JP3379760B2 - Manufacturing method of high strength and high permeability steel - Google Patents

Manufacturing method of high strength and high permeability steel

Info

Publication number
JP3379760B2
JP3379760B2 JP09490391A JP9490391A JP3379760B2 JP 3379760 B2 JP3379760 B2 JP 3379760B2 JP 09490391 A JP09490391 A JP 09490391A JP 9490391 A JP9490391 A JP 9490391A JP 3379760 B2 JP3379760 B2 JP 3379760B2
Authority
JP
Japan
Prior art keywords
less
steel
strength
magnetic
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09490391A
Other languages
Japanese (ja)
Other versions
JPH04304316A (en
Inventor
智也 小関
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP09490391A priority Critical patent/JP3379760B2/en
Publication of JPH04304316A publication Critical patent/JPH04304316A/en
Application granted granted Critical
Publication of JP3379760B2 publication Critical patent/JP3379760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、磁気シールド特性に
優れた高強度高透磁率鋼材の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength and high-permeability steel material having excellent magnetic shield characteristics.

【0002】[0002]

【従来の技術】近年、電子機器装置, 超電導を利用した
装置または磁気を利用した医療用機器の著しい進歩や発
展に伴い、性能の高い磁気遮蔽材への要求が高まってい
る。すなわち、磁気の影響を受ける精密電子機器におい
ては外部からの磁気による誤作動を防ぐために、また磁
気を発生する装置においては外部への磁気漏洩を防ぐた
めに、それぞれ磁気を遮蔽することが肝要である。
2. Description of the Related Art In recent years, with the remarkable progress and development of electronic devices, devices using superconductivity or medical devices using magnetism, there is an increasing demand for magnetic shielding materials with high performance. That is, it is important to shield the magnetism in precision electronic devices that are affected by magnetism, in order to prevent malfunction due to magnetism from the outside, and in devices that generate magnetism, in order to prevent magnetic leakage to the outside. .

【0003】この磁気遮蔽に用いられる材料としては、
パーマロイに代表されるNi基合金や工業用純鉄が一般的
である。Ni基合金は、低磁場(0.3〜0.5 G)での透磁率
が著しく高く、効果的な磁気遮蔽が低磁場で可能である
が、合金成分量が多く飽和磁束密度が低下するため高磁
場も含めた遮蔽材とするには厚肉化(重量増)が必要で
あり、非常に高価なものとなる不利がある。一方、工業
用純鉄は、Ni基合金に比べ高磁場での飽和磁束密度が高
く、かつコスト面でも有利なため、工業的に広く使われ
ているが、低磁場での磁気特性はNi基合金に比べて劣
り、完全な磁気遮蔽材とは言い難く、より一層の磁化特
性改善が期待されている。
Materials used for this magnetic shield include:
Ni-based alloys such as permalloy and industrial pure iron are generally used. Ni-based alloys have a significantly high magnetic permeability in low magnetic fields (0.3 to 0.5 G), and effective magnetic shielding is possible in low magnetic fields. However, since the amount of alloy components is large and the saturation magnetic flux density decreases, high magnetic fields are also possible. Including the shielding material requires thickening (increasing weight), which is disadvantageous in that it becomes very expensive. On the other hand, industrial pure iron is widely used industrially because it has a higher saturation magnetic flux density in a high magnetic field and is more cost effective than a Ni-based alloy, but its magnetic properties in a low magnetic field are Ni-based. It is inferior to alloys and cannot be said to be a perfect magnetic shielding material, and further improvement in magnetization characteristics is expected.

【0004】さらにリニアモーターカーや超電導発電な
どの磁気を利用した規模の大きな技術においては、磁気
遮蔽機能のほかに、強度材としての機能をも付加した材
料が安価に供給されれば工業上有益なものとなる。一
方、純鉄と同等以上の磁化特性を有した安価な高強度材
が現在見当たらないところから、この工業用純鉄を用い
て、その磁気特性を改善, 向上させ、さらに高強度化を
はかった鋼材を安価に製造することが必要となる。
Further, in a large-scale technology utilizing magnetism such as a linear motor car and superconducting power generation, it is industrially beneficial if a material having not only a magnetic shielding function but also a function as a strength material is supplied at a low cost. It will be On the other hand, since no inexpensive high-strength material having a magnetization characteristic equal to or higher than that of pure iron can be found at present, this industrial pure iron was used to improve and improve its magnetic properties to further increase its strength. It is necessary to manufacture steel products at low cost.

