JPS60254306A - Reactive electric energy control device - Google Patents

Reactive electric energy control device

Info

Publication number
JPS60254306A
JPS60254306A JP59111873A JP11187384A JPS60254306A JP S60254306 A JPS60254306 A JP S60254306A JP 59111873 A JP59111873 A JP 59111873A JP 11187384 A JP11187384 A JP 11187384A JP S60254306 A JPS60254306 A JP S60254306A
Authority
JP
Japan
Prior art keywords
reactive power
converter
input
current
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59111873A
Other languages
Japanese (ja)
Inventor
Masanao Kikko
橘高 正直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKEMOTO DENKI KEIKI KK
Original Assignee
TAKEMOTO DENKI KEIKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKEMOTO DENKI KEIKI KK filed Critical TAKEMOTO DENKI KEIKI KK
Priority to JP59111873A priority Critical patent/JPS60254306A/en
Publication of JPS60254306A publication Critical patent/JPS60254306A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/70Regulating power factor; Regulating reactive current or power

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To expand equipment without using a wide area for the euipment and to reduce the cost of eqiupment or the like by inputting a voltage common to plural (1-M) circuits to a control device including only one reactive power converter for the plural circuits and automatically switching and inputting only current from respective circuits to control the ON/OFF of a capacitor on the basis of the reactive electric energy of these circuits. CONSTITUTION:A load current is converted into a fine current by a current transmission device 3 and the fine current is inputted to a current input interface 9. The inputted load currents of respective circuits are switched by an input switching part 10 and inputted to the reactive power converter 12 common to respective circuits. The circuit voltage is set up to the one common to plural (1-M) circuits in a substation room 1 and a balancing circuit and an unbalancing circuit are inputted to the reactive power converter 12 by two and three wires respectively through a voltage input interface 11 to measure reactive power in each circuit and to input a DC output proportional to the reactive power converted by said converter to an A/D converter 6. The analog input inputted to the converter 6 is converted into a digital signal, which is sent to a CPU8 and stored as reactive power.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 発電所、変電所並びに工場及びビルの変電室等における
、電力系統ライン又は電力回線の無効電力量を制御する
事に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial application field This invention relates to controlling the amount of reactive power of power system lines or power circuits in power plants, substations, transformer rooms of factories, buildings, etc.

(ロ)従来技術の説明 従来から電力を供給する場合、電線路の送電る電気料金
の減額等の為、無効電力の改善が行われている。例えば
指示計器の指示の状態を見ながら、手動によるコンデン
サの投入又は遮断、メータリレー並びに設定器を用いて
自動的に投入又は遮断制御が行われているが、無効電力
を測定するにはいずれの場合も1対1の変換器が必要で
あり、測定部と制御部が個別になる為、組立工数、材料
費等単価も高価なものになる。
(B) Description of the Prior Art Conventionally, when supplying electric power, improvements have been made in terms of reactive power in order to reduce the cost of electricity transmitted through electric lines. For example, capacitors are manually turned on or off while checking the status of an indicator, or automatically turned on or off using a meter relay and setting device. In this case, a one-to-one converter is required, and since the measurement section and the control section are separate, the unit cost such as assembly man-hours and material costs becomes expensive.

従って回線が増加すれば必然的に設備としても大形にな
り、設備費、保守点検、管理面等費用の嵩むのは明らか
である。近年、産業の発達はめざましく回線に付加され
る機器類が多種多様になって来ている。無効電力の変動
によって影響をうける機器類の効率、寿命等の低下を考
えた時適正な無効電力に制御して負荷の電圧変動を安定
させる事が重要である。従来無効電力の制御機器として
用いられているメータリレー及び設定器等は、最大値又
は最小値において、コデンサの投入又は遮断制御を繰返
す為、制御動作が特定のコンデンサ及び遮断器に片寄り
勝ちになり耐用寿命に悪い影響を与え、補修費用が高価
なものになる等の欠点があった。
Therefore, as the number of lines increases, the equipment will inevitably become larger, and it is clear that costs for equipment, maintenance, inspection, management, etc. will increase. In recent years, industrial development has been remarkable, and the types of equipment added to lines have become more diverse. Considering the reduction in efficiency, lifespan, etc. of equipment that is affected by fluctuations in reactive power, it is important to control reactive power to an appropriate level and stabilize load voltage fluctuations. Meter relays and setting devices, which are conventionally used as reactive power control devices, repeatedly turn on or cut off the capacitor at the maximum or minimum value, so the control operation tends to be biased toward a specific capacitor or circuit breaker. This has disadvantages such as having a negative impact on the service life and increasing repair costs.

