けると
、精度を悪化させる要因となる。
The present invention can be applied to this TTL method, for example. As a TTL method, for example, Japanese Patent Application Laid-open No. 5
A device described in Japanese Patent No. 6-24504 is known. The problem in obtaining high precision with the TTL method is how to separate the mask signal and the Ueno 1- signal and detect them independently. In particular, when the mask signal is affected by the reflected light from the wafer 1-, it becomes a factor that deteriorates the accuracy.

そこで従来はこの問題を解決するために、偏光手段を投
影光学系内に配設したものがある。偏光手段としては、
投影光学系がレンズ系である場合には入4板を用い、ミ
ラー系である場合にはん4板に相当する位相差を与える
反射膜(位相膜)を用いて(・る。
Conventionally, in order to solve this problem, a polarizing means is disposed within the projection optical system. As a polarizing means,
When the projection optical system is a lens system, a 4-plate is used, and when it is a mirror system, a reflective film (phase film) that provides a phase difference equivalent to that of a 4-plate is used.

ここで、上記従来例を第1図に基いて具体的に説明する
ことにより、当該従来例の問題点を明らかにする。
Here, by specifically explaining the above conventional example based on FIG. 1, the problems of the conventional example will be clarified.

第1図には、従来の位置合わせ装置を構成すえアライメ
ントスコープ及び投影光学系を示しである。周辺部の各
光学系についての原理、作用等については上記公報に詳
細に説明されているので、ここでは省略する。
FIG. 1 shows an alignment scope and a projection optical system that constitute a conventional alignment apparatus. The principles, functions, etc. of each optical system in the peripheral portion are explained in detail in the above-mentioned publication, so they will be omitted here.

レーザー1からでた光りは回転するポリゴンミラー2で
反射され、一連の光学系を経てマスク(又はレチクル)
3及びウェハー4上を走査する。
The light emitted from the laser 1 is reflected by a rotating polygon mirror 2, and passes through a series of optical systems to a mask (or reticle).
3 and wafer 4 are scanned.

マスク8及びウェハー4上で反射された各々の光は、偏
光ビームスプリッタ−5,空間周波数フィルター6.6
′等を介して光電検出素子7,7′に導かれる。空間周
波数フィルター6.6′は、マスク3及びウェハー4か
らの正反射光をとめ、散乱光のみを光電検出素子7,7
′に入射させるためのものである。ここで、マスク8及
びウェハー4から光電検出素子7,7′に至るまでの光
学系に於いては、前述したように、マスク8からの直接
の散乱光と、一旦つエバー4での反射を介してアライメ
ントスコープ系に戻ってくる間接的な散乱光とが干渉を
起こしてしまい、精度の高い光検出ができないという問
題がある。
The respective lights reflected on the mask 8 and the wafer 4 are passed through a polarizing beam splitter 5 and a spatial frequency filter 6.6.
' etc. to the photoelectric detection elements 7, 7'. The spatial frequency filter 6.6' blocks specularly reflected light from the mask 3 and wafer 4, and transmits only the scattered light to the photoelectric detection elements 7, 7.
′. Here, in the optical system from the mask 8 and wafer 4 to the photoelectric detection elements 7 and 7', as described above, the direct scattered light from the mask 8 and the reflection from the Ever 4 are separated. There is a problem in that the indirect scattered light that returns to the alignment scope system through the light source interferes with the light, making it impossible to perform highly accurate light detection.

そこでこの干渉を防止するために、投影レンズ8の内部
にん4板9を配置したものである。このん4板9は、例
えば光学的な異方性を持った結晶板により作製される。
Therefore, in order to prevent this interference, four plates 9 are arranged inside the projection lens 8. The four plates 9 are made of, for example, a crystal plate having optical anisotropy.

へ4板9にマスク3側から入射する光が直線偏光である
場合には、該入射光の偏光方向と、ウェハー4での反射
を経てん4板9を往復して戻ってきた出射光の偏光方向
とを直交させることができる。光電検出素子?、7′は
それぞれある特定の方向の偏光方向の光のみを検知する
ので、これによって片一方の偏光方向の光を除去し、上
記のような干渉を防止しようとするものである。ここで
ん4板9はマスク3とウェハー4の間であれば投影レン
ズ8の内部以外の任意の位置に設置しても良い。
When the light that enters the fourth plate 9 from the mask 3 side is linearly polarized light, the polarization direction of the incident light and the output light that has gone back and forth through the fourth plate 9 after reflection on the wafer 4 are determined. The polarization direction can be orthogonal to the polarization direction. Photoelectric detection element? , 7' detect only light polarized in a certain specific direction, so the light polarized in one direction is removed to prevent the above-mentioned interference. Here, the fourth plate 9 may be installed at any position other than inside the projection lens 8 as long as it is between the mask 3 and the wafer 4.

