JPS60255959A - High hardness alloy steel having high saturation magnetic flux density - Google Patents

High hardness alloy steel having high saturation magnetic flux density

Info

Publication number
JPS60255959A
JPS60255959A JP59106549A JP10654984A JPS60255959A JP S60255959 A JPS60255959 A JP S60255959A JP 59106549 A JP59106549 A JP 59106549A JP 10654984 A JP10654984 A JP 10654984A JP S60255959 A JPS60255959 A JP S60255959A
Authority
JP
Japan
Prior art keywords
alloy steel
magnetic flux
flux density
saturation magnetic
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59106549A
Other languages
Japanese (ja)
Inventor
Keizo Onishi
大西 敬三
Toru Ishiguro
徹 石黒
Yukiyoshi Fuda
之欣 附田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP59106549A priority Critical patent/JPS60255959A/en
Publication of JPS60255959A publication Critical patent/JPS60255959A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To improve the wear resistance and durability by adding prescribed percentages of Ni, Co, Mo, Ti, Cr and Al to Fe and dispersig finely an intermetallic compound in the low carbon cubic martensite matrix of the resulting alloy steel. CONSTITUTION:This high hardness alloy steel having high saturation magnetic flux density consists of, by weight, 7-11% Ni, 10-30% Co, 3-7% Mo, 0.5- 1.5% Ti, 0.5-1.5% Cr, 0.05-0.3% Al and the balance Fe. The wear resistance of the alloy steel is improved becaused an intermetallic compound is finely dispersed in the tough low carbon cubic martensite matrix. When a metallic mold for molding plastics in a high magnetic field is made of the alloy steel, the durability of the metallic mold is improved because the alloy steel is a ferromagnetic body.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、例えばプラスチックマグネット成形機用金型
などの、耐摩耗性と強磁性とを要求される機械構造部品
に適した、低炭素析出硬化型マルテンサイト系の高硬度
高飽和磁束密度を有する合金鋼に関する。
Detailed Description of the Invention [Technical Field] The present invention relates to a low-carbon precipitation-hardened marten material suitable for machine structural parts that require wear resistance and ferromagnetism, such as molds for plastic magnet molding machines. This invention relates to a site-based alloy steel having high hardness and high saturation magnetic flux density.

〔従来技術〕[Prior art]

近年、射出成形品の需要の増大、またその利用分野の拡
大に伴ない、金型の高性能化が強く要望されている。
In recent years, with the increase in demand for injection molded products and the expansion of their application fields, there has been a strong demand for higher performance molds.

従来より、特に鋼の耐摩耗性に関しては、機械部品とし
ての鋼表層の高硬度化に対する研究が行なわれ、数多く
が実用に供されている。中でも摩耗部に硬化層肉盛や硬
質メッキな施すことにより、性能向上を計っている例が
多く見受けられるが、金型などのような精密な仕上精度
を必要とされる部材には、このような表面処理?適用す
ることは困難である。
Regarding the wear resistance of steel, research has been carried out on increasing the hardness of the surface layer of steel for mechanical parts, and a large number of these have been put into practical use. Among these, there are many examples where performance is improved by applying a hardened layer overlay or hard plating to worn parts, but such methods are often used for parts that require precise finishing accuracy such as molds. What kind of surface treatment? It is difficult to apply.

一方、プラスチックマグネット成形品の製造の場合、こ
れの磁気的方向性を得る為に必要な高磁場をかけること
があり、その金型には優れた耐摩耗性と同時に高い飽和
磁束密度を有する材料が要求される。これに対し、従来
より使用されている低合金系高張力鋼、5KDII(J
IS)等のダイス鋼、あるいは析出硬化型ステンレス鋼
などはある程度の硬度は得られるものの、飽和磁束密度
が低いため、このような金型材料としては問題があり、
不十分である。
On the other hand, in the case of manufacturing plastic magnet molded products, a high magnetic field is sometimes applied to obtain the magnetic directionality of the product, and the mold is made of a material that has excellent wear resistance and high saturation magnetic flux density. is required. In contrast, the conventionally used low-alloy high-strength steel, 5KDII (J
Although die steels such as IS) or precipitation hardening stainless steels have a certain degree of hardness, their saturation magnetic flux density is low, so they have problems as mold materials.
Not enough.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来の問題点を解決し、合金の化
学成分を調節することにより、優れた耐摩耗性および高
い飽和磁束密度を併せ持つ、プラスチックマグネット成
形機金型などに適した合金鋼を提供するにある。
The purpose of the present invention is to solve the above-mentioned conventional problems and to create an alloy steel suitable for plastic magnet molding machine molds, etc., which has both excellent wear resistance and high saturation magnetic flux density by adjusting the chemical composition of the alloy. is to provide.