(ハ)発明の目的 本発明は、簡易にして小形、低コスト、設備費の引下げ
、精度の向−L及び保守点検、管理面の合理化、並びに
機器類の耐用寿命年数の向上。
(c) Purpose of the Invention The present invention is simple, compact, low cost, reduces equipment costs, improves accuracy, streamlines maintenance and inspection, and improves the service life of equipment.

信頼度の向」二等を図る為、複数(1〜M)゛の回線に
対して1個の無効電力変換器を内蔵した制御装置に、各
回線共通の電圧を入力しておき、各回線の電流だけを自
動的に切替入力して回線の無効電力量によってコンデン
サを投入又は遮断制御する事を目的としている。
In order to improve reliability, a common voltage for each line is input to a control device that has a built-in reactive power converter for multiple (1 to M) lines. The purpose is to automatically switch and input only the current of , and control the capacitor to be turned on or off depending on the amount of reactive power of the line.

(ニ)発明の構成 電力系統1回線に伺き1個の電流伝送装置 ′(平衡回
路用と不平衡回路用の2種類がある)を取付け、該電流
伝送装置と電流入力インターフェイスを、(平衡回路用
は2芯、不平衡回路用は4芯のシールド線)接続する。
(d) Configuration of the Invention One current transmission device (there are two types, one for balanced circuit and one for unbalanced circuit) is attached to one line of the power system, and the current transmission device and the current input interface are connected to one line of the power system (balanced (2-core shielded wire for circuits, 4-core shielded wire for unbalanced circuits).

電流入力インターフェースに入力されている複数(1〜
M)回線の負荷電流を入力切換部で自動的に選択して無
効電力変換器に人力する。回路電圧は複数(1〜M)の
回線共通の電圧とし、平衡回路は2本、不平衡回路の場
合は3本の電線で電圧インターフェイスを介して無効電
力変換器に入力する。該変換器の出力(電圧又は電流)
は、A/D変換器に入力し該変換器によってディジタル
信号に変換してCPUに入力し、無効電力として記憶す
る無効電力測定要素と、記憶、演算。
Multiple inputs to the current input interface (1 to 1)
M) Automatically select the load current of the line using the input switching unit and input it manually to the reactive power converter. The circuit voltage is a voltage common to a plurality of lines (1 to M), and is input to the reactive power converter via a voltage interface using two wires for a balanced circuit and three wires for an unbalanced circuit. Output of the converter (voltage or current)
is a reactive power measurement element that is input to an A/D converter, converted into a digital signal by the converter, input to the CPU, and stored as reactive power, and storage and calculation.

選択、制御1表示及び印字信号を其れぞれの機能部に対
して指令するCPUに、必要事項を入力する表示器テン
ギ一部、該信号を介してCPUに入力するテンキーイン
ターフェイス、負荷の状態及び動作状況を印字記録する
プリンタ部。
Selection, control 1 Display and print signals are sent to each functional unit to the CPU, a part of the display device that inputs necessary information, a numeric keypad interface that inputs the signals to the CPU, and the load status. and a printer unit that prints and records the operating status.

CPUから得られる印字信号0表示信号を介するプリン
タ表示器インターフェイス、コンデンザ投入又は遮断の
出力信号を介する出力インターフェイス、該信号によっ
て作動する接点変換部等の要素を組合せして接続されて
いる。
It is connected by combining elements such as a printer display interface via a print signal 0 display signal obtained from the CPU, an output interface via an output signal to turn on or cut off the capacitor, and a contact converter operated by the signal.