【0005】純鉄の磁気特性向上には、結晶粒の粗大化
と内部歪みの軽減または除去が効果的であり、特開平2
−66118号公報には、圧延と熱処理の工夫による改
善が示されている。しかし純鉄のために強度は低く、ま
た直流磁化特性は若干改善されるものの実用的に不十分
で、さらなる改善が必要である。
To improve the magnetic properties of pure iron, coarsening of crystal grains and reduction or elimination of internal strain are effective.
Japanese Patent Publication No. 66118 discloses improvements by devising rolling and heat treatment. However, the strength is low because of pure iron, and the direct current magnetization characteristic is slightly improved, but it is not practically sufficient, and further improvement is necessary.

【0006】[0006]

【発明が解決しようとする課題】この発明は、工業用純
鉄の磁気特性を大幅に改善し、さらに強度材としての高
い強度を付加した鋼材を安価に製造する方法について提
案することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to propose a method for manufacturing a steel material which has a significantly improved magnetic property of industrial pure iron and which has a high strength as a strength material at a low cost. To do.

【0007】[0007]

【課題を解決するための手段】この発明は、C:0.02wt
%以下(以下、単に「%」で示す)、Mn:0.08%以下、C
u:0.05〜2.50%、Al:0.5〜7.0%およびN:0.008%以
下を含有し、残部がFeおよび不可避的不純物からなる
素材を、1000〜1300℃の温度域に加熱後、仕上温度800
℃以上で熱間加工を施し、次いで800〜1300℃の温度域
に加熱保持後、冷却速度:1℃/s以下で冷却すること
により、最大透磁率14800以上の鋼材を得ることを特徴
とする高強度高透磁率鋼材の製造方法(第1発明)、こ
の第1発明の製造工程にさらに450〜700℃の温度域に再
加熱保持後、冷却速度:1℃/s以下で冷却する最終熱
処理を施す製造方法(第2発明)、第1発明または第2
発明の鋼素材に、さらにSi:1.0〜3.5wt%(第3発
明)、Ni:0.05〜1.5wt%(第4発明)を含有した製造
方法である。
The present invention provides C: 0.02 wt.
% Or less (hereinafter simply indicated as "%"), Mn: 0.08% or less, C
u: 0.05 to 2.50%, Al: 0.5 to 7.0% and N: 0.008% or less , the balance of which is a steel material consisting of Fe and inevitable impurities. After heating to a temperature range of 1000 to 1300 ° C, a finishing temperature of 800
A steel material having a maximum magnetic permeability of 14800 or more is obtained by performing hot working at ℃ or more, then heating and holding in the temperature range of 800 to 1300 ℃, and then cooling at a cooling rate of 1 ℃ / s or less. Method for producing high-strength and high-permeability steel (first invention), final heat treatment of cooling at a cooling rate of 1 ° C / s or less after reheating and holding in the temperature range of 450 to 700 ° C in the manufacturing process of the first invention Manufacturing method (second invention), first invention or second invention
It is a manufacturing method in which the steel material of the invention further contains Si: 1.0 to 3.5 wt% (third invention) and Ni: 0.05 to 1.5 wt% (fourth invention).