〔発明の構成〕[Structure of the invention]

本発明の合金鋼は、重量%で、Ni 7.0〜11.0
%、Co 10.0〜30.0%、Mo 3.0〜7.
0%、Ti0.5〜1.5%、Cr 0.5〜1.5%
、A10.05〜0.3%、残部Fe、および不可避的
不純物よりなる。
The alloy steel of the present invention has Ni 7.0 to 11.0 in weight%
%, Co 10.0-30.0%, Mo 3.0-7.
0%, Ti 0.5-1.5%, Cr 0.5-1.5%
, A10.05-0.3%, balance Fe, and unavoidable impurities.

すなわち、本発明鋼は、飽和磁束密度向上の観点から高
Co鋼を基本として、さらに強靭な低炭素マルテンサイ
ト基質構成元素の適量添加と、熱処理による金属間化合
物の微細分散により、優れた耐摩耗性が得られるという
知見に基づくものである。
In other words, the steel of the present invention is based on high Co steel from the viewpoint of improving saturation magnetic flux density, and has excellent wear resistance by adding an appropriate amount of a tougher low carbon martensite matrix constituent element and finely dispersing intermetallic compounds through heat treatment. This is based on the knowledge that sex can be obtained.

次に本発明鋼の化学成分範囲の限定理由を述べる。Next, the reason for limiting the chemical composition range of the steel of the present invention will be described.

N1はマルテンサイト変態を起こさせるに必要な元素、
すなわち基質構成元素で、これは当然間いたγ領域を形
成するオーステナイト安定作用を持っている。またNi
は、同様の作用を有するMn、pt等に比較して、基質
の靭性向上に非常に有効である。本発明鋼においてはN
1含有量が7.0%未満ではその効果は不十分であり、
一方その含有量が多くなると、Ms点が室温以下となり
、深冷処理が必要となる。また、Ni llの増加に伴
ない、飽和磁束密度は減少する。これらの相互関係な考
慮するとその上限は11.0%である。そこで、Ni含
有量は7.0〜11.0%とした。
N1 is an element necessary to cause martensitic transformation,
In other words, it is a matrix constituent element, which naturally has an austenite stabilizing effect that forms interspaced γ regions. Also Ni
is very effective in improving the toughness of the substrate compared to Mn, pt, etc., which have similar effects. In the steel of the present invention, N
1 content is less than 7.0%, the effect is insufficient,
On the other hand, when the content increases, the Ms point becomes below room temperature and deep cooling treatment becomes necessary. Furthermore, as Ni ll increases, the saturation magnetic flux density decreases. Considering these mutual relationships, the upper limit is 11.0%. Therefore, the Ni content was set to 7.0 to 11.0%.

Coは、10%以上添加すると積層欠陥エネルギーを低
下させ、その結果、部分転位の結合が必要となる交差す
べりが困難となり、セル構造は発達せずに平均的に転位
密度が上昇し、時効硬化に寄与する析出相の核生成サイ
トが多くなり、多数の析出相が微細に分散した強度と靭
性にとって理想的な分散強化の状態が得られる。さらに
、Coの増加に伴ない、飽和磁束密度が上昇する。しか
し、およそ30%で、その効果が飽和する傾向にあるた
め、上限を30%とした。よってその範囲を10〜30
%とした。
When Co is added in an amount of 10% or more, it lowers the stacking fault energy, and as a result, it becomes difficult to cross-slip, which requires bonding of partial dislocations, and the average dislocation density increases without developing a cell structure, resulting in age hardening. The number of nucleation sites for the precipitated phases that contribute to this increases, and a state of dispersion strengthening, which is ideal for strength and toughness in which a large number of precipitated phases are finely dispersed, is obtained. Furthermore, as Co increases, the saturation magnetic flux density increases. However, since the effect tends to be saturated at about 30%, the upper limit was set at 30%. Therefore, the range is 10 to 30
%.

MOは、析出相の母体となる元素、すなわち硬化要因元
素で、これはγループを形成するフェライト安定化元素
である。Moを硬化要因元素として含む場合には、CO
の添加によって顕著に硬化性が増加する。しかし、7.
0%をこえてMoを含有させると飽和磁束密度を極端に
低下させる。一方硬度上昇のためには3.0%以上含有
させる必要があり、その範囲を3.0〜7.0%とした
MO is an element that becomes the host of the precipitated phase, that is, a hardening factor element, and is a ferrite stabilizing element that forms a γ loop. When Mo is included as a hardening factor element, CO
By adding , the curability increases significantly. However, 7.
When Mo is contained in an amount exceeding 0%, the saturation magnetic flux density is extremely reduced. On the other hand, in order to increase the hardness, it is necessary to contain 3.0% or more, and the range is set to 3.0 to 7.0%.