CPUは、予め設定されている設定値及び記憶内容から
時間と共に変化する負荷の状態と制御条件の比較演算を
行い、設定値及び制御条件を満足した時、出力インター
フェイスを介して各回線毎にコンデンサ投入無効電力量
信号及びコンデンサ投入無効電力量信号が出力される。
The CPU performs calculations to compare the load status and control conditions that change over time from preset settings and stored contents, and when the settings and control conditions are satisfied, connects the capacitor to each line via the output interface. An input reactive energy amount signal and a capacitor input reactive energy amount signal are output.

該信号によって接点変換部の接点を作動させ、各回線毎
に設置されているコンデンサ投入装置を作動させて制御
条件に合致したコンデンサの容量分だけ投入又は遮断さ
せる。コンデンサが投入された場合、コンデンサの投入
状態を知らせる表示ランプが点灯し現在のコンデンサの
投入容量を知る事が出来る。又制御状態の内容はCPU
からの信号によって決められた時間に自動的にプリンタ
ーが作動し記録紙に印字記録させると共に各回線毎の無
効電力の平均値をデジタル表示器に表示させる様に構成
されたものである。
In response to this signal, the contacts of the contact converter are operated, and the capacitor input device installed for each line is activated to close or disconnect only the capacity of the capacitor that meets the control conditions. When a capacitor is inserted, an indicator lamp indicating the capacitor's charging status lights up, allowing you to know the current capacitor's charging capacity. Also, the contents of the control state are determined by the CPU.
The printer is configured to automatically operate at a predetermined time based on a signal from the printer to print and record on recording paper, and to display the average value of reactive power for each line on a digital display.

(ホ)実施例 本発明を図面に基づいて説明すれば、第1図は、本発明
内部の構成ブロック図及びコンデンサ投入装置内部の概
略図並びに電力系統回線との概略接続図である。第2図
は本発明の正面パネル部でコンデンサの投入状況を示す
表示ランプと設定事項等を示す表示ランプと無効電力を
表示するデジタル表示器と制御条件の内容を印字記録さ
せるプリンタを取付けている。第3図はコンデンサの投
入及び遮断状況を示す一実施例のグラフ図形である。
(E) Embodiment The present invention will be described based on the drawings. FIG. 1 is a block diagram of the internal configuration of the present invention, a schematic diagram of the interior of the capacitor charging device, and a schematic connection diagram with the power system line. Figure 2 shows the front panel of the present invention, with an indicator lamp showing the capacitor charging status, an indicator lamp showing settings, etc., a digital indicator showing reactive power, and a printer for printing and recording the contents of control conditions. . FIG. 3 is a graph diagram of one embodiment showing the turning on and turning off of a capacitor.

全変電室(1)から工場に電力を供給して稼動している
時、作業の内容によって回線の無効電力が遅れ又は進み
と変化した場合、経済的に効率路用の2種類)によって
負荷電流を微少電流に変換して電流入力インターフェイ
ス(9)に(平衡回路は2本不平衡回路は4芯のシール
ド線)入力する。入力されている各回線の負荷電流は、
入力切替部00によって切替られて各回線共通の無効電
力変換器(6)に入力する。回路電圧は変電室(1)の
複数(1〜M)の回線共通の電圧とし、平衡回路は2本
、不平衡回路は3本の電線で電圧入力インターフェイス
0])を介して無効電力変換器(2)に入力して各回線
毎の無効電力を測定し、該変換器によって変換した無効
電力に比例し、た直流出力(電圧又は電流のアナログ量
)をA/D変換器(6)に入力する。該変換器に入力さ
れたアナログ入力をデジタル信号に変換してCPU(8
)に送り無効電力として記憶させる。
When the entire substation room (1) is supplying power to the factory, if the reactive power of the line changes to lag or advance depending on the content of the work, the load current will be reduced depending on the economical efficiency (two types). is converted into a minute current and input to the current input interface (9) (two shielded wires for the balanced circuit and four shielded wires for the unbalanced circuit). The load current of each input line is
It is switched by the input switching unit 00 and input to the reactive power converter (6) common to each line. The circuit voltage is the common voltage for multiple lines (1 to M) in the substation room (1), and is connected to the reactive power converter via the voltage input interface 0) using two wires for the balanced circuit and three wires for the unbalanced circuit. (2) to measure the reactive power for each line, and output the DC output (analog amount of voltage or current) proportional to the reactive power converted by the converter to the A/D converter (6). input. The analog input input to the converter is converted into a digital signal and sent to the CPU (8
) and store it as sent reactive power.