【0008】[0008]

【作用】この発明における出発材の化学成分組成の各限
定理由を説明する。 C:0.02%以下 Cは、磁気特性を劣化させるため極力低減することが必
要であり、経済的な高純化技術と磁気特性との兼ね合い
から、0.02%を上限とした。 Mn:0.08%以下 Mnは、磁気特性に悪影響を与えるので、その含有量は低
いほど好ましく、その含有量の上限は0.08%であるの
で、0.08%以下に限定した。 Cu:0.05〜2.50% Cuは、この発明に従う熱処理により、微細なε−Cuとし
て析出して鋼を強化する成分であり、Mn含有量を低下さ
せ、Al含有量を増加させた鋼にCuを含有させることによ
り、磁気特性を著しく損なうことなく、強度の上昇をは
かることが可能である。従って、この発明では必須の成
分であるが、Cu含有量が0.05%未満ではその効果に乏し
く、また2.50%を超えて含有させると、熱間割れを生じ
る恐れがあるため、0.05〜2.50%の範囲とした。 Al:0.5 〜7.0 % Alは、Cuを含有しかつMnを0.08%以下に低減した鋼に含
有することで、磁気特性の向上に寄与するが、その含有
量が 0.5%未満では効果に乏しく、一方7.0 %を超える
含有量では加工性や磁気特性が劣化するので、0.5 〜7.
0 %の範囲とした。 N:0.008 %以下 Nは、含有量が0.008 %を超えると磁気特性を劣化する
ため、0.008 %以下に抑制する。
The reasons for limiting the chemical composition of the starting material in the present invention will be described. C: 0.02% or less C is required to be reduced as much as possible in order to deteriorate the magnetic characteristics, and 0.02% is set as the upper limit in view of the balance between economical high purification technology and magnetic characteristics. Mn: 0.08% or less Since Mn adversely affects the magnetic properties, the lower the content, the better. The upper limit of the content is 0.08%, so the content is limited to 0.08% or less. Cu: 0.05 to 2.50% Cu is a component that precipitates as fine ε-Cu and strengthens the steel by the heat treatment according to the present invention, and lowers the Mn content and increases the Al content by adding Cu to the steel. By including it, the strength can be increased without significantly impairing the magnetic properties. Therefore, although it is an essential component in the present invention, if the Cu content is less than 0.05%, its effect is poor, and if it is more than 2.50%, hot cracking may occur, so 0.05 to 2.50% The range was set. Al: 0.5-7.0% Al contributes to the improvement of magnetic properties by containing Cu in the steel with Mn reduced to 0.08% or less, but if the content is less than 0.5%, the effect is poor, On the other hand, if the content exceeds 7.0%, the workability and magnetic properties deteriorate, so 0.5 to 7.
The range was 0%. N: 0.008% or less If the content of N exceeds 0.008%, the magnetic properties deteriorate, so the content is suppressed to 0.008% or less.

【0009】さらに、第3〜第5発明においては、上記
成分のほかに、Si:1.0 〜3.5 %およびNi:0.05〜1.50
%のいずれか1種または2種を、それぞれ含有させる。 Si:1.0 〜3.5 % Siは、1.0 %以上の量を含有させると磁気特性を向上さ
せることができるが、3.5 %を超える含有は常法の製鋼
法での溶製が困難であるため、1.0 〜3.5 %とした。な
お、少量の含有では、磁気特性の向上は認められずに、
むしろ逆に磁気特性を低下させることから、積極的に含
有させる場合以外は0.02%以下に抑制することが好まし
い。 Ni:0.05〜1.50% Niは、Cu添加に由来する熱間割れの恐れを磁気特性の著
しい劣化を伴わずに抑えることができ、0.05%未満では
その効果に乏しく、また、1.50%を超えると経済性およ
び磁気特性が損なわれるため、Ni含有量は0.05〜1.50%
の範囲とした。
Further, in the third to fifth inventions, in addition to the above components, Si: 1.0 to 3.5% and Ni: 0.05 to 1.50.
%, Either one kind or two kinds are contained respectively. Si: 1.0 to 3.5% Si can improve the magnetic properties when it is contained in an amount of 1.0% or more, but if it exceeds 3.5%, it is difficult to melt it by a conventional steelmaking method. It was set to ~ 3.5%. It should be noted that, if contained in a small amount, no improvement in magnetic properties was observed,
On the contrary, since it lowers the magnetic properties, it is preferable to suppress the content to 0.02% or less unless positively contained. Ni: 0.05 to 1.50% Ni can suppress the risk of hot cracking due to the addition of Cu without significantly deteriorating the magnetic properties. If it is less than 0.05%, its effect is poor, and if it exceeds 1.50%. Ni content is 0.05-1.50%, because the economic and magnetic properties are impaired.
And the range.