TiはMoと同様硬化要因元素であるが、1.5%をこ
えて含有させると飽和磁束密度を大きく低下させるので
、上限を1.5%とした。しかし、0.5%未満では硬
度の上昇が得られず、従ってその範囲を0.5〜1.5
%と限定した。
Ti is a hardening factor like Mo, but if it is contained in an amount exceeding 1.5%, the saturation magnetic flux density will be greatly reduced, so the upper limit was set at 1.5%. However, if it is less than 0.5%, no increase in hardness can be obtained, so the range is limited to 0.5 to 1.5%.
%.

Crを0.5%以上含有させると時効後の硬度が上昇し
、2.5%前後にそのピークが存在するが、一方1.5
%をこえる含有により飽和磁束密度が大きく低下する。
When Cr is contained in an amount of 0.5% or more, the hardness after aging increases, and its peak exists around 2.5%;
If the content exceeds %, the saturation magnetic flux density will decrease significantly.

よって含有量& 0.5〜1.5%と限定した。この0
.5〜1.5%のCr含有が、本鋼種の大きな特徴とな
っている。
Therefore, the content was limited to 0.5 to 1.5%. This 0
.. The Cr content of 5 to 1.5% is a major feature of this steel type.

AA’もやはり硬化要因元素であるが、0.3%以下で
はその効果の増大は顕著でなく、また飽和磁束密度を低
下させる傾向がある。しかし、硬変上昇の為には最低0
.05%以上は必要であり、Al含有量を帆05〜0.
3%とした。
AA' is also a hardening element, but at 0.3% or less, its effect is not significantly increased and tends to lower the saturation magnetic flux density. However, for increasing cirrhosis, at least 0
.. 0.05% or more is necessary, and the Al content should be adjusted to 0.05% to 0.05%.
It was set at 3%.

上記の様な化学成分の合金鋼を、850〜900℃で溶
体化処理を行なった後、機械加工を行ない、最後に47
0〜520℃で時効することにより、強度と靭性を兼ね
備えたマルテンサイト基質中に、各種の金属間化合物が
微細に分散した組織の合金鋼が得られる。
Alloy steel with the above chemical composition is solution-treated at 850-900°C, then machined, and finally finished at 47°C.
By aging at 0 to 520°C, an alloy steel having a structure in which various intermetallic compounds are finely dispersed in a martensitic matrix having both strength and toughness can be obtained.

〔実施例〕〔Example〕

つぎに本発明の実施例を従来の比較鋼と対比して説明す
る。
Next, examples of the present invention will be explained in comparison with conventional comparative steels.

第1表は、本発明鋼と比較鋼の合金組成と各特性値を示
したものである。比較鋼としては、商用18%Niマル
エージ鋼を取り上げた。
Table 1 shows the alloy composition and each characteristic value of the invention steel and comparative steel. A commercial 18% Ni maraging steel was used as a comparison steel.

硬度試験には、ロックウェルC(HRC)スケールを用
い、飽和磁束密度は、直流磁化特性自動記録装置により
50000e、25000ガウスフルスケールにおいて
、全ヒステリシスルーズを描かせ測定し、25000ガ
ウスにおける磁束密度を飽和磁束密度とした。
A Rockwell C (HRC) scale was used for the hardness test, and the saturation magnetic flux density was measured by drawing the total hysteresis loose at 50,000e and 25,000 Gauss full scale using a DC magnetization characteristic automatic recording device, and the magnetic flux density at 25,000 Gauss was measured. It was taken as the saturation magnetic flux density.

これらの試験結果より、本鋼種が比較鋼に対して、硬度
及び飽和磁束密度の両者に優れている。
These test results show that this steel type is superior to the comparative steel in both hardness and saturation magnetic flux density.

〔発明の効果〕〔Effect of the invention〕

本発明鋼は、以上述べてきた様に、強靭な低炭素立方晶
マルテンサイト基質に、金属間化合物を微細に分散させ
ることにより、耐摩耗性を向上させ、さらに高飽和磁束
密度を有する強磁性体である為、高磁場を必要とするプ
ラスチックマグネット成形金型の耐久性を向上する効果
がある。
As described above, the steel of the present invention has improved wear resistance by finely dispersing intermetallic compounds in a tough, low-carbon cubic martensite matrix, and is also ferromagnetic with a high saturation magnetic flux density. Because it is a solid body, it has the effect of improving the durability of plastic magnet molds that require a high magnetic field.