次に制御条件の設定方法であるが、各回線の設備容量に
よって異る任意の無効電力固有定格に対応する最大定格
値及び回線当りのコンデンサの数を、表示器テンキ一部
OGのテンキーQ])。
Next, how to set the control conditions is to enter the maximum rating value corresponding to the specific reactive power rating, which varies depending on the installed capacity of each line, and the number of capacitors per line. ).

ファンクションキー(イ)を操作してテンキーインター
フェイスα(やを介してCPU (8)に入力する。
Operate the function key (a) and input to the CPU (8) via the numeric keypad interface α (ya).

同様にしてテンキーQυ、ファンクションキー(イ)を
操作して、各回線の遅れ側について、演算開始無効電力
値、演算リセット無効電力値、投入無効電力量それぞれ
の値をコンデンサ投入条件として設定し、一方進み側に
ついても演算開始無効電力値、演算リセット無効電力値
、遮断無効電力量それぞれの値をコンデンサ遮断条件と
して設定する。制御情報データの印字記録方法例えば日
報1月報、印字記録のインターバル。
In the same way, operate the numeric keypad Qυ and function key (a) to set the values of the calculation start reactive power value, calculation reset reactive power value, and input reactive power amount as the capacitor input conditions for the delay side of each line. On the other hand, for the advance side as well, the respective values of the calculation start reactive power value, calculation reset reactive power value, and cutoff reactive power amount are set as capacitor cutoff conditions. Printing and recording method of control information data, for example, daily report, monthly report, print recording interval.

年月日時分等も任意に設定しておき必要とする時に印字
記録させる様に設定すればよい。
The year, month, date, hour, and minute can also be set arbitrarily and the settings can be made to print and record when necessary.

制御動作中において各回線の入力切替は人力切替部0I
によって自動的に切替され、切替後直ちに無効電力の測
定を開始して決められた測定時間間隔で数回の測定を行
い、この内最大値と最小値を切落した残りの測定回数デ
ータの平均値を制御データとして採用すると共に、該平
均値を各回線の無効電力としてデジタル表示器に表示す
る。
During control operation, input switching for each line is performed by manual switching section 0I.
After switching automatically, reactive power measurement is started immediately after switching, several measurements are taken at a determined measurement time interval, and the average of the remaining measurement data after cutting off the maximum and minimum values. The value is adopted as control data, and the average value is displayed on a digital display as the reactive power of each line.

印字動作及び印字の内容について説明。印字記録データ
は、全て各回線毎にまとめてデータか印字記録される様
になっており、定刻印字として任意に設定された、制御
時間間隔当りのコンデンサ毎の投入回数(コンデンサ毎
のON、OFFの回数)、各コンデンサの投入時間(コ
ンデンサ毎のONとなっている時間)、遅れ側及び進み
側の無効電力量。日報印字として1日当りのコンデンサ
毎の投入回数と投入時間及び遅れ側、進み側の無効電力
量1月報印字として、日報印字の後に年月日を印字し続
いて各設定項目の設定値(無効電力最大定格値、各回線
当りのコンデンサの数、遅れ側演算開始無効電力値。
Explanation of printing operation and printing contents. The print record data is all data or print recorded collectively for each line, and the number of times each capacitor is turned on (ON/OFF for each capacitor) per control time interval is arbitrarily set as a periodic print. (number of times), turn-on time of each capacitor (time each capacitor is ON), amount of reactive power on the lagging side and the leading side. The daily report prints out the number of inputs per capacitor, the input time, and the amount of reactive power on the lagging side and the leading side.The monthly report prints out the year, month, and day after the daily report, and then the setting values for each setting item (reactive power Maximum rated value, number of capacitors per line, and starting reactive power value on the delayed side.