【0010】また、上記成分のほか、不純物として不可
避的に含まれるPおよびSについては、それぞれ0.01%
と0.005 %まで許容できる。Pは、その含有量の増加と
ともに磁気特性を劣化させるが、0.01%までは許容でき
るので、上限を0.01%とした。Sは、P同様、磁気特性
に好ましくない成分であり、その含有量が0.005 %を超
えると磁気特性が劣化するので、0.005 %を上限とし
た。
In addition to the above components, P and S inevitably contained as impurities are 0.01% each.
And acceptable up to 0.005%. Although P deteriorates the magnetic properties as the content thereof increases, 0.01% is acceptable, so the upper limit was made 0.01%. S, like P, is a component that is unfavorable to the magnetic properties, and if its content exceeds 0.005%, the magnetic properties deteriorate, so 0.005% was made the upper limit.

【0011】次に、熱間加工および熱処理条件について
説明する。まず、熱間加工に先立つ鋼素材の加熱温度
は、熱間加工が可能で、かつ結晶粒の粗大化および固溶
成分の均質化をはかるため1000〜1300℃とした。加熱温
度が1000℃に満たないと、固溶成分の均質化や結晶粒の
混粒化が不十分となって磁気特性の劣化をもたらし、一
方、1300℃を超えると鋼素材表面の酸化ロスが著しく、
また加熱費の増大などによって操業上の経済性が損なわ
れる。
Next, the hot working and heat treatment conditions will be described. First, the heating temperature of the steel material prior to hot working was set to 1000 to 1300 ° C in order to enable hot working and to coarsen the crystal grains and homogenize the solid solution components. If the heating temperature is less than 1000 ° C, homogenization of the solid solution components and grain mixing of the crystal grains will be insufficient, resulting in deterioration of magnetic properties, while if it exceeds 1300 ° C, oxidation loss on the surface of the steel material will occur. Remarkably,
Further, the economical efficiency in operation is impaired due to an increase in heating cost.

【0012】次いで熱間加工を施すが、熱間加工は熱間
圧延および熱間鍛造を所望の製品に応じて単独または組
合わせて行う。この熱間加工における仕上げ温度は、加
工歪の導入を防止するため、800 ℃以上とした。すなわ
ち、高透磁率純鉄の製造法は、一般に前項で説明したよ
うに圧延歪の導入, 凍結をはかり、その歪エネルギーを
再加熱処理時の粒成長に利用すべく、圧延仕上げ温度は
極力低くする技術が採用されるが、この発明のようにCu
やAlを多量に含有する素材を低温仕上げすると、再加熱
時の粒成長が抑制され、磁気特性の向上が困難となる。
磁気特性の向上には粗大粒化が望まれ、この粗大粒化の
ための熱間加工条件は従来の純鉄系鋼とこの発明に従う
鋼とでは全く異なってくるわけである。
Next, hot working is performed. The hot working is performed by hot rolling and hot forging individually or in combination depending on a desired product. The finishing temperature in this hot working was set to 800 ° C or higher in order to prevent the introduction of working strain. That is, in the method for producing high-permeability pure iron, the rolling finishing temperature is as low as possible in order to introduce rolling strain and freeze it as described in the previous section, and utilize the strain energy for grain growth during reheating treatment. Is adopted, but as in this invention, Cu
When a material containing a large amount of Al or Al is finished at a low temperature, grain growth during reheating is suppressed, and it becomes difficult to improve magnetic properties.
Coarse graining is desired to improve the magnetic properties, and the hot working conditions for graininess are completely different between the conventional pure iron-based steel and the steel according to the present invention.

