JPS6025362B2 - Carbon material continuous firing furnace - Google Patents

Carbon material continuous firing furnace

Info

Publication number
JPS6025362B2
JPS6025362B2 JP53082940A JP8294078A JPS6025362B2 JP S6025362 B2 JPS6025362 B2 JP S6025362B2 JP 53082940 A JP53082940 A JP 53082940A JP 8294078 A JP8294078 A JP 8294078A JP S6025362 B2 JPS6025362 B2 JP S6025362B2
Authority
JP
Japan
Prior art keywords
furnace
fan
gas
firing furnace
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53082940A
Other languages
Japanese (ja)
Other versions
JPS5510445A (en
Inventor
信彰 宮沢
千秋 田中
尚人 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP53082940A priority Critical patent/JPS6025362B2/en
Publication of JPS5510445A publication Critical patent/JPS5510445A/en
Publication of JPS6025362B2 publication Critical patent/JPS6025362B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は炭素電極、炭素ブロック等の炭素製品を製造す
るための連続焼成炉に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous firing furnace for producing carbon products such as carbon electrodes and carbon blocks.

炭素製品は生の炭素成形体あるいは焼成体にピッチを含
浸したもの(以下、これらを炭素材と云う)を先ず焼成
し、次いで必要により黒鉛化してつくられる。炭素材の
焼成には通常、第1図に平面図で示すように多数の炉が
蓮設され、重油等の燃焼ガスが各炉を循環するようにし
た、いわゆるリングファーネスと称せられる連続焼成炉
が用いられている。(燃焼ガスの循環方法については持
関昭球−16013号公報参照)。本発明はこの連続焼
成炉の改良に関するものである。第1図に従って炉の操
作方法を簡単に説明する。
Carbon products are made by first firing a raw carbon molded body or a fired body impregnated with pitch (hereinafter referred to as carbon material), and then graphitizing it if necessary. As shown in the plan view in Figure 1, carbon materials are usually fired in a continuous firing furnace called a ring furnace, in which a large number of furnaces are installed and combustion gas such as heavy oil is circulated through each furnace. is used. (For the combustion gas circulation method, see Mochiseki Shokyu-16013 publication). The present invention relates to improvements to this continuous firing furnace. The method of operating the furnace will be briefly explained according to FIG.

炉1には1〜16までの番号で示す各炉室2が1句固設
けられている。図においては4が重油バーナー4による
焼成中の炉でも最も温度が高く、以下順に焼成ガスは,
5,6・・・・・・と循環し、11を通った後炉及び塵
道に通ずる導管5を結ぶ接続管8により塵道3に抜ける
。図中矢印太線でガスの通路を示す。従って11が予熱
先端炉で温度は最も低い。3は焼成済で冷却中の炉であ
る。
The furnace 1 is provided with one furnace chamber 2 numbered from 1 to 16. In the figure, 4 has the highest temperature in the furnace during firing with heavy oil burner 4, and the firing gases are as follows:
5, 6, etc., and after passing through 11, it exits to the dust passage 3 through a connecting pipe 8 that connects the conduit 5 leading to the furnace and the dust passage. Gas passages are indicated by thick arrow lines in the figure. Therefore, 11 is the preheating tip furnace and the temperature is the lowest. 3 is a furnace that has already been fired and is currently being cooled.

12は炭素材の炉詰め終了で予熱待ちの炉である。Reference numeral 12 denotes a furnace that has finished filling the carbon material into the furnace and is waiting for preheating.

4の焼成が終ると燃焼バーナーを5に移し、同時に12
の接続管13を移し、12の導管にはキャップをつけて
封じ、12の予熱を始める。
When the firing of step 4 is completed, move the combustion burner to step 5, and at the same time turn the burner to step 12.
Transfer the connecting pipe 13 of , put a cap on the conduit 12 and seal it, and start preheating of 12.

冷却が終った炉から炉出しをする。以下、順々にこの操
作をくり返す。各炉の導管5は煙道3にガスを排出する
ところ以外はキャップをつけて封じてある。なお、6は
ガスク−ラー、7が集じん器、Fは通気ファンである。
第1図は焼成系統が1系列であるが、第4図は共通煙道
のもとに2系列同時焼成する場合を示す。
Remove the furnace from the furnace after cooling. From now on, repeat this operation in order. The conduit 5 of each furnace is sealed with a cap except for the part where gas is discharged into the flue 3. In addition, 6 is a gas cooler, 7 is a dust collector, and F is a ventilation fan.
Although FIG. 1 shows a single firing system, FIG. 4 shows a case where two systems are simultaneously fired under a common flue.

図中各炉の個別表示は省略するが鏡線部分が焼成、予熱
中の炉である。従来、これらの連続焼成炉において、各
炉をガスが順調に流れるようにするために鰹道3からか
なりのガスをファンFを通して大気に排出せざるを得ず
、しかもこのガスは高温なので、熱的にも大きな損失で
あった。
Although the individual display of each furnace in the figure is omitted, the mirror line shows the furnace during firing and preheating. Conventionally, in these continuous firing furnaces, in order to ensure that the gas flows smoothly through each furnace, a considerable amount of gas has to be discharged from the katsuodo 3 to the atmosphere through the fan F, and since this gas is at a high temperature, the heat It was a huge loss.

また炭素材の焼成においては焼成中に炭素材から可燃性
のガスが発生し、特定の炉のところで燃焼したりして昇
温曲線が乱れる。これに対しては焼成炉に第3図に示す
ようにバーナー燃焼の空気に加えて煙道ガスをファンC
で炉内に吹込むことによってある程度解決されている。
しかし煙道ガスを吹込んだ場合、ガスが各炉内を円滑に
流れるようにするには前記同様、通気ファンF‘こよっ
て相当のガスを炉内から鰹道に吸引し、大気中に排気さ
せなければならず、熱量利用の点からはれ程大きな効果
はない。本発明はこれら炭素材連続焼成炉において、燃
焼ガスの効率的利用により重油等の燃料消費量の低減化
をはかり、かつ各炉の昇温曲線のコントロールを容易に
して予じめ設定した望ましい昇溢曲線に合せることが出
釆る糠成炉を開発したものである。
In addition, when firing carbon materials, flammable gas is generated from the carbon materials during firing and burns in a specific furnace, disrupting the temperature rise curve. For this purpose, as shown in Figure 3, flue gas is supplied to the firing furnace by fan C in addition to burner combustion air.
This problem has been solved to some extent by blowing it into the furnace.
However, when flue gas is injected, in order to ensure that the gas flows smoothly through each furnace, the ventilation fan F' is used to draw a considerable amount of gas from inside the furnace into the bonito path and exhaust it into the atmosphere. There is no significant effect in terms of heat utilization. The present invention aims to reduce the consumption of fuel such as heavy oil through efficient use of combustion gas in these carbon material continuous firing furnaces, and to easily control the temperature rise curve of each furnace to set a desired temperature rise in advance. We have developed a nuka-forming furnace that can be adjusted to the overflow curve.

即ち、本発明の連続焼成炉は子熱先端炉と建造との間に
排風ファンを設け、さらに好ましくはこのBE風ファン
にほかに焼成炉と塵道との間に鰹道ガス吹込みファンを
設けたことを特徴する。
That is, the continuous firing furnace of the present invention is provided with an exhaust fan between the sub-heating tip furnace and the construction, and more preferably, in addition to this BE wind fan, a bonito gas blowing fan is installed between the firing furnace and the dust path. It is characterized by having the following.

以下、図面に従って具体的に説明する。第2図に示すよ
うに子熱先端炉11を出たガスは導管5を結ぶ連続管8
を通って煙道に抜けるが、この連続管のところに9E風
ファン日を設ける。この擬脇ファンの風量を調整するこ
とによって、各炉を流れるガス量等が調整され、これに
よってかなりの範囲に亘つて温度の調整が可能である。
この場合焼成炉4の導管5を連続しておけば煙道ガスは
自然に吹込まれるが、好ましくは第3図にCで示すよう
に導管を結ぶ接続管のところに煙道ガス吹込みファンを
設け、鰹道ガスを焼成炉に積極的に吹込み、これと前記
排風ファンと合せ、調整することにより昇温曲線が広い
範囲で制御出来る。また通気ファンによる煙道ガスの排
出を必要最少限に抑えても排風ファンと吹込みファンの
作用により各炉内をガスは円滑に流れるので、それだけ
熱の有効利用に役立つ。特に第4図に示すように1つの
鰹道で2系列同時焼成の場合、鰹道ガス通気ファンで吸
引する方式では各系例の温度制御が困難である。
A detailed explanation will be given below according to the drawings. As shown in FIG.
It passes through to the flue, and a 9E wind fan is installed at this continuous pipe. By adjusting the air volume of this pseudo side fan, the amount of gas flowing through each furnace can be adjusted, thereby making it possible to adjust the temperature over a considerable range.
In this case, if the conduit 5 of the firing furnace 4 is continuous, the flue gas will be blown in naturally, but preferably, a flue gas blowing fan is installed at the connecting pipe connecting the conduits, as shown by C in Fig. 3. The temperature rise curve can be controlled over a wide range by actively blowing Katsuomichi gas into the firing furnace and adjusting this in combination with the exhaust fan. Further, even if the exhaust of flue gas by the ventilation fan is suppressed to the minimum necessary, the gas flows smoothly through each furnace due to the action of the exhaust fan and the blow-in fan, which contributes to the effective use of heat. Particularly, as shown in FIG. 4, in the case of simultaneous firing of two systems in one bonito, it is difficult to control the temperature of each system using the method of suctioning with the bonito gas ventilation fan.