特許出願人 株式会社 日本製鋼所Patent applicant: Japan Steel Works, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 重量%で、Ni 7.0〜11.0%、Co 10.0
〜30.0%、Mo 3.0〜7.0%、Ti O,5
〜1.5%、Cr 0.5〜1.5%、A10.05〜
0.3%、残部Feおよび不可避的不純物よりなること
を特徴とする高硬度高飽和磁束密度合金鋼。
In weight%, Ni 7.0-11.0%, Co 10.0
~30.0%, Mo 3.0~7.0%, TiO,5
~1.5%, Cr 0.5~1.5%, A10.05~
A high hardness, high saturation magnetic flux density alloy steel characterized by comprising 0.3%, the balance Fe and unavoidable impurities.
JP59106549A 1984-05-28 1984-05-28 High hardness alloy steel having high saturation magnetic flux density Pending JPS60255959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59106549A JPS60255959A (en) 1984-05-28 1984-05-28 High hardness alloy steel having high saturation magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59106549A JPS60255959A (en) 1984-05-28 1984-05-28 High hardness alloy steel having high saturation magnetic flux density

Publications (1)

Publication Number Publication Date
JPS60255959A true JPS60255959A (en) 1985-12-17

Family

ID=14436430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59106549A Pending JPS60255959A (en) 1984-05-28 1984-05-28 High hardness alloy steel having high saturation magnetic flux density

Country Status (1)

Country Link
JP (1) JPS60255959A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT391826B (en) * 1987-12-04 1990-12-10 Boehler Gmbh BI-METAL STRIP FOR METAL SAWS
EP0767251A1 (en) * 1995-08-10 1997-04-09 Toyota Jidosha Kabushiki Kaisha Age-hardening steel for die-casting dies

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT391826B (en) * 1987-12-04 1990-12-10 Boehler Gmbh BI-METAL STRIP FOR METAL SAWS
US5015539A (en) * 1987-12-04 1991-05-14 Bohler Ges. M.B.H. Bimetallic strip for metal saws
US5091264A (en) * 1987-12-04 1992-02-25 Bohler Ges. M.B.H. Welded bimetallic sawblade or metal saw band
EP0767251A1 (en) * 1995-08-10 1997-04-09 Toyota Jidosha Kabushiki Kaisha Age-hardening steel for die-casting dies

Similar Documents

Publication Publication Date Title
Pfeifer et al. Soft magnetic Ni-Fe and Co-Fe alloys-some physical and metallurgical aspects
RU2201990C2 (en) Alloy iron-cobalt
CN107974620B (en) A kind of yield strength >=600Mpa high speed rotor of motor non-orientation silicon steel and production method
Major et al. High saturation ternary cobalt-iron basalt alloys
JPS60255959A (en) High hardness alloy steel having high saturation magnetic flux density
JPH0542493B2 (en)
JP2823203B2 (en) Fe-based soft magnetic alloy
JPH04272158A (en) Nonmagnetic stainless steel having low work hardenability
JPH0653892B2 (en) Method for producing high strength non-magnetic stainless steel
US3836406A (en) PERMANENT MAGNETIC Fe-Mn-Cr ALLOY CONTAINING NITROGEN
JPH01159353A (en) Age hardening austenitic tool steel
JP4047502B2 (en) Steel plate for magnetic shield structure and manufacturing method thereof
JPS62136557A (en) High strength nonmagnetic steel having rust resistance
JPS61261463A (en) Work hardening-type nonmagnetic stainless steel
JPS602651A (en) Magnetic alloy
JPS6240344A (en) Fe-co alloy having high magnetic permeability
JPS62230957A (en) Precipitation hardening-type nonmagnetic stainless steel
JPH0356646A (en) High strength nonmagnetic steel
JPS63109114A (en) Manufacture of fe-sn soft-magnetic sheet metal
JP2955438B2 (en) Stainless steel for superconducting material conduit
JPS63203753A (en) Age hardening austenitic tool steel
JPH02141556A (en) Nonmagnetic stainless steel having excellent cold workability
Fe-Si 7.1. 2.3 Basic magnetic properties of Fe-Si, Fe-Al, and Fe-Si-Al alloys
JP3379760B2 (en) Manufacturing method of high strength and high permeability steel
JPH05302149A (en) Age hardening type austenitic tool steel