【0013】なお、熱間加工に引き続く冷却について
は、特に規定しないが、急冷した場合に冷却歪が導入さ
れ、前述の再加熱時の粒成長, 再結晶が抑制されるた
め、工業上好ましくない。板厚が 100mm程度までなら
ば、放冷(空冷) で十分である。
The cooling subsequent to the hot working is not particularly specified, but cooling strain is introduced in the case of rapid cooling, and grain growth and recrystallization during the above-mentioned reheating are suppressed, which is not industrially preferable. . If the plate thickness is up to about 100 mm, cooling (air cooling) is sufficient.

【0014】引き続く再加熱処理は、結晶粒の整粒化お
よび粗大粒化, さらに圧延歪や冷却歪の完全な除去を目
的になされるものであり、800 〜1300℃に加熱保持後、
1℃/s以下の緩冷却速度で冷却するものである。熱処
理温度が800 ℃未満では圧延歪の除去や結晶粒粗大化が
不十分なため磁気特性は劣化し、また1300℃を超える
と、鋼板の表面性状が劣化する上、経済性が低下するた
め、800 〜1300℃の範囲とした。熱処理時間は、温度や
対象鋼板の厚みによって異なるため特に規定しないが、
1時間以上保持することが好ましい。
The subsequent reheating treatment is intended for grain size control and grain coarsening, and complete removal of rolling strain and cooling strain. After heating and holding at 800 to 1300 ° C.,
The cooling is performed at a slow cooling rate of 1 ° C./s or less. If the heat treatment temperature is lower than 800 ° C, the removal of rolling strain and the coarsening of crystal grains are insufficient, so the magnetic properties deteriorate, and if it exceeds 1300 ° C, the surface properties of the steel sheet deteriorate and the economic efficiency decreases. It was set in the range of 800 to 1300 ° C. The heat treatment time is not specified because it depends on the temperature and the thickness of the target steel sheet, but
It is preferable to hold for 1 hour or more.

【0015】再加熱後の冷却は、鋼材各位置の冷却むら
に伴う歪導入や急冷による内部歪の導入を防ぐため、1
℃/s以下の緩冷却速度とする。冷却終了温度は特に限
定しないが、その後に最終熱処理を行う場合は、その最
終熱処理温度(400〜700 ℃)から室温までの任意の温度
が好ましい。
The cooling after the reheating is carried out in order to prevent the introduction of strain due to uneven cooling at each position of the steel material and the introduction of internal strain due to rapid cooling.
The slow cooling rate is not more than ° C / s. Although the cooling end temperature is not particularly limited, when the final heat treatment is performed thereafter, an arbitrary temperature from the final heat treatment temperature (400 to 700 ° C.) to room temperature is preferable.

【0016】この加熱処理により、CuやAlの固溶と一部
析出により強度は純鉄より高くなり、また粒の粗大化や
圧延歪の解消, 冷却歪の抑制の重畳効果もあり、磁気特
性は向上する。
By this heat treatment, the strength becomes higher than that of pure iron due to solid solution and partial precipitation of Cu and Al, and there is also a superposition effect of grain coarsening, rolling strain elimination, and cooling strain suppression. Will improve.

【0017】さらに第2発明での最終熱処理は、Cu析出
による強度上昇を目的に行うが、450 ℃未満および700
℃を超えるといずれも析出効果が不十分になるため、45
0〜700 ℃の温度範囲とした。保持時間については、温
度や対象鋼材の厚みによって異なるため特に限定しない
が、1時間程度以上保持することを特徴とするが好まし
い。なお、この最終熱処理で強度は明らかに上昇する
が、逆に磁気特性は若干劣化する傾向にあるため、所望
の特性に応じて適宜実施することが好ましい。
Further, the final heat treatment in the second invention is carried out for the purpose of increasing the strength by Cu precipitation, but it is less than 450 ° C. and 700 ° C.
If the temperature exceeds ℃, the precipitation effect will be insufficient in either case.
The temperature range was 0 to 700 ° C. The holding time is not particularly limited because it depends on the temperature and the thickness of the target steel material, but it is preferable that the holding time is about one hour or more. Although the strength is obviously increased by this final heat treatment, on the contrary, the magnetic properties tend to be slightly deteriorated. Therefore, it is preferable to carry out the heat treatment appropriately according to the desired properties.