これに排風ファン日又はさらに鰹道ガス吹込みファンC
を夫々の系列に取付けることによって、夫々別々に温度
制御が可能である。排風ファン、吹込みファン、通風フ
ァンの夫々の風量割合は昇溢条件等によって異なり一概
に定めることはむずかしいが、通常の炭素材の焼成にお
いては排風ファンによる風量のうち約50〜約60%(
標準状態換散の容積%、以下同じ)が循環して吹込みフ
ァンによって吹込まれ、従って、約40%〜50%が通
風ファンによって大気中に排気するのが適当である。
This is followed by an exhaust fan or a Katsuomichi gas blowing fan C.
By installing them in each series, it is possible to control the temperature of each separately. Although it is difficult to determine the air volume ratio of each of the exhaust fan, blow-in fan, and ventilation fan depending on the rising conditions, etc., in normal firing of carbon materials, the ratio of air volume by the exhaust fan is approximately 50 to 60. %(
It is appropriate that a volume % of the standard state evaporation (hereinafter the same) is circulated and blown in by the blowing fan, and therefore about 40% to 50% is exhausted to the atmosphere by the draft fan.

従来においては排風ファンがなく、樫道全体を通風ファ
ンによって吸引していたので、その排出量が本発明の場
合より約40〜60%多くなる。それだけ熱量の損失が
大きい。バーナーの燃焼条件を同じにしても通風ファン
からの排出量が多いと云うことは各炉は完全密閉は不可
能なので、炉の隙間等から空気がより多く漏れ込むから
である。次に本発明装置による効果を実施例、比較例で
示す。
In the past, there was no exhaust fan, and the entire oak path was sucked in by a ventilation fan, so the amount of exhaust was about 40 to 60% higher than in the case of the present invention. That's how much heat loss there is. Even if the combustion conditions of the burners are the same, the amount of air discharged from the ventilation fan is large because each furnace cannot be completely sealed, so more air leaks through gaps in the furnace. Next, the effects of the apparatus of the present invention will be shown in Examples and Comparative Examples.

第5図は第1図における9の炉の昇温曲線の1例を示す
。図において、1が予定曲線、2は排風ファン日を使用
した(排風量100〜13側め/分、通気ファンFの風
量60〜7側め/分)場合、3は排風ファン日及び吹込
みファンCを使用した場合(排風量120〜15側め/
分、吹込み量70〜10側め/分、通気のファン量50
〜6側め/分)、4は吹込みファンCのみを使用した場
合(吹込み量20〜5側め/分、通気ファン量80〜1
0■で/分)である。なお、熱料として使用した重油の
量を比較すると次の通りである。
FIG. 5 shows an example of the temperature rise curve of the furnace No. 9 in FIG. 1. In the figure, 1 is the planned curve, 2 is the exhaust fan date (exhaust air volume 100 to 13 side/min, ventilation fan F air volume 60 to 7 side/min), 3 is the exhaust fan date and When using blow fan C (exhaust air volume 120~15 side/
minutes, blowing amount 70 to 10 side/minute, ventilation fan amount 50
- 6th side / min), 4 is when only blowing fan C is used (Blowing amount 20 - 5th side / min, ventilation fan amount 80 - 1
0■/min). A comparison of the amount of heavy oil used as heating material is as follows.

{2) ■ {41 98部 93部 10礎部 第1図において、9の炉はガスが8の炉より接続管を通
して導入されるため、接続管で熱損失し、昇温が予定曲
線より遅れがちなので特に取上げて比較したものである
{2) ■ {41 Part 98 Part 93 Part 10 Foundation part In Figure 1, the furnace numbered 9 introduces gas from the furnace numbered eight through the connecting pipe, so heat is lost in the connecting pipe, and the temperature rise lags behind the planned curve. Since these are common, I have specifically chosen them for comparison.

第5図からわかるように排風ファンを使用した2の曲線
は吹込みファンを使用した4よりは予定曲線1に近ずし
、ており、改良されていることがわかる。
As can be seen from FIG. 5, the curve 2 using the exhaust fan is closer to the planned curve 1 than the curve 4 using the blowing fan, and it can be seen that this is an improvement.

そしてこの両ファンを併用した曲線3は殆、んど予定曲
線に乗っており、最もよい結果を示している。
Curve 3, which uses both fans in combination, almost always follows the planned curve and shows the best results.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は炭素材連続焼成炉の平面図、第2図及び第3図
は第1図の部分拡大図、第4図は炭素材連続焼成炉の別
の態様を示す平面図、第5図は昇温曲線の1例を示すグ
ラフである。 図において、1は連続焼成炉、2は各炉室、3は鰹道、
4はバーナー、Fは通気ファン、日は排風ファン、Cは
吹込みファン。 第1図 第2図 第3図 第4図 第5図
Figure 1 is a plan view of a carbon material continuous firing furnace, Figures 2 and 3 are partially enlarged views of Figure 1, Figure 4 is a plan view showing another aspect of the carbon material continuous firing furnace, and Figure 5. is a graph showing an example of a temperature increase curve. In the figure, 1 is a continuous firing furnace, 2 is each furnace chamber, 3 is a bonito road,
4 is the burner, F is the ventilation fan, day is the exhaust fan, and C is the blower fan. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1 ガス循環法による炭素材連続焼成炉において、予熱
先端炉と煙道との間に排風フアンを設け、さらに焼成炉
と煙道との間に煙道ガス吹込みフアンを設けたことを特
徴とする炭素材連続焼成炉。
1. A carbon material continuous firing furnace using the gas circulation method, characterized in that an exhaust fan is provided between the preheating tip furnace and the flue, and a flue gas blowing fan is further provided between the firing furnace and the flue. Continuous firing furnace for carbon materials.
JP53082940A 1978-07-10 1978-07-10 Carbon material continuous firing furnace Expired JPS6025362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53082940A JPS6025362B2 (en) 1978-07-10 1978-07-10 Carbon material continuous firing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53082940A JPS6025362B2 (en) 1978-07-10 1978-07-10 Carbon material continuous firing furnace

Publications (2)

Publication Number Publication Date
JPS5510445A JPS5510445A (en) 1980-01-24
JPS6025362B2 true JPS6025362B2 (en) 1985-06-18

Family

ID=13788211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53082940A Expired JPS6025362B2 (en) 1978-07-10 1978-07-10 Carbon material continuous firing furnace

Country Status (1)

Country Link
JP (1) JPS6025362B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3712717A1 (en) * 1987-04-14 1988-11-03 Schmermund Maschf Alfred FLOOR FOLDING PACKER

Also Published As

Publication number Publication date
JPS5510445A (en) 1980-01-24

Similar Documents

Publication Publication Date Title
JP2003342581A (en) Method for controlling combustion of gas in coke oven, and device for the same
CN106190184A (en) A kind of coke oven heating method and device reducing NOx generation
US4113417A (en) Combustion of hot gases of low calorific power
US4063870A (en) Combustion of hot gases of low calorific power
CN109099721A (en) Reduce the heating furnace heating system and method for discharged nitrous oxides
JPS6025362B2 (en) Carbon material continuous firing furnace
JP3176786B2 (en) Oxygen burner
JPS6128886B2 (en)
JPH0828830A (en) High temperature air burner
CN1215307C (en) Reduced atmosphere firing method and device for ceramic muffle kiln
CN1959204A (en) Construction method for burner, air channels, gas flues inside furnace wall of heating furnace in heat storage type
CN219607085U (en) Dual-fuel dual-heat-storage low-NOX burner
CN215982656U (en) Combustion-supporting device and oxygen-enriched combustion-supporting system
JPH0263125B2 (en)
CN212747327U (en) Metallurgical firing kiln
SU1028953A1 (en) Air heater
CN214501252U (en) Waste incineration power plant burns burning furnace overgrate air system
SU737715A1 (en) Boiler plant
CN210624543U (en) Organic waste gas incineration treatment device for automobile coating and drying
JPH0722572Y2 (en) NOx recovery furnace wall temperature control device
CN116025921A (en) Pyrolysis equipment flue gas waste heat utilization system
CN116412399A (en) Dual-fuel dual-heat-storage low-NO X Burner and combustion control method
JPS5910095Y2 (en) Glass slow cooling device
US20040068990A1 (en) Method for the co-generation of heat & power in conjuction with high temperature heat needs
SU1749521A2 (en) Power plant