ところが、以下(1)及び(11)のような問題があり
、所望の偏光状態を得ることができないため、完全に干
渉を防止することができない。
However, there are problems as shown in (1) and (11) below, and a desired polarization state cannot be obtained, so that interference cannot be completely prevented.

(1)ん4板の板厚は、極めて高い精度が要求されるに
も拘らず、その精密加工が困難である。そのため、その
板厚の誤差により直線偏光で入射した光が楕円偏光とな
って出射され、干渉が生じてしまう。
(1) Although extremely high precision is required for the thickness of the four plates, precision machining is difficult. Therefore, due to an error in the plate thickness, light that is incident as linearly polarized light is emitted as elliptically polarized light, resulting in interference.

(ii) 、7&4板が投影レンズ8内に配設された時
に。
(ii) When the 7 & 4 plates are arranged inside the projection lens 8.

偏光方向に対して角度上の誤差を生じ易い。ん4板は敏
感な角度特性を持つため、上記のような誤差が微妙に影
響し、反射して戻って来る光の偏光方向が入射した光の
偏光方向と直交しなくなってしまう。従って、干渉が生
じる原因となる。
Angular errors are likely to occur with respect to the polarization direction. Since the four plates have sensitive angular characteristics, the above-mentioned errors will have a subtle effect, and the polarization direction of the reflected light will no longer be perpendicular to the polarization direction of the incident light. Therefore, this causes interference.

上記(1)及び(11)の問題は、投影光学系がミラー
系である場合に、該ミラー系内にM4仮に相当する位相
膜を配設した場合についても言えることである。
The problems (1) and (11) above also apply when the projection optical system is a mirror system and a phase film corresponding to M4 is disposed within the mirror system.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記問題点を解消し、位置合わせすべき
各物体からの散乱光が干渉し合うことによる、位置検出
への悪影響を防止して、位置合わせ精度を向上させるこ
とを可能にした位置合わせ装置を提供することにある。
The purpose of the present invention is to solve the above-mentioned problems, and to prevent the interference of scattered light from objects to be aligned with each other, which would adversely affect position detection, thereby making it possible to improve alignment accuracy. An object of the present invention is to provide an alignment device.

上記目的を達成するために、本発明に係る位置合わせ装
置は、位置合わせすべき複数個の物体の間に配設した投
影光学系と、該投影光学系の中に配置したん4板若しく
は位相膜等の偏光手段と、更に該偏光手段で得られた光
の偏光状態を変えるだめの、ん4板若しくはM板偏光板
等からなる補正手段とを具備しており、上記偏光状態の
不完全さを前記補正手段で補うことにより、最適な偏光
状態を得ることができるようにしたものである。
In order to achieve the above object, the alignment device according to the present invention includes a projection optical system disposed between a plurality of objects to be aligned, and a four-plate or phase shifter disposed within the projection optical system. It is equipped with a polarizing means such as a film, and a correction means consisting of a 4-plate polarizing plate, an M-plate polarizing plate, etc. for changing the polarization state of the light obtained by the polarizing means, and is equipped with a correction means consisting of a 4-plate or M-plate polarizing plate, etc. By compensating for the difference using the correcting means, it is possible to obtain an optimal polarization state.