【0018】この発明は、通常の溶製, 鋳造および圧延
や鍛造により厚鋼板とすることができると共に、熱間加
工の選択によって、薄鋼板, 形鋼, 棒鋼または線材など
にも用いることが可能である。
The present invention can be made into a thick steel plate by ordinary melting, casting and rolling or forging, and can also be used for a thin steel plate, shaped steel, bar steel or wire rod depending on the selection of hot working. Is.

【0019】[0019]

【実施例】表1に示す成分組成の鋼を真空溶解炉法にて
溶製し、スラブを得た。次いで各スラブに、種々の条件
で熱間圧延および熱処理を施し、板厚15〜75mmの鋼板を
製造した。かくして得られた鋼板の板厚方向の中央部か
ら直径6mmの丸棒の試験片を採取し、引張り試験によっ
て強度を評価し、また同様に採取した外径45mm, 内径30
mm, 板厚10mmのリング状試験片にて磁気特性を評価し
た。これらの評価結果を、製造条件と併せて表2に示
す。
[Example] Steel having the composition shown in Table 1 was melted by a vacuum melting furnace method to obtain a slab. Next, each slab was subjected to hot rolling and heat treatment under various conditions to manufacture a steel plate having a plate thickness of 15 to 75 mm. A round bar test piece with a diameter of 6 mm was sampled from the center of the steel plate thus obtained in the plate thickness direction, and the strength was evaluated by a tensile test. Similarly, the sampled outer diameter was 45 mm, inner diameter was 30 mm.
The magnetic characteristics were evaluated with a ring-shaped test piece having a thickness of 10 mm and a plate thickness of 10 mm. The results of these evaluations are shown in Table 2 together with the production conditions.

【0020】 [0020]

【0021】 [0021]

【0022】 [0022]

【0023】 [0023]

【0024】表2から、この発明に従って得られた鋼板
は、工業用純鉄(A鋼)に比べて、強度および磁気特性
ともに優れていることがわかる。
It can be seen from Table 2 that the steel sheet obtained according to the present invention is superior in strength and magnetic properties to industrial pure iron (A steel).

【0025】ここで、表2に示した数例について同表の
結果を整理して図1および図2に示す。まず、図1は、
表1の比較鋼Aと適合鋼Dとの組成のスラブに、種々の
仕上温度で熱間圧延を施した後、再加熱処理して得た鋼
材の最大透磁率(μmax ) および引張強さ(T.S.)と仕上
げ温度との関係を示したもので、鋼DはCuおよびAlを含
有するため、比較鋼Aに比べ高いT.S.を示すことがわか
る。一方、μmax は、比較鋼Aにおいては圧延仕上げ温
度が低い程上昇する傾向にあるのに対し、鋼Dの場合は
800℃以上の圧延仕上げ温度とすることで著しく上昇す
ることがわかる。
The results of the several examples shown in Table 2 are summarized in FIGS. 1 and 2. First of all,
The maximum magnetic permeability (μ max ) and tensile strength of the steel materials obtained by subjecting the slabs having the compositions of the comparative steel A and the compatible steel D in Table 1 to hot rolling at various finishing temperatures and then reheating the slabs The relationship between (TS) and the finishing temperature is shown. It can be seen that Steel D exhibits higher TS than Comparative Steel A because it contains Cu and Al. On the other hand, μ max tends to increase as the rolling finish temperature decreases in Comparative Steel A, whereas in the case of Steel D, μ max increases.
It can be seen that the rolling finish temperature of 800 ° C or higher markedly increases.

【0026】また図2は、約1.5 %のCuを含有し、Al含
有量を種々に変化させたB,C,EおよびH鋼と純鉄
(A鋼)を 950℃で仕上げた後、再加熱処理して得た鋼
板の引張強さ(T.S.)とμmax を示すもので、T.S.は純鉄
に比べCu添加とAl量増量に伴い上昇することがわかる。
一方、μmax は、Al含有量を0.5 %以上にした場合、著
しく上昇することがわかる。
FIG. 2 also shows that B, C, E and H steels containing approximately 1.5% Cu and various Al contents and pure iron (A steel) were finished at 950.degree. It shows the tensile strength (TS) and μ max of the steel sheet obtained by heat treatment, and it can be seen that TS increases with Cu addition and Al content increase compared to pure iron.
On the other hand, it is found that μ max increases remarkably when the Al content is 0.5% or more.