遅れ側演算すセット無効電力値、コンデンサ投入無効電
力量、進み側演算開始無効電力値、進み側リセット無効
電力値、コンデンサ遮断無効電力量、インターバル時間
)を印字記録後、各回線毎にまとめて、1ケ月当りのコ
ンデンサ毎の投入回数、コンデンサ毎の投入時間、並び
に遅れ側、進み側の無効電力量を印字する様になってい
る。
After printing and recording the delayed side calculation set reactive power value, capacitor input reactive power amount, leading side calculation start reactive power value, leading side reset reactive power value, capacitor cutoff reactive power amount, and interval time), summarize them for each line. , the number of times each capacitor is turned on per month, the time that each capacitor is turned on, and the amount of reactive power on the lagging side and on the leading side are printed.

続いて制御動作方法について説明。Next, the control operation method will be explained.

各回線に接続されるコンデンサは、1〜N個の同−容i
tのコンデンサを用いてセットする。
The capacitors connected to each line are 1 to N with the same capacitance i.
Set using a capacitor of t.

投入及び遮断動作は、常に一定の動作順番(’ C,”
C,=C,→Cn )でありコンデンサ毎の動作回数が
同じ回数になる様に設定して記憶させておく。
Closing and shutting operations are always performed in a fixed order of operation ('C,''
C,=C,→Cn), and the number of operations for each capacitor is set and stored so that it becomes the same number of times.

コンデンサが投入される条件は、任意の回線において遅
れ側の測定無効電力量が投入無効電力量の設定値以上に
なった時、CPU (8)から投入信号が出力されて出
力インターフェイス(5)を介して接点変換部(4)の
該回線の投入用1a接点をONL、測定無効電力が演算
開始無効電力設定値以上となった時、投入無効電力量の
演算を開始する。該演算は、投入順番にあるコンデンサ
が投入された後、次の投入順番のコンデンサに対して演
算を開始する方法で順次投入する方式であるが、演算の
途中において一度でも測定無効電力が演算リセット無効
電力設定値以下となるとリセットされる。一方コンデン
サの遮断の条件は、進み測測定無効電力量が、遮断無効
電力量の設定値以上になった時、CPU (8)から遮
断信号が出力されて出力インターフェイス(5)を介し
て接点変換1(4)の該回線の投入用1a接点□ をO
FF L、測定無効電力が進み側で演算開始無効電力設
定値以上となった時、遮断無効電力量の演算を開始する
。該演算は、遮断順番にあるコンデンサが遮断された後
、次の遮断順番のコンデンサに対して演算開始する方法
で順次遮断する方式であるが、演算途中において一度で
も測定無効電力が、演算リセット無効電力設定値以下(
遅れ側に近付く)となるとリセットされる。
The condition for turning on the capacitor is that when the measured reactive energy on the lagging side of any line exceeds the input reactive energy setting value, a closing signal is output from the CPU (8) and the output interface (5) is turned on. When the contact converter (4) turns on the closing contact 1a of the line via the contact converter (4), and the measured reactive power exceeds the calculation start reactive power setting value, the calculation of the input reactive power amount is started. In this calculation, after a capacitor is turned on, calculation is started for the next capacitor in the turn-on order. However, if the measured reactive power is reset even once during the calculation. It is reset when the reactive power falls below the set value. On the other hand, the condition for shutting off the capacitor is that when the advanced measured reactive power amount exceeds the set value of the shutoff reactive power amount, a shutoff signal is output from the CPU (8) and the contact is converted via the output interface (5). Turn 1a contact □ for closing the line in 1(4) to O.
FF L, when the measured reactive power exceeds the calculation start reactive power setting value on the advance side, the calculation of the shutoff reactive power amount is started. This calculation is a method in which the capacitor in the cut-off order is cut off and then the calculation is started for the capacitor in the next cut-off order.However, if the measured reactive power even once during the calculation, the calculation reset is Below the power setting value (
(approaching the lag side), it is reset.