〔実施例〕〔Example〕

以下、本発明の実施例について、図面を参照しながら説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明の−実施例を示す概略構成図である。第
1図で示した従来例と同様に、レーザー1からでた光り
は回転するポリゴンミラー2で反射され、一連の光学系
を経てマ・スフ(又はレチクル)3及びウェハー4上を
走査する。マスク8及びウェハー4上で反射された各々
の光は、偏光ビームスプリッタ−5,空間周波数フィル
ター6等を介して光電検出素子7に導かれる。本実施例
では光電検出素子7の方をマスクからの直接の散乱光の
゛みをとる様に構成されているものとする。ここで本実
施例の特徴として、偏光ビームスプリッタ−5の前段に
へ4板10及びん4板11を配置しである。M2板10
及びん4板11は、光路Pを中心として回転自在となっ
ており、所望の角度に位置決めできる。
FIG. 2 is a schematic diagram showing an embodiment of the present invention. Similar to the conventional example shown in FIG. 1, the light emitted from a laser 1 is reflected by a rotating polygon mirror 2 and scans over a matrix (or reticle) 3 and a wafer 4 through a series of optical systems. Each of the lights reflected on the mask 8 and the wafer 4 is guided to a photoelectric detection element 7 via a polarizing beam splitter 5, a spatial frequency filter 6, etc. In this embodiment, it is assumed that the photoelectric detection element 7 is configured to detect the direct scattered light from the mask. Here, a feature of this embodiment is that four plates 10 and four plates 11 are arranged before the polarizing beam splitter 5. M2 plate 10
The bridge 4 plate 11 is rotatable around the optical path P, and can be positioned at a desired angle.

人4板10はその特性により、該Mz板10への入射光
の偏光方向に対して、該7〜勺板10からの出射光の偏
光方向を変化させることができる。
Due to its characteristics, the four-layer plate 10 can change the polarization direction of the light emitted from the seven to four-layer plates 10 with respect to the polarization direction of the light incident on the Mz plate 10.

この作用を利用し、7y2板10を適宜回転させて偏光
方向を変化させることにより、所望の偏光方向に設定す
ることができる。ただしこの作用は、投影レンズ8中の
へ4板9の不完全性を補う為の袖筒効果であり、マスク
8から直接反射された光に対する効果はコサイン的にし
かきかない。従って直接反射光には無視できる程度の影
響しか与えな(・。マスク信号に対してウェハー信号を
混入させない為には、ウェハーの信号を完全な所定の方
向の直線偏光にする事が必要であり、ん4板10を適宜
回転させて、ウェハーからの反射光の偏光方向を所望の
方向にセットさせることが可能となる。
By utilizing this effect and changing the polarization direction by appropriately rotating the 7y2 plate 10, a desired polarization direction can be set. However, this effect is a cuff effect to compensate for the imperfection of the 4-plate 9 in the projection lens 8, and the effect on the light directly reflected from the mask 8 is only cosine-like. Therefore, it has a negligible effect on the directly reflected light (...In order to prevent the wafer signal from being mixed into the mask signal, it is necessary to make the wafer signal completely linearly polarized in a predetermined direction. By appropriately rotating the plate 10, it is possible to set the polarization direction of the reflected light from the wafer in a desired direction.

ん4板11はその特性により、該ん4板11を透過する
前後における偏光状態を変化させる作用を持つ。すなわ
ち、へ4板11を適宜回転させることにより、楕円偏光
から直線偏光に変化させることができる。ただしこの場
合においても、ん4板11の効果はへ4板9の不完全性
な補正する程度の量であり、マスク8からの直−桜皮射
光に与える影響は少ない。従って、入4板9の不完全性
の為楕円偏光となってしまった光は、へ4板11により
直線偏光に戻すことが可能となる。この様にしてウェハ
ーからの反射光は楕円偏光は/v4板1板側1偏光方向
2板10の働きにより、所望の方向の直線偏光となる。
Due to their characteristics, the four plates 11 have the effect of changing the polarization state before and after passing through the four plates 11. That is, by appropriately rotating the 4-plate 11, it is possible to change the light from elliptically polarized light to linearly polarized light. However, even in this case, the effect of the fourth plate 11 is just enough to compensate for the imperfection of the fourth plate 9, and the effect on the direct cherry light emitted from the mask 8 is small. Therefore, the light that has become elliptically polarized due to the imperfection of the input 4-plate 9 can be returned to linearly polarized light by the input 4-plate 11. In this way, the reflected light from the wafer changes from elliptically polarized light to linearly polarized light in a desired direction by the action of /v4 plate 1 plate side 1 polarization direction 2 plate 10.

この結果、マスクからの直接反射信号にはウェハーから
の光が完全にカットされ、前述したような干渉を防止し
得るものである。
As a result, the light from the wafer is completely cut off from the direct reflection signal from the mask, making it possible to prevent the above-mentioned interference.