【0027】すなわち、図1および図2より、CuとAlを
含有した成分鋼で明瞭な強度上昇がみられ、磁気特性
は、熱間加工の仕上温度を800 ℃以上とし、かつAlを0.
5 %以上含有させることで顕著に改善することが明らか
である。
That is, as shown in FIGS. 1 and 2, a clear increase in strength was observed in the component steel containing Cu and Al, and the magnetic properties were that the finishing temperature for hot working was 800 ° C. or higher and that Al was 0.
It is clear that the inclusion of 5% or more makes a remarkable improvement.

【0028】[0028]

【発明の効果】この発明によれば、出発材の成分組成と
熱間加工条件およびその後の熱処理条件を限定すること
により、工業用純鉄より高い強度を有し、しかも優れた
磁気特性をも兼備した鋼板を、比較的安価に製造でき、
その工業的価値は大きい。
According to the present invention, by limiting the component composition of the starting material, the hot working conditions and the subsequent heat treatment conditions, the strength is higher than that of the pure iron for industrial use, and the magnetic properties are excellent. The combined steel plate can be manufactured relatively inexpensively,
Its industrial value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】圧延仕上温度と引張強さおよび最大透磁率(μ
max ) との関係を示すグラフである。
FIG. 1 Rolling finishing temperature, tensile strength and maximum magnetic permeability (μ
3 is a graph showing a relationship with ( max ).

【図2】Al含有量と引張強さおよび最大透磁率
(μmax ) との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between Al content, tensile strength, and maximum magnetic permeability (μ max ).

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 C21D 9/46 - 9/48 C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) C21D 8/12 C21D 9/46-9/48 C22C 38/00-38/60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C:0.02wt%以下、Mn:0.08wt%以下、C
u:0.05〜2.50wt%、Al:0.5〜7.0wt%およびN:0.008
wt%以下を含有し、残部がFeおよび不可避的不純物から
なる鋼素材を、1000〜1300℃の温度域に加熱後、仕上温
度800℃以上で熱間加工を施し、次いで800〜1300℃の温
度域に加熱保持後、冷却速度:1℃/s以下で冷却する
ことにより、最大透磁率14800以上の鋼材を得ることを
特徴とする高強度高透磁率鋼材の製造方法。
1. C: 0.02 wt% or less, Mn: 0.08 wt% or less, C
u: 0.05 to 2.50 wt%, Al: 0.5 to 7.0 wt% and N: 0.008
Contains less than wt% , the balance from Fe and unavoidable impurities
The steel material is heated to a temperature range of 1000 to 1300 ° C, hot-worked at a finishing temperature of 800 ° C or higher, then held at a temperature range of 800 to 1300 ° C and held at a cooling rate of 1 ° C / s or less. A method for producing a high-strength, high-permeability steel material, which comprises obtaining a steel material having a maximum magnetic permeability of 14800 or more by cooling.
【請求項2】請求項1に記載の製造工程を経たのち、さ
らに450〜700℃の温度域に加熱保持後、冷却速度:1℃
/s以下で冷却することを特徴とする高強度高透磁率鋼
材の製造方法。
2. After undergoing the manufacturing process according to claim 1, after further heating and holding in a temperature range of 450 to 700 ° C., cooling rate: 1 ° C.
A method for producing a high-strength and high-permeability steel material, which comprises cooling at a rate of not higher than / s.
【請求項3】C:0.02wt%以下、Mn:0.08wt%以下、C
u:0.05〜2.50wt%、Al:0.5〜7.0wt%およびN:0.008w
t%以下を含有し、さらに、Si:1.0〜3.5wt%を含有す
る請求項1または2に記載の製造方法。
3. C: 0.02 wt% or less, Mn: 0.08 wt% or less, C
u: 0.05 to 2.50 wt%, Al: 0.5 to 7.0 wt% and N: 0.008w
The manufacturing method according to claim 1 or 2, containing t% or less, and further containing Si: 1.0 to 3.5 wt%.
【請求項4】C:0.02wt%以下、Mn:0.08wt%以下、C
u:0.05〜2.50wt%、Al:0.5〜7.0wt%およびN:0.008w
t%以下を含有し、さらに、Ni:0.05〜1.5wt%を含有す
る請求項1または2に記載の製造方法。
4. C: 0.02 wt% or less, Mn: 0.08 wt% or less, C
u: 0.05 to 2.50 wt%, Al: 0.5 to 7.0 wt% and N: 0.008w
The manufacturing method according to claim 1 or 2, which contains t% or less and further contains Ni: 0.05 to 1.5 wt%.
JP09490391A 1991-04-02 1991-04-02 Manufacturing method of high strength and high permeability steel Expired - Fee Related JP3379760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09490391A JP3379760B2 (en) 1991-04-02 1991-04-02 Manufacturing method of high strength and high permeability steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09490391A JP3379760B2 (en) 1991-04-02 1991-04-02 Manufacturing method of high strength and high permeability steel