一例として回線当り3相3線式50KVAのコンデンサ
3個を用いて設定値を仮に次の様な値化設定した場合。
As an example, if three three-phase, three-wire, 50KVA capacitors are used per line, and the setting values are set as follows.

(尚無効電力量の設定は、設備容量1作業状態等、総合
的に判断して一番経済的な効率の良い値を選び設定すれ
ば良い。)・−回線当りのコンデンサの数 −3 ・無効電力最大定格値 =200 KVar・遅れ側演
算開始無効電力値= 30 KVar・進み側演算開始
無効電力値−30KVar・遅れ側演算す七ット無効電
力値−10KVar・進み側演算リセット無効電力値−
OKVar・遅れ側投入無効電力量 −10KVarh
・進み側遮断無効電力量 −10KVarhコンデンサ
の投入又は遮断の制御動作の状態は第3図に示す様なグ
ラフ図形となる。
(When setting the amount of reactive power, select and set the most economical and efficient value based on comprehensive judgment, such as equipment capacity 1 working condition.) - Number of capacitors per line - 3 Maximum rated value of reactive power = 200 KVar・Lagging side calculation start reactive power value= 30 KVar・Advanced side calculation start reactive power value - 30KVar・Lagging side calculation seven bit reactive power value −10KVar・Advanced side calculation reset reactive power value −
OKVar/lag side input reactive power amount -10KVarh
・Advancing side cutoff reactive power amount -10KVarh The state of the control operation for turning on or cutting off the capacitor is shown in a graph as shown in FIG.

設定をする場合、ファンクションキー(22)を操作す
れば、設定項目の所定の位置の表示ランy(2o)が点
灯する該設定値をテンキー(21)でCPU (8)に
入力して記憶させて行く。この場合、デジタル表示器(
18)に入力設定の状況が表示されていくので確認しな
がら設定値を入力ずれを間違いは生じない。
When making settings, operate the function key (22) and the display run y (2o) at the predetermined position of the setting item will light up. Enter the setting value into the CPU (8) using the numeric keypad (21) and store it. Go. In this case, the digital display (
18) Since the status of the input settings is displayed, you can check it while inputting the setting values to avoid mistakes.

設定値に対して、時間と共に変化する負荷の電力を演算
して行き、無効電力量力月OKVarh(第3図の斜線
部分)になった時、コンデンサを投入又は遮断する様に
している。即ち制御動作スタート(0点)させてから時
間が経過して0点において無効電力量が30KVarを
超えた時、コンデンサC1に対して投入演算開始の指令
がCPU (8)から出され演算を開始する、0点にお
いて無効電力量が10 KVarに達した為、CIのコ
ンデンサが投入される。コンデンサの投入によって無効
電力が遅れ側から進み側に変り、0点において無効電力
が30KMarを超えた為、コンデンサC1に対し遮断
演算開始の指令がCPU(8)から出され演算を開始す
る[F]点において無効電力量が10 KVarに達し
た為、C1のコンデンサが遮断される。次の演算指令は
コンデンサC,に対して行われC3の動作が終ればC3
に対して演算指令が出される ([F]及び0点)。
The power of the load, which changes over time, is calculated with respect to the set value, and when the reactive power amount reaches OKVarh (the shaded area in FIG. 3), the capacitor is turned on or off. That is, when time has elapsed since the control operation started (0 point) and the amount of reactive power exceeds 30 KVar at the 0 point, a command to start the input calculation is issued to the capacitor C1 from the CPU (8) and the calculation starts. At point 0, the amount of reactive power reached 10 KVar, so the CI capacitor was turned on. By turning on the capacitor, the reactive power changes from the lagging side to the leading side, and since the reactive power exceeds 30 KMar at the 0 point, the CPU (8) issues a command to start the cutoff calculation to the capacitor C1, and starts the calculation [F ] Since the amount of reactive power reaches 10 KVar at the point, the capacitor C1 is cut off. The next calculation command is given to capacitor C, and when the operation of C3 is completed, C3
A calculation command is issued for ([F] and 0 point).

コンデンサ3個とも投入(0点)された場合は ′演算
はしない。
If all three capacitors are connected (0 point), '' is not calculated.

(へ)発明の効果 本発明は以上説明した様に、1個の無効電力で多回線の
無効電力を制御する事が出来ると共に多(の設備面積を
必要とせず増設が可能であり、設備費、制御装置等低価
格で供給出来る為、非常に経済的であり、コンデンサの
動作回数が同じ回数になる様にプログラムされており、
遮断器、コンデンサ等、関連する制御機器の寿命が均一
化されて耐久性を高めると共に、コンデンサの投入回数
及び投入時間の記録内容から、遮断器及びコンデンサの
耐用寿命が事前に把握出来る為、事故防止及び保守点検
等合理的に運営出来る。一方遅れ側又は進み側の無効電
力量の記録内容から仕事量又は仕事の内容等が明確にさ
れ、作業改善及び管理面において合理化を図る事が出来
る。又コンデンサの投入及び遮断動作を無効電力量で制
御する事によって、より効率的、効果的な制御が出来る
為、電気料金の低減等その効果は大である。
(f) Effects of the Invention As explained above, the present invention is capable of controlling the reactive power of multiple lines with one reactive power, and can be expanded without requiring a large equipment area, reducing equipment costs. It is extremely economical as it can be supplied at a low cost, such as control equipment, etc., and is programmed so that the capacitor operates the same number of times.
The lifespan of related control equipment such as circuit breakers and capacitors is equalized, increasing durability, and the service life of circuit breakers and capacitors can be ascertained in advance by recording the number of times the capacitors are turned on and the time they are turned on, thereby preventing accidents. Prevention, maintenance and inspection can be carried out rationally. On the other hand, the amount of work or the content of the work can be clarified from the recorded content of the reactive power amount on the lagging side or the leading side, and it is possible to improve work efficiency and streamline management. Furthermore, by controlling the capacitor's closing and shutting operations using the amount of reactive power, more efficient and effective control can be achieved, resulting in significant effects such as reduction in electricity charges.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る一実施例を示す概略接続図。第
2図は、当該装置の正面パネル部。 第3図は、一実施例におけるコンデンサの投入及び遮断
状態を示したグラフ図形である。 1・・・変電室 2・・・コンデンサ投入装置3・・・
電流伝送装置 4・・・接点変換部5・・・出力インタ
ーフェイス 6・・・A/D変換器 7・・・電圧入力端子8・・・
CPU 9・・・電流人力4インターフエイス 10・
・・入力切換部 11・・・電圧入力インターフェイス 12・・・無効電力変換器 13・・・プリンタ部14
・・・プリンタ表示器インターフェイス15・・・表示
器テンキ一部 16・・・テンキーインターフェイス 17・・・コンデンサ 18・・・デジタル表示器19
・・・印字記録紙 20 、20 ’・・・表示ランプ
21・・・テンキー 22・・・ファンクションキーa
・・・コンデンサ投入装置の概略図
FIG. 1 is a schematic connection diagram showing an embodiment according to the present invention. Figure 2 shows the front panel of the device. FIG. 3 is a graph showing the on and off states of the capacitor in one embodiment. 1... Substation room 2... Capacitor charging device 3...
Current transmission device 4... Contact converter 5... Output interface 6... A/D converter 7... Voltage input terminal 8...
CPU 9...Current power 4 Interface 10.
...Input switching section 11...Voltage input interface 12...Reactive power converter 13...Printer section 14
...Printer display interface 15...Display numeric keypad part 16...Numeric keypad interface 17...Capacitor 18...Digital display 19
...Printed recording paper 20, 20'...Display lamp 21...Numeric keypad 22...Function key a
...Schematic diagram of capacitor charging device

Claims (1)

【特許請求の範囲】[Claims] 工場等、複数の電力系統回線の無効電力を制御して良質
な電力を供給する為、任意の無効電力量に達した時、コ
ンデンサ毎の動作回数が同じ回数になる採決められた動
作順序に従って投入又は遮断する装置において、電圧入
力を受けイス、該インターフェイスに入力されている回
線の電流を選択切替する入力切替部、各回線の無効電力
を直流出力(電圧又は電流)に変換する1個の無効電力
変換器、該変換器の直流出力をデジタル信号に変換する
A/D変換器から成る無効電力測定要素と、記憶、演算
1選択、制御1表示、及び印字指令を受けもっCPUに
、必要事項を入力する表示器テンキ一部 該信号を介し
てCPUに入力するテンキーインターフェイス、負荷の
状態及び動作状況を印字記録するプリンタ部、 CPU
から得られる印字記号、表示信号を介するプリンタ表示
器インターフェイス、コンデンサの投入又は遮断の出力
信号を介する出力インターフェイス、該信号によって作
路と構成部品を一括して収納した無効電力量制御装置
In order to supply high-quality power by controlling the reactive power of multiple power system lines in factories, etc., when a given amount of reactive power is reached, each capacitor operates according to a predetermined operating order that causes the same number of operations. A device that turns on or off includes a chair that receives voltage input, an input switching unit that selectively switches the current of the line input to the interface, and one unit that converts the reactive power of each line to DC output (voltage or current). A reactive power measurement element consisting of a reactive power converter, an A/D converter that converts the DC output of the converter into a digital signal, and a CPU that receives storage, calculation 1 selection, control 1 display, and printing commands. A part of the numeric keypad for inputting information, a numeric keypad interface for inputting the signals to the CPU, a printer section for printing and recording the load status and operating status, and the CPU
Printer display interface via printed symbols obtained from display signals, output interface via output signals to turn on or cut off capacitors, and reactive energy control device in which the circuit and components are collectively housed according to the signals.
JP59111873A 1984-05-31 1984-05-31 Reactive electric energy control device Pending JPS60254306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59111873A JPS60254306A (en) 1984-05-31 1984-05-31 Reactive electric energy control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59111873A JPS60254306A (en) 1984-05-31 1984-05-31 Reactive electric energy control device

Publications (1)

Publication Number Publication Date
JPS60254306A true JPS60254306A (en) 1985-12-16

Family

ID=14572295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59111873A Pending JPS60254306A (en) 1984-05-31 1984-05-31 Reactive electric energy control device

Country Status (1)

Country Link
JP (1) JPS60254306A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121758A (en) * 1999-06-23 2000-09-19 Daq Electronics, Inc. Adaptive synchronous capacitor switch controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121758A (en) * 1999-06-23 2000-09-19 Daq Electronics, Inc. Adaptive synchronous capacitor switch controller

Similar Documents

Publication Publication Date Title
US4771185A (en) Power adapter for electrical installations and especially domestic installations
CN111130129B (en) Multifunctional automatic phase-changing system for medium and low voltage line
US5581173A (en) Microcontroller-based tap changer controller employing half-wave digitization of A.C. signals
US6774803B1 (en) Fault trip indicator and maintenance method for a circuit breaker
US4413189A (en) Demand reduction system for regulated electric utility distribution circuits
JPH02136079A (en) Power controller
US4180744A (en) Energy management system
RU2214667C2 (en) Method for power-up control of automatic load transfer center in ring mains
CN105334387A (en) Intelligent electricity meter with self-adaptive protection function and load detection method
JPS60254306A (en) Reactive electric energy control device
RU2215356C2 (en) Method for checking failure of automatic load transfer center in ring power mains
CN100452602C (en) Intelligent motor protector
CN205193156U (en) Smart electric meter with self -adaptation protection
CN104022493A (en) Portable temporary protection device for 220KV circuit
JPH07270459A (en) Multi-circuit power control meter for high-voltage power receiving and transforming facility
Behrendt et al. Substation Relay Data and Communication
CN106771431B (en) Intelligent electric energy meter capable of detecting on-off state
JPH0130427B2 (en)
JPH03269928A (en) Digital protective relay
GB2339620A (en) Measuring real and imaginary components of electrical power
CN217901965U (en) Portable quick checking device for time relay
CN210016327U (en) Monitoring device and monitoring system for automatic switch of distributed power distribution network
CN2200185Y (en) Terminal box for single phase electric energy meter
JP4241294B2 (en) Current limiter for amperage controlled light
JP3445824B2 (en) Monitoring system