次に本発明の他の実施例を第3図に示す。ここでは、第
2図に示した偏光ビームスプリッタ−5の代わりに、ハ
ーフミラ−20及び回転可能な偏光板21を用いたもの
である。第2図では偏光ビームスプリッタ−5により偏
光方向が空間的に定められていたが、第8図においては
偏光板21が回転可能である。そのため本実施例では、
第2図で示したようなん4板lOを更に配置する必要が
ない。すなわち、偏光板21を自由に調整することによ
り、カットできる偏光方向を自由に変化させられるので
、ウェハーからの反射光は所望の方向の直線偏光である
必要はなく、単に直接偏光の状態でありさえすれば良(
bん4板11は、第2図に示したものと等しい。従って
、入4板11及び偏光板21を適宜に調整することによ
り、上記実施例と同様に、前述したような干渉を防止し
得るものである。
Next, another embodiment of the present invention is shown in FIG. Here, a half mirror 20 and a rotatable polarizing plate 21 are used in place of the polarizing beam splitter 5 shown in FIG. In FIG. 2, the polarization direction is spatially determined by the polarizing beam splitter 5, but in FIG. 8, the polarizing plate 21 is rotatable. Therefore, in this example,
There is no need to further arrange four plates 1O as shown in FIG. That is, by freely adjusting the polarizing plate 21, the direction of polarization that can be cut can be freely changed, so that the reflected light from the wafer does not have to be linearly polarized light in a desired direction, but is simply directly polarized light. All you have to do is (
The four plates 11 are identical to those shown in FIG. Therefore, by appropriately adjusting the four-in-board plate 11 and the polarizing plate 21, it is possible to prevent the above-mentioned interference as in the above embodiment.

なお、上述した実施例では投影光学系として投影レンズ
を用いた場合について説明したが、投影光学系としてミ
ラー系を用い、この中に人4板に相当する位相膜を配置
した場合についても、同様な構成とすることができる。
In addition, in the above-mentioned embodiment, the case where a projection lens is used as the projection optical system has been explained, but the same applies to the case where a mirror system is used as the projection optical system and a phase film corresponding to the human 4 plate is disposed therein. It can be configured as follows.

伊佐訃往髪千士 また本発明はマスクとウェハーの位置合わせ以配設され
たん4板相当の偏光手段で生じた偏光状態の不完全性を
補正する手段を具備したことにより、位置合わせすべき
各々の物体、たとえばマスクとウェハーからの各々の散
乱光を完全に分離し、独立して検知することができる。
Furthermore, the present invention provides a means for correcting imperfections in the polarization state caused by the polarizing means equivalent to 4 plates provided for aligning the mask and the wafer. Each scattered light from each object, such as a mask and a wafer, can be completely separated and independently detected.

従って、上記の検知の時間的安定性ならびに位置合わせ
精度の向上を実現することができるという、非常に優れ
た効果を奏するものである。
Therefore, the above-mentioned temporal stability of detection and alignment accuracy can be improved, which is a very excellent effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のマスク及びウェハーの位置合わせ装置を
示す概略構成図、第2図は本発明の一実施例を示す概略
構成図、第3図は本発明の他の実施例を示す概略構成図
である。 3・・・マスク(又はレチクル)、4・・・ウェハー。 5・・・偏光ビームスプリッタ−96・・・空間周波数
フィルター。 7・・・光電検出素子、8・・投影レンズ。 9・・・7ん4板、10・・・、〜4板。 11・・・へ4板、 20・・ハーフミラ−121・・
・偏光板。 第1図 第3図
FIG. 1 is a schematic configuration diagram showing a conventional mask and wafer alignment device, FIG. 2 is a schematic configuration diagram showing one embodiment of the present invention, and FIG. 3 is a schematic configuration diagram showing another embodiment of the present invention. It is a diagram. 3... Mask (or reticle), 4... Wafer. 5...Polarizing beam splitter-96...Spatial frequency filter. 7... Photoelectric detection element, 8... Projection lens. 9...7 4 boards, 10..., ~4 boards. 11...4 plates, 20...Half mirror-121...
·Polarizer. Figure 1 Figure 3

Claims (1)

【特許請求の範囲】 tll 複数個の物体の相対的位置合わせをする装置で
あって、前記複数個の物体の間に配設した投影光学系と
、該投影光学系の中に配置した、偏光状態を変化させる
偏光手段と、該偏光手段によってもたらされる偏光状態
の不完全性を補う補正手段とを具備したことを特徴とす
る位置合わせ装置。 (2) 前記投影光学系は投影レンズを有する、特許請
求の範囲第1項記載の位置合わせ装置。 (3)前記投影光学系はミラーを有する、特許請求の範
囲第1項記載の位置合わせ装置。 (4)前記偏光手段はん4板である、特許請求の範囲第
2項記載の位置合わせ装置。 (5)前記偏光手段は位相膜である、特許請求の範囲第
3項記載の位置合わせ装置。 (6) 前記ん4板は投影レンズの中に配置される、特
許請求の範囲第4項記戦の位置合わせ装置。 (7) 前記補正手段はアライメントスコープ系内に配
置される、特許請求の範囲第1項乃至第6項のいずれか
1項に記載の位置合わせ装置。
[Claims] tll An apparatus for relative positioning of a plurality of objects, comprising: a projection optical system disposed between the plurality of objects; and a polarized light disposed within the projection optical system. 1. A positioning apparatus comprising: a polarizing means for changing the state; and a correcting means for compensating for imperfections in the polarized state caused by the polarizing means. (2) The alignment device according to claim 1, wherein the projection optical system has a projection lens. (3) The alignment device according to claim 1, wherein the projection optical system includes a mirror. (4) The positioning device according to claim 2, wherein the polarizing means has four plates. (5) The alignment device according to claim 3, wherein the polarizing means is a phase film. (6) The positioning device according to claim 4, wherein the four plates are arranged inside a projection lens. (7) The alignment device according to any one of claims 1 to 6, wherein the correction means is disposed within an alignment scope system.
JP59116508A 1984-06-08 1984-06-08 Positioning device Granted JPS60261138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59116508A JPS60261138A (en) 1984-06-08 1984-06-08 Positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59116508A JPS60261138A (en) 1984-06-08 1984-06-08 Positioning device

Publications (2)

Publication Number Publication Date
JPS60261138A true JPS60261138A (en) 1985-12-24
JPH0145216B2 JPH0145216B2 (en) 1989-10-03

Family

ID=14688875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59116508A Granted JPS60261138A (en) 1984-06-08 1984-06-08 Positioning device

Country Status (1)

Country Link
JP (1) JPS60261138A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133603A (en) * 1988-10-18 1992-07-28 Canon Kabushiki Kaisha Device for observing alignment marks on a mask and wafer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928362A (en) * 1972-07-05 1974-03-13
JPS5453562A (en) * 1977-10-05 1979-04-26 Canon Inc Photoelectric detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928362A (en) * 1972-07-05 1974-03-13
JPS5453562A (en) * 1977-10-05 1979-04-26 Canon Inc Photoelectric detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133603A (en) * 1988-10-18 1992-07-28 Canon Kabushiki Kaisha Device for observing alignment marks on a mask and wafer

Also Published As

Publication number Publication date
JPH0145216B2 (en) 1989-10-03

Similar Documents

Publication Publication Date Title
US4251160A (en) Method and arrangement for aligning a mask pattern relative to a semiconductor substrate
US7180051B2 (en) Polarization state detecting system, light source, and exposure apparatus
US4923301A (en) Alignment of lithographic system
CN110095880B (en) Self-referencing interferometer, alignment system and lithographic apparatus
WO1992008167A1 (en) Proximity alignment using polarized illumination and double conjugate projection lens
JPH0546970B2 (en)
US5432603A (en) Optical heterodyne interference measuring apparatus and method, and exposing apparatus and device manufacturing method using the same, in which a phase difference between beat signals is detected
JPH02192114A (en) Aligner
US7106452B2 (en) Measuring device and measuring method
JP3125360B2 (en) Position detecting device and projection exposure device
US20040165166A1 (en) Exposure apparatus and production method of device using the same
JPS60261138A (en) Positioning device
US7081960B2 (en) Interferometer, exposure apparatus, exposure method and interference length measurement method
JP2017116769A (en) Detection device, exposure device and article production method
JPH09171954A (en) Position measuring equipment
JP2000314609A (en) Laser interferometric measuring device
JP2931082B2 (en) Method and apparatus for measuring small displacement
JPH09320920A (en) Adjustment method of aligner
JP3323609B2 (en) Measuring method and measuring device using the same
JPH03212611A (en) Light quantity controller
JPH05226224A (en) Alignment device of aligner
JPS6329204A (en) Alignment device
CN114690594A (en) Alignment device, photoetching machine and alignment method
KR19980070129A (en) Measuring device with interferometer
JP2003028609A (en) Interferometer, aligner, method of manufacturing microdevice, measuring apparatus and method of manufacturing aligner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term