Publications (2)

Publication Number Publication Date
JPH04304316A JPH04304316A (en) 1992-10-27
JP3379760B2 true JP3379760B2 (en) 2003-02-24

Family

ID=14122986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09490391A Expired - Fee Related JP3379760B2 (en) 1991-04-02 1991-04-02 Manufacturing method of high strength and high permeability steel

Country Status (1)

Country Link
JP (1) JP3379760B2 (en)

Also Published As

Publication number Publication date
JPH04304316A (en) 1992-10-27

Similar Documents

Publication Publication Date Title
US3634072A (en) Magnetic alloy
JPH11264058A (en) Iron-cobalt alloy
KR920004678B1 (en) METHOD FOR MANUFACTURING Ni-Fe ALLOY SHEET HAVING EXCELLENT DC MAGNETIC PROPERTY AND EXCELLENT AC MAGNETIC PROPERTY
JP5416452B2 (en) Soft magnetic steel materials, soft magnetic steel parts, and manufacturing methods thereof
JPS62270721A (en) Production of high-mn austenitic stainless steel for cryogenic service
JP3614869B2 (en) High strength non-magnetic low thermal expansion alloy
JPS60159155A (en) Case hardened steel for warm forging having excellent resistance to formation of coarse grains
JP2909089B2 (en) Maraging steel and manufacturing method thereof
JPH0320408A (en) Production of high tensile steel stock excellent in toughness at low temperature
JPS5924178B2 (en) Square hysteresis magnetic alloy and its manufacturing method
JP3379760B2 (en) Manufacturing method of high strength and high permeability steel
JPH0121845B2 (en)
CN112662932B (en) TWIP steel and preparation method thereof
JP2564994B2 (en) Soft magnetic steel material excellent in direct current magnetization characteristics and corrosion resistance and method for producing the same
JP2715033B2 (en) Non-magnetic PC steel wire and method of manufacturing the same
JPS63259022A (en) Manufacture of high-mn nonmagnetic steel excellent in stability of magnetic permeability
JPS5924177B2 (en) Square hysteresis magnetic alloy
JPH0790505A (en) Soft magnetic steel material and its production
JPH07107187B2 (en) High Mn non-magnetic steel with low susceptibility to stress corrosion cracking
JPH02145723A (en) Manufacture of thick steel material having excellent direct current magnetization characteristics
JP4103513B2 (en) Extremely low carbon steel wire rod with excellent cold workability and magnetic properties
JPH0797624A (en) Production of steel for machine structural use having high vibration damping capacity
KR20230093839A (en) FeCo ALLOY HAVING EXCELLENT STRENGTH AND METHOD MANUFACTURING FOR THE SAME
JP3685282B2 (en) Soft magnetic stainless steel with excellent maximum permeability
JPH0499819A (en) Production of mild magnetic steel products

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071213

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees