JPS60253112A - Method of producing light transmission flat plate conductiveblank - Google Patents

Method of producing light transmission flat plate conductiveblank

Info

Publication number
JPS60253112A
JPS60253112A JP59108611A JP10861184A JPS60253112A JP S60253112 A JPS60253112 A JP S60253112A JP 59108611 A JP59108611 A JP 59108611A JP 10861184 A JP10861184 A JP 10861184A JP S60253112 A JPS60253112 A JP S60253112A
Authority
JP
Japan
Prior art keywords
metal
chloride
plate
tin
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59108611A
Other languages
Japanese (ja)
Other versions
JPH0345487B2 (en
Inventor
護郎 佐藤
通郎 小松
嗣雄 小柳
博和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP59108611A priority Critical patent/JPS60253112A/en
Publication of JPS60253112A publication Critical patent/JPS60253112A/en
Publication of JPH0345487B2 publication Critical patent/JPH0345487B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は光透過性で導電性を有する微細な平板状物質の
製造法に関し、さらに詳しくは透明な合成樹脂フィルム
ないしは塗料に配合してそのフィルムないしは塗膜に良
好な導電性を付与することができ、しかもフィルムない
しは塗膜自体の透明性を実質的に損うことのない微細な
平板状素材の製造法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a light-transmitting and electrically conductive fine plate-shaped substance, and more specifically, it relates to a method for producing a fine plate-shaped substance that is light-transmissive and conductive, and more specifically, it is blended into a transparent synthetic resin film or paint to provide a good quality for the film or coating. The present invention relates to a method for producing a fine flat material that can be imparted with electrical conductivity without substantially impairing the transparency of the film or coating itself.

無機粉末の表面に導電処理を施して導電性粉末を製造す
る方法は公知であって、例えば特開昭56−11421
5号〜114218号の各公報には、通電感熱紙や静電
記録紙などの導電層に用いる素材を得る目的で、酸化チ
タンなどの金属酸化物粉末を加熱水中に分散させ、これ
に塩化錫のアルコール溶液又は塩化錫と塩化アンチモン
のアルコール溶液を添加することにより、金属酸化物粉
末の表面に酸化錫又は少量のアンチモンを含有する酸化
錫からなる被覆層を形成させて導電性粉末を製造する方
法が教示されている。しかしながら、上記の方法で得ら
れる導電性粉末は、その核が白色の金属酸化物であるた
め不透明であって、これを透明な合成樹脂などに配合し
た場合には、フィルムの透明性を維持できない欠点があ
る。一方、透明でしかも導電性を有する粉末としては、
酸化錫にアンチモンをドープさせたものが知られている
。しかし、この粉末は平均粒径が0.1μmと極めて微
細であるため、樹脂に均一分散させることが難しいばか
りでなく、樹脂への分散に際しミクロぜイドに空気を抱
き込んで分散するため、樹脂の透明性を低下させる不都
合がある。
Methods for producing conductive powder by subjecting the surface of inorganic powder to conductive treatment are known, for example, as disclosed in Japanese Patent Application Laid-Open No. 56-11421.
In each of the publications No. 5 to No. 114218, metal oxide powder such as titanium oxide is dispersed in heated water, and tin chloride is added to it in order to obtain a material for use in conductive layers of electrically conductive thermal paper and electrostatic recording paper. or an alcoholic solution of tin chloride and antimony chloride to form a coating layer consisting of tin oxide or tin oxide containing a small amount of antimony on the surface of the metal oxide powder to produce a conductive powder. method is taught. However, the conductive powder obtained by the above method is opaque because its core is a white metal oxide, and when it is blended with a transparent synthetic resin, the transparency of the film cannot be maintained. There are drawbacks. On the other hand, as a transparent and conductive powder,
It is known that tin oxide is doped with antimony. However, since this powder is extremely fine with an average particle size of 0.1 μm, it is not only difficult to uniformly disperse it in the resin, but also because air is trapped in the microzeid when it is dispersed in the resin. This has the disadvantage of reducing transparency.

本発明は光透過性を有する比較的微細が平板状物質の表
面に導電性被覆を施すことによって、合成樹脂や室料へ
の均一分散が容易であるうえ、フィルムや塗膜の透明性
を実質的に損うことがなく、しかもこれらに良好な導電
性を付与できる素材全製造せんとするものである。
In the present invention, by applying a conductive coating to the surface of a relatively fine plate-shaped material having light transmittance, uniform dispersion into synthetic resins and room materials is easy, and the transparency of films and coatings can be substantially improved. The aim is to manufacture all materials that can impart good electrical conductivity to these materials without causing any damage to the materials.

すなわち、本発明は光透過性で導電性を有する平板状素
材の製造方法を提供するものであって、その方法は錫又
はインジウムの硫酸塩又は塩化物と、ドーパント金属の
硫酸塩又は塩化物が溶解した酸性溶液を、光透過性で微
細な平板状物質の酸性分散液に徐々に滴下すると共にア
ンモニア又は有機アミンを加え、混合液のpHを0.5
〜5.5の範囲に調節することにより、前記した少なく
とも2種の硫酸塩又は塩化物を加水分解することにより
、前記の平板状物質の表面を金属水酸化物で被覆し、金
属水酸化物で被覆された平板状物質を分散媒から分離し
て洗浄し、次いでこの平板状物質を温和な条件で乾燥し
死後、主たる金属に錫を用いた場合は酸化性雰囲気で、
主たる金属にインジウムを用いた場合は不活性ガス雰囲
気で焼成することからなる。
That is, the present invention provides a method for manufacturing a flat material having optical transparency and conductivity, and the method involves the use of a sulfate or chloride of tin or indium, and a sulfate or chloride of a dopant metal. The dissolved acidic solution was gradually dropped into the acidic dispersion of the light-transparent, fine plate-like material, and ammonia or organic amine was added to adjust the pH of the mixture to 0.5.
5.5, the surface of the above-mentioned tabular material is coated with metal hydroxide by hydrolyzing at least two kinds of sulfates or chlorides, and the metal hydroxide is coated with metal hydroxide. The plate-shaped material coated with is separated from the dispersion medium and washed, and then the plate-shaped material is dried under mild conditions and after death, in an oxidizing atmosphere if tin is used as the main metal.
When indium is used as the main metal, firing is performed in an inert gas atmosphere.

本発明に於て、錫又はインジウムの硫酸塩又は塩化物と
ドーパント金属の硫酸塩又は塩化物を溶解した酸性溶液
(以下、(ト)液という)は、濃硫酸に所望金属の硫酸
塩を溶解するか、濃塩酸に所望金属の塩化物を溶解する
方法で調製される。ドーパント金属としてはアンチモン
、テルル、インジウム、錫の1種もしくは2種以上が使
用可能であるが、主たる金属にインジウムを使用した場
合は、ドーパント金属としてインジウムを使用すること
はなく、また主たる金属にl1lIを用いた場合はドー
パント金属として錫を使用することはない。
In the present invention, an acidic solution in which a sulfate or chloride of tin or indium and a sulfate or chloride of a dopant metal are dissolved (hereinafter referred to as the (3) solution) is a solution in which a sulfate of a desired metal is dissolved in concentrated sulfuric acid. Alternatively, it can be prepared by dissolving the chloride of the desired metal in concentrated hydrochloric acid. One or more of antimony, tellurium, indium, and tin can be used as the dopant metal, but when indium is used as the main metal, indium is not used as the dopant metal, and When l1lI is used, tin is not used as a dopant metal.

本発明の方法によって平板状物質の表面に形成される導
電性被覆は、一般に (イ)0.1〜3Qwt%のアンチモンがドープした酸
化錫、 (ロ)0.1〜15wtチのアンチモンと0.01〜5
wtチのテルルがドープした酸化錫、 (ハ)0.1〜20wtチの錫がドープした酸化インジ
ウム のいずれかで構成される。従ってN液を調製するlこ際
しては、0)〜(ハ)で示される酸化物が得られるよう
な量で、主たる金属とドーパント金属の各化合物を濃硫
酸又は濃塩酸に溶解させ、全金属化合物濃度を1〜60
vrt%、好ましくは10〜30wtチの範囲に調整す
ることを可とする。
The conductive coating formed on the surface of a tabular material by the method of the present invention generally comprises (a) tin oxide doped with 0.1 to 3 Qwt% of antimony; (b) 0.1 to 15 wt% of antimony and .01~5
(c) Indium oxide doped with 0.1 to 20 wt. tin. Therefore, to prepare the N solution, each compound of the main metal and the dopant metal is dissolved in concentrated sulfuric acid or concentrated hydrochloric acid in an amount such that the oxides shown in 0) to (c) are obtained. Total metal compound concentration from 1 to 60
It is possible to adjust the vrt%, preferably within the range of 10 to 30wt.

一方、光透過性で微結な平板状物質の酸性分散液(以下
、@)液という)は、希硫酸又は希塩酸に光透過性で微
細な平板状物質を分散させるか、水に光透過性の微細A
平板状物質を分散させた後、硫酸又は塩酸を添加するこ
とで調製される。ここで「微細な平板状物質」とは長径
が1〜IOQμmの範囲にあり、長径対短径の比が1〜
30の範囲で、短径対厚さの比が2以上であるものを言
う。この種の平板状物質は一般に1〜50 m27 g
の比表面積を有している。念のため付言すれば、平板状
物質の寸法は、本発明に係る素材の用途に応じて適宜選
択することを可とし、例えば本発明の素材全塗料に配合
して塗膜の厚さf1op以下とする場合には、平板状物
質の厚さを1μ以下、好ましくは0.5μ以下とし、長
径を1〜50μ好ましくは30μ以下とするのが適当で
あり、膜厚10μ以上とする場合には、厚さ10μ以下
、長径1〜100μ、望ましくは20〜70μの平板状
物質を使用することが好ましい。また、本発明の素材を
プラスチックに配合してフィルムとする場合lこは、そ
のフィルムの膜厚が10μ以下であれば、平板状物質の
厚さを1μ以下、長径IHIOμ以下、望ましくは0.
5〜lOμとし、膜厚が10μ以上であれば、平板状物
質の厚さをフィルム膜厚の1/10以下とすべきである
On the other hand, an acidic dispersion of a light-transparent, finely-crystalline, tabular material (hereinafter referred to as @ solution) can be prepared by dispersing a light-transparent, fine, plate-like material in dilute sulfuric acid or dilute hydrochloric acid, or by dispersing a light-transparent, fine, plate-like material in water. fine A
It is prepared by adding sulfuric acid or hydrochloric acid after dispersing the tabular material. Here, "fine plate-like material" has a major axis in the range of 1 to IOQ μm, and a ratio of major axis to minor axis of 1 to IOQ μm.
30, and the ratio of short axis to thickness is 2 or more. This type of tabular material generally weighs between 1 and 50 m27 g
It has a specific surface area of Just to be sure, the dimensions of the plate-like substance can be selected appropriately depending on the use of the material according to the present invention. In this case, it is appropriate that the thickness of the plate-like material be 1μ or less, preferably 0.5μ or less, and the major axis be 1 to 50μ, preferably 30μ or less, and when the film thickness is 10μ or more, It is preferable to use a tabular material having a thickness of 10μ or less and a major axis of 1 to 100μ, preferably 20 to 70μ. In addition, when the material of the present invention is blended with plastic to form a film, if the film thickness is 10μ or less, the thickness of the flat material is 1μ or less, the major axis is IHIOμ or less, and preferably 0.5μ or less.
If the film thickness is 10μ or more, the thickness of the plate-like material should be 1/10 or less of the film thickness.

上記した微細な平板状物質はまた、それ自身光透過性で
なければならない。ここで「光透過性の平板状物質」と
は、平板状物質10wt%、流動Aラフイン(日本薬局
方) 9 o wt%の混合物を、塗膜の厚さ60μで
厚さ3 mmの石英ガラスに塗布した場合に於て、波長
600nmの光の透過率が60−以上であるような平板
状物質を言う。本発明の平板状物質は光透過性である限
り、その材質を問わない。しかし、その屈折率は1.5
〜2.5の範囲にあることが好ましい。
The fine tabular material described above must also be itself optically transparent. Here, the "light-transmitting tabular material" refers to a mixture of 10 wt% of the tabular material and 9 wt% of Fluid A Rough-in (Japanese Pharmacopoeia) on a 3 mm thick quartz glass with a coating thickness of 60 μm. It refers to a flat material whose transmittance for light at a wavelength of 600 nm is 60- or more when applied to a substrate. The material of the flat material of the present invention does not matter as long as it is light-transmissive. However, its refractive index is 1.5
It is preferably in the range of ~2.5.

従って、本発明で使用可能な平板状物質の具体例として
は、雲母(白雲母、絹雲骨など)、カオリナイト、ガラ
ス片などを例示することができる。
Therefore, specific examples of the tabular material that can be used in the present invention include mica (muscovite, seri bone, etc.), kaolinite, glass pieces, and the like.

0)液に於ける平板状物質の濃度は、一般に分散媒10
0重量部当り0.4〜20重量部の範囲に調整され、当
該分散液のpHは通常0.5〜5.5の範囲に調整され
る。
0) The concentration of the tabular material in the liquid is generally 10% of the dispersion medium.
The pH of the dispersion is usually adjusted to be in the range of 0.5 to 5.5.

本発明の方法によれば、CB)液に前述した(ハ))液
を徐々に滴下すると共に、アンモニア又は有機アミンを
添加して混合液のp)(を0.5〜55の範囲内に調節
し、これによって(/L)液中の金属化合物、すなわち
、主たる金属の硫酸塩又は塩化物と、ドーAント金属の
硫酸塩又は塩化物が加水分解される。既述した通り、(
ト)液は、金属化合物が硫酸塩である場合には濃硫酸を
使用し、塩化物である場合には濃塩酸を使用して調製さ
れる。従って、(5)液に滴下される内液が、濃硫酸で
調製されている場合には、但)液は硫酸酸性−であるこ
とを可とし、濃塩酸で調製されている場合には、塩酸酸
性であることを可とする。
According to the method of the present invention, the liquid (c) described above is gradually dropped into the liquid CB), and ammonia or an organic amine is added to adjust the p) of the mixed liquid to within the range of 0.5 to 55. This hydrolyzes the metal compounds in the (/L) solution, that is, the main metal sulfate or chloride and the doant metal sulfate or chloride.As already mentioned, (
g) The solution is prepared using concentrated sulfuric acid when the metal compound is a sulfate, and using concentrated hydrochloric acid when it is a chloride. Therefore, if the internal solution to be dropped into the solution (5) is prepared with concentrated sulfuric acid, (provided that) the solution can be acidic with sulfuric acid, and if it is prepared with concentrated hydrochloric acid, Allows hydrochloric acid to be acidic.

本発明の方法では上記の加水分解反応で生成される金属
水酸化物を、平板状物質の表面上に均一に析出させるこ
とが好ましい。そしてこれを実現するためには、内液中
の金属化合物の種類に応じて加水分解時のpI(条件を
0,5〜5.5の範囲で選択することが好ましい。ちな
みに、本発明者らが得た知見によれば、(ト)液中の主
たる金属の化合物゛が綱の硫酸塩又は塩化物である場合
は、加水分解時の最適pH東件が1〜3.5の範囲にあ
り、インジウムの硫酸塩又は塩化物である場合は、最適
p)を条件が4〜5.5の範囲にある。なお、加水分解
時の温度は20〜80℃の範囲で任意化選択することが
できるが、加水分解速度を考慮すると、反応温度゛は4
0〜80℃であることが好ましく、特に塩化物を加水分
解するに際しては40〜60℃の・温度を、硫酸塩を加
水分解するに際しては60〜80°Cの温度を採用する
のが実用的である。
In the method of the present invention, it is preferable that the metal hydroxide produced by the above-mentioned hydrolysis reaction is uniformly deposited on the surface of the flat material. In order to achieve this, it is preferable to select the pI (conditions) during hydrolysis in the range of 0.5 to 5.5 depending on the type of metal compound in the internal solution. According to findings obtained by , in the case of indium sulfate or chloride, the optimum p) condition is in the range of 4 to 5.5. Note that the temperature during hydrolysis can be arbitrarily selected within the range of 20 to 80°C, but considering the hydrolysis rate, the reaction temperature
The temperature is preferably 0 to 80°C, and it is particularly practical to use a temperature of 40 to 60°C when hydrolyzing chlorides, and a temperature of 60 to 80°C when hydrolyzing sulfates. It is.

加水分解で生成される金属水酸化物を平板状物質の表面
に均−tこ析出させるためには、0)液に対する(へ)
液の滴下速度も重要である。滴下速度が速すぎると、金
属水酸化物の結晶核がΦ)液中に多数発生し、均一で緻
密な金属水酸化物の被覆層を、平板状物質上に形成でき
ないからである。従って、本発明では徐々に(4)液を
倶)液tこ滴下することを要件とするが、本発明者らが
行なった実験結果によれば、Φ)液中に分散している平
板状物質の全表面積をXm”とし、加水分解反応で1時
間当り生成される金属水酸化物の量をYgとした場合、
(B)*に対する(へ)液の滴下速度はY/Xの値が0
.06.2以下になるよう調節すること7が好ましい。
In order to uniformly precipitate the metal hydroxide produced by hydrolysis on the surface of the plate-like material, 0) (to) the liquid
The dropping speed of the liquid is also important. This is because if the dropping rate is too fast, a large number of metal hydroxide crystal nuclei will be generated in the Φ) solution, making it impossible to form a uniform and dense metal hydroxide coating layer on the flat material. Therefore, in the present invention, it is required to gradually drop (4) the liquid (3), but according to the experimental results conducted by the present inventors, Φ) flat plate-shaped particles dispersed in the liquid If the total surface area of the substance is Xm'' and the amount of metal hydroxide produced per hour in the hydrolysis reaction is Yg,
(B) The dropping speed of the liquid (to) to * is 0 when the value of Y/X is 0.
.. It is preferable to adjust the temperature to 06.2 or less.

しかし1、余りに滴下速度を遅くすることは、被覆層の
形成に長蒔間ヲ要することになるので、実用的にはY/
Xの値を0.0043以上とすべきである。
However, 1. If the dropping speed is too slow, it will take a long time to form the coating layer, so it is not practical to use Y/
The value of X should be greater than or equal to 0.0043.

この点についてさらlこ詳述すると、(ハ))液が主た
る金属として錫を含有し、(u)ffiのpHが0.5
〜2.0である場合には、両液の温度を20〜50゛C
に保持し、に)液の滴下速度Y/Xを0.0043〜0
.02(g−金属水酸化物/ m”−hr )とするこ
とが好ましく、に)液が主たる金属として錫を含有し、
@)液のpHが2.0〜3.5である場合は、両液の温
度を50〜80°Cに保持し、内液の滴下速度Y/Xを
0.02〜0.062(g−金属水酸化物/m2・hr
 )とすることが好ましい。また、(ト)液が主たる金
属としてインジウムを含有し、C)液のpHが2〜3.
5である場合には、両液の温度を20〜40℃に保持し
、(ト)液の滴下速度Y/Xを0.0043〜0.01
 (g−金属水酸化物/ m’hr )とすることが好
ましく、(ト)液が主たる金属としてインジウムを含有
し、■)液のpHが3.5〜5.5の場合は、両液の温
度を40〜80”Cに保持し、(へ)液の滴下速度Y/
Xを0.01〜0.062(g−金属水酸化物/m!・
hr )とすることが好ましい。
To explain this point in more detail, (c)) the liquid contains tin as the main metal, and (u) the pH of ffi is 0.5.
~2.0, lower the temperature of both liquids to 20~50°C.
2) Keep the liquid dropping rate Y/X at 0.0043 to 0.
.. 02 (g-metal hydroxide/m"-hr), and ii) the liquid contains tin as the main metal,
@) When the pH of the liquid is 2.0 to 3.5, maintain the temperature of both liquids at 50 to 80°C, and adjust the dropping rate Y/X of the internal liquid to 0.02 to 0.062 (g -Metal hydroxide/m2・hr
) is preferable. In addition, the liquid (G) contains indium as the main metal, and the pH of the liquid (C) is 2 to 3.
5, the temperature of both liquids is maintained at 20 to 40°C, and (g) the dropping rate Y/X of the liquid is 0.0043 to 0.01.
(g-metal hydroxide/m'hr), when (g) the solution contains indium as the main metal, and (ii) the pH of the solution is 3.5 to 5.5, both solutions Maintain the temperature at 40 to 80"C, and reduce the dropping rate of the liquid (to) Y/
X from 0.01 to 0.062 (g-metal hydroxide/m!・
hr) is preferable.

金属水酸化物で被覆された平板状物質は、分散媒から分
離され、洗浄、乾燥後、酸化性雰囲気又は不活性ガス雰
囲気で焼成されるが、これによって、金属水酸化物の被
覆層は、既述した(イ)〜(ハ)の何れかで示される導
電性物質の被覆層に転化する。しかし、焼成後の被覆層
の厚さが70X未満であると、本発明の方法で得られる
素材に所期の導電性を付与することができず、1200
Xを越えた場合は素材の光透過性が損われるので、本発
明の方法では焼成後の被覆層の厚さが70〜1200X
、好ましくは200〜1000叉の範囲18るよう、金
属水酸化物を平板状物質上に析トjせること全町とする
The plate-shaped material coated with metal hydroxide is separated from the dispersion medium, washed, dried, and then fired in an oxidizing atmosphere or an inert gas atmosphere, whereby the metal hydroxide coating layer becomes It is converted into a coating layer of a conductive substance shown in any of (a) to (c) mentioned above. However, if the thickness of the coating layer after firing is less than 70X, the desired conductivity cannot be imparted to the material obtained by the method of the present invention;
If the thickness exceeds
The metal hydroxide is deposited on the tabular material so that the metal hydroxide is preferably in the range of 200 to 1000 mm.

ちなみに、加水分解によって生成される金属水酸化物は
、本発明の方法によれば、大部分が平板状物質上に析出
するので、(B)液中に分散している平板状物質の量に
応じて、の)液に対する(4)液の添加量を調節し、加
水分解によって生成される金属水酸化物の量を、平板状
物質の表面積1m!当り0.009〜0.15 gの範
囲とすれば、焼成後の被覆層の厚さを70〜1200ス
の範囲内におさめることができる。
Incidentally, according to the method of the present invention, most of the metal hydroxides produced by hydrolysis are precipitated on the plate-like substances, so (B) the amount of the plate-like substances dispersed in the liquid Accordingly, adjust the amount of solution (4) added to solution (4) to reduce the amount of metal hydroxide produced by hydrolysis by adjusting the amount of metal hydroxide produced by the surface area of the plate-like material 1 m! If the amount is in the range of 0.009 to 0.15 g per unit, the thickness of the coating layer after firing can be kept within the range of 70 to 1200 g.

金属水酸化物によって所定の厚さに被覆された平板状物
質は、前述した通り、分散媒から分離され、典型的には
水洗後、乾燥されるが、この乾燥は被覆層に収縮亀裂が
発生しないような温和な条件で実施される。被覆層に亀
裂が発生すると、最終的に得られる素材の導電性が低下
してしまうからである。一般に、温度110°C1関係
湿度5チの空気が流通する乾燥器内に於て0.18 k
ll H,O/hr −ky (無水材料)以下の減率
乾燥速度で乾燥を行なえば、電熱発生を防止することが
できる。
As mentioned above, the plate-like material coated with metal hydroxide to a predetermined thickness is separated from the dispersion medium, typically washed with water, and then dried, but this drying process can cause shrinkage cracks in the coating layer. It is carried out under mild conditions that will not cause any damage. This is because if cracks occur in the coating layer, the electrical conductivity of the final material will be reduced. Generally, the temperature is 0.18 K in a dryer through which air is circulated at a temperature of 110°C and a relative humidity of 5°C.
If drying is performed at a lapse rate drying rate of less than ll H,O/hr -ky (anhydrous material), generation of electric heat can be prevented.

金属水酸化物の被覆層を有する平板状物質は、次いで酸
化性雰囲気下又は不活性ガス雰囲気下、300〜850
°Cの温度で0.5〜も時間程度焼成される。焼成時の
温度及び時間は平板状物質の種類によって選択され、平
板状物質の耐熱温度以下の温度が採用されることはもち
ろんでろる。
The plate-shaped material having the metal hydroxide coating layer is then heated to a temperature of 300 to 850 in an oxidizing atmosphere or an inert gas atmosphere.
It is fired at a temperature of 0.5°C for about 0.5 hours. The temperature and time during firing are selected depending on the type of the tabular material, and it goes without saying that a temperature lower than the heat resistance temperature of the tabular material is adopted.

この焼成によって金属水酸化物は金属酸化物に転化し、
さらにドーノソ/ト金°属の酸化物が主たる金属の酸化
物にドープするので、平板状物質の表面に前述した(イ
)〜(ハ)の何れかで足場れる導電性物質の被覆層を形
成させることができる。
This calcination converts the metal hydroxide into a metal oxide,
Furthermore, since the metal oxide is doped into the main metal oxide, a coating layer of a conductive material is formed on the surface of the flat material, which can be scaffolded by any of (a) to (c) described above. can be done.

こうして得られる本発明の素材は、当該素材1Qvrt
%、流動・ぞラフイ/(日本薬局方)90wt%の混合
物を、塗膜の厚さ60μで厚さ3mmの石英ガラスに塗
布した場合に於て、波長600nmの光の透過率が50
%以上であるという光栄的特性を有すると共に、体積固
有抵抗率が200Ω・cm以下であるという電気的特性
を有している。これ畢こ加えて、本発明で得られる素材
は合成樹脂や塗料に均一に分散させることも容易である
。従って、本発明の方法で製造される光透過性で導電性
の平板状号末は、透明な合成樹脂フィルムや塗膜に導電
性を付与するためのフイ2−として極めて有用である。
The material of the present invention obtained in this way is the material 1Qvrt
When a mixture of 90 wt% of Ryu Zorafi/(Japanese Pharmacopoeia) is applied to a 3 mm thick quartz glass with a coating thickness of 60 μ, the transmittance of light at a wavelength of 600 nm is 50%.
% or more, and has the electrical property of having a volume resistivity of 200 Ω·cm or less. In addition, the material obtained by the present invention can be easily dispersed uniformly in synthetic resins and paints. Therefore, the light-transmitting and electrically conductive plate-like powder produced by the method of the present invention is extremely useful as a film for imparting electrical conductivity to transparent synthetic resin films and coatings.

実施例1 予め煮沸処理した長径lO〜30μm、短径1〜30μ
m、厚さ0.1〜0.3μm1比表面積7 m”/ g
のインド産白雲母80gを水1500ccに分散場せ、
この分散液に希塩酸を加えてpH1,6の雲母分散液を
PJI4製した。一方、塩化錫(8nC1,−5H,O
) 93 gと塩化アンチモン(5bC1,) 9.4
 gを濃塩酸350ccに溶解させて塩化物溶液t−調
製した。
Example 1 Pre-boiled major axis lO ~ 30 μm, minor axis 1 ~ 30 μm
m, thickness 0.1-0.3 μm 1 specific surface area 7 m”/g
80g of Indian muscovite was dispersed in 1500cc of water,
Dilute hydrochloric acid was added to this dispersion to prepare a mica dispersion having a pH of 1.6 as PJI4. On the other hand, tin chloride (8nC1, -5H, O
) 93 g and antimony chloride (5bC1,) 9.4
g was dissolved in 350 cc of concentrated hydrochloric acid to prepare a chloride solution.

この塩化物溶液を前記の雲母分散液に10時間かけて徐
々正こ滴下すると共に、アンモニア水を加えて混合液の
pHを1.6に常時維持し、混合液の温度も常時50℃
に保持して塩化物の加水分解を行なった。
This chloride solution was gradually added dropwise to the above-mentioned mica dispersion over a period of 10 hours, and aqueous ammonia was added to maintain the pH of the mixture at 1.6, and the temperature of the mixture was always 50°C.
Hydrolysis of chloride was carried out by maintaining the temperature at

塩化物溶液の滴下終了後、固体物質を分散媒から分離し
て水洗し、しかる後温度110”C1関係湿度5チの空
気が流通する乾燥器内で、固体物質を12時間乾燥した
。次いでこの固体物質を酸化性琴曲気中650℃で2時
間焼成し、本発明の平板状素材を得た。この素材は10
.8wt%のアンチモンがドープした酸化錫からなる厚
さ700Xの導電性物質にて、雲母が被覆された状態に
あり、その体積固有抵抗率は10Ω・Cmであった。ま
た、この素材IQwtチと流動ノぐラフイン(日本薬局
方) 90 wt%との混合物を、厚さ3 mmの石英
ガラスに塗膜の厚さ601i ntで塗布し、その石英
ガラスの光透過率を波長6001mの元で測定したとこ
ろ、63%であった。
After the addition of the chloride solution was completed, the solid material was separated from the dispersion medium, washed with water, and then dried for 12 hours in a drier with air flowing through it at a temperature of 110" C1 and relative humidity of 5 cm. The solid material was then dried for 12 hours. The solid material was fired at 650°C for 2 hours in an oxidizing atmosphere to obtain a flat material of the present invention.
.. The mica was coated with a 700X thick conductive material made of tin oxide doped with 8 wt % antimony, and the specific volume resistivity was 10 Ω·Cm. In addition, a mixture of this material IQwt and 90 wt% of fluidized graphite (Japanese Pharmacopoeia) was applied to a 3 mm thick quartz glass to a film thickness of 601 int, and the light transmittance of the quartz glass was measured. When measured at a wavelength of 6001 m, it was 63%.

実施例2 実施例1の白雲母に代えて、0,5チ水酸化ナトリウム
水溶液で処理した長径40〃m、短径10〜4077m
、厚さ377m、比表面積1mVgのガラス薄片を使用
し、塩化物溶液の滴下所要時間を70時間に変更した以
外は実施例1と全く同じ方法で本発明の素材を得た。
Example 2 In place of the muscovite of Example 1, a long axis of 40 m and a short axis of 10 to 4077 m was treated with a 0.5-thiodium hydroxide aqueous solution.
The material of the present invention was obtained in exactly the same manner as in Example 1, except that a glass thin piece having a thickness of 377 m and a specific surface area of 1 mVg was used, and the time required for dropping the chloride solution was changed to 70 hours.

この素材の被覆層の厚さは約70.0又であり、体積固
有抵抗率は20Ω・cmであった。また、この素材を用
いて実施例1と同様な方法により石英ガラ2の光透過率
を測定したところ、その値は61%であった。
The thickness of the coating layer of this material was about 70.0 mm, and the specific volume resistivity was 20 Ω·cm. Furthermore, when the light transmittance of the quartz glass 2 was measured using this material in the same manner as in Example 1, the value was 61%.

実施例3 実施例1で用いた白雲母80gを水1500 ccに分
散させ、希塩酸を加えてp)(1,3の雲母分散液を得
た。また、塩化錫(5nC1,−!il(、o ) 9
3g、塩化アンチモン(8bCI、 ) 7.2 g及
び塩化テ/l/ k (TeC1,) 0.3 gを濃
塩酸350ccに溶解させて塩化物溶液余得た。
Example 3 80 g of muscovite used in Example 1 was dispersed in 1500 cc of water, and dilute hydrochloric acid was added to obtain a mica dispersion of p)(1,3. o) 9
3 g of antimony chloride (8bCI, ) and 0.3 g of Te/l/k (TeC1,) chloride were dissolved in 350 cc of concentrated hydrochloric acid to obtain a chloride solution.

この塩化物溶液を前記の雲母分散液化10時間かけて徐
々に滴下すると共に、アンモニア水を加えて混合液のp
Hを1.3に常時維持し、混合液の温度も常時50°C
に保持して塩化物の加水分解を行なった。
This chloride solution was gradually added dropwise over the course of the mica dispersion liquefaction described above for 10 hours, and aqueous ammonia was added to increase the pH of the mixture.
H is always maintained at 1.3, and the temperature of the mixed liquid is always 50°C.
Hydrolysis of chloride was carried out by maintaining the temperature at

塩化物溶液の滴下終了後、固体物質を分散媒から分離し
て水洗し、しかる後温度110℃、関係湿度5%の空気
が流通する乾燥器内で、固体物質を12時間乾燥した。
After the addition of the chloride solution was completed, the solid material was separated from the dispersion medium, washed with water, and then dried for 12 hours in a dryer with air flowing through it at a temperature of 110 DEG C. and a relative humidity of 5%.

次いでこの固体物質全酸化性雰囲気中650℃で2時間
焼成し、本発明の平板状素材を得た。この素材は8.5
 wt%のアンチモ/と03%のテルルがドープした酸
化錫からなる厚さ約700Xの導電性物質にて雲母が被
覆された状態におり、このものの体積固有抵抗率は59
・cmであった。また、実施例1と同一の測定方法によ
る光透過率は65%であった。
This solid material was then fired at 650° C. for 2 hours in an oxidizing atmosphere to obtain a flat material of the present invention. This material is 8.5
The mica is coated with a conductive material of approximately 700× thickness consisting of tin oxide doped with 0.3% wt% antimony and 3% tellurium, and the specific volume resistivity of this material is 59.
・It was cm. Furthermore, the light transmittance measured by the same measuring method as in Example 1 was 65%.

実施例4 実施例1で用いた白雲母100 g’e水1500cc
に分散させ、これに希塩酸を加えてpH4,5の雲母分
散液を得た。また、塩化インジウム(InCl、 ) 
161.1 gと塩化錫(5nC1,+ 5 )L12
 )16.3gを濃塩酸500 ccに溶解させて塩化
物溶液余得た。
Example 4 Muscovite used in Example 1 100g'e water 1500cc
and dilute hydrochloric acid was added thereto to obtain a mica dispersion having a pH of 4.5. Also, indium chloride (InCl, )
161.1 g and tin chloride (5nC1, + 5) L12
) was dissolved in 500 cc of concentrated hydrochloric acid to obtain a chloride solution.

この塩化物溶液を前記の雲母分散液に15時間かけて徐
々に滴下すると共に、アンモニア水を加えて混合液のp
Hを45に常時維持し、混合液の温度も常時50″Cに
保持して塩化物の加水分解を行なった。
This chloride solution was gradually added dropwise to the above-mentioned mica dispersion over 15 hours, and aqueous ammonia was added to increase the pH of the mixture.
Hydrolysis of chlorides was carried out by constantly maintaining H at 45 and the temperature of the mixture at 50''C.

塩化物溶液の滴下終了後、固体物質を分散媒から分離し
て水洗し、しかる後温度110℃、関係湿度5チの空気
が流通する乾燥器内で、固体物質を12時間乾燥した。
After the addition of the chloride solution was completed, the solid material was separated from the dispersion medium, washed with water, and then dried for 12 hours in a drier with air flowing through it at a temperature of 110 DEG C. and a relative humidity of 5 cm.

次いでこの固体物質を不活性ガス雰囲気中650℃で2
時間焼成し、本発明の平板状素材を得た。この素材は5
、 l wt%の錫がドープした酸化インジウムからな
る厚さ約650Xの導電性物質にて、雲母が被覆された
状態にあり、このものの体積固有抵抗率は0.5Ω・c
mであった。寸だ、実施例と同一の測定法lこよる光透
過率は68チであった。
This solid material was then heated at 650°C in an inert gas atmosphere for 2
The material was fired for a period of time to obtain a flat material of the present invention. This material is 5
The mica is coated with a conductive material made of indium oxide doped with 1 wt% of tin and has a thickness of about 650×, and the specific volume resistivity of this material is 0.5Ω・c.
It was m. In fact, the light transmittance was 68 cm using the same measurement method as in the example.

実施例5 実施例1で用いた白雲母80g’i水1500 ccに
分散させ、これに希硫酸を加えてpH2,7の雲母分散
液を調製した。また、硫酸錫(5nSO,)5 ’i 
g ト’4atR7yfモy (Sb、(804)3)
 11 gを濃硫1’11300R1に溶解させて硫酸
塩溶液を得た。
Example 5 80 g'i of the muscovite used in Example 1 was dispersed in 1500 cc of water, and dilute sulfuric acid was added thereto to prepare a mica dispersion with a pH of 2.7. Also, tin sulfate (5nSO,)5'i
g to'4atR7yfmoy (Sb, (804)3)
A sulfate solution was obtained by dissolving 11 g in concentrated sulfur 1'11300R1.

この硫酸塩溶液を前記の雲母分散液に10時間かけて徐
々に滴下すると共に、アンモニア水を加えて混合液のp
Hを2.7#こ常時維持し、混合液の温度も常時60〜
70℃をこ保持して硫酸塩の加水分解を行なった。
This sulfate solution was gradually added dropwise to the above-mentioned mica dispersion over 10 hours, and aqueous ammonia was added to increase the pH of the mixture.
H is always maintained at 2.7#, and the temperature of the mixed liquid is always 60 ~
The sulfate was hydrolyzed while maintaining the temperature at 70°C.

硫fR塩溶液の滴下終了後、固体物質を分散媒から分離
して水洗し、し、かる後温度110℃、関係湿度5%の
空気が流通する乾燥器内で、固体物質を12時間乾燥し
た。次いでこの固体物質を酸化雰囲気中650°Cで2
時間焼成し、本発明の平板状素材を得た。この素材は1
0.8wt%のアンチモンがドープした酸化錫からなる
厚さ約700Xの導電性物質にし、雲母が被覆された状
態にあり、その体積固有抵抗率は20Ω・cmであった
。オた、実施例1と同一の測定法による光透過率は62
%であった。
After the addition of the sulfur fR salt solution, the solid material was separated from the dispersion medium, washed with water, and then dried for 12 hours in a dryer with air flowing at a temperature of 110° C. and relative humidity of 5%. . This solid material was then heated at 650°C in an oxidizing atmosphere for 2
The material was fired for a period of time to obtain a flat material of the present invention. This material is 1
The conductive material was made of tin oxide doped with 0.8 wt% antimony and had a thickness of about 700×, and was coated with mica, and had a specific volume resistivity of 20 Ω·cm. Additionally, the light transmittance measured by the same measurement method as Example 1 was 62
%Met.

Claims (1)

【特許請求の範囲】[Claims] 1、錫又はインジウムの硫酸塩又は塩化物と、ドーパン
ト金属の硫酸塩又は塩化物が溶解した酸性溶液を、光透
過性で微細な平板状物質の酸性分散液に徐々に滴下する
と共にアンモニア又は有機アミンを加え、混合液のpH
を0.5〜5.5の範囲lこ調節することにより、前記
した少なくとも2種の硫酸塩又は塩化物を加水分解する
ことにより、前記の平板状物質の表面を金属水酸化物で
被覆し、金属水酸化物で被覆された平板状物質を分散媒
から分離して洗浄し、次いでこの平板状物質を温和な条
件で乾燥した後、主たる金属に錫を用いた場合は酸化性
雰囲気で、主たる金属にインジウムを用いた場合は不活
性ガス雰囲気で焼成することからなる光透過性の平板状
導電性素材の製造法。
1. Gradually drop an acidic solution in which tin or indium sulfate or chloride and dopant metal sulfate or chloride are dissolved into an acidic dispersion of a light-transparent, fine plate-shaped material, and add ammonia or organic Add the amine and adjust the pH of the mixture.
The surface of the tabular material is coated with a metal hydroxide by hydrolyzing the at least two types of sulfates or chlorides by adjusting the , the plate-shaped material coated with metal hydroxide is separated from the dispersion medium and washed, and then this plate-shaped material is dried under mild conditions, and then, if tin is used as the main metal, in an oxidizing atmosphere. A method for manufacturing a light-transmitting flat conductive material, which involves firing in an inert gas atmosphere when indium is used as the main metal.
JP59108611A 1984-05-30 1984-05-30 Method of producing light transmission flat plate conductiveblank Granted JPS60253112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59108611A JPS60253112A (en) 1984-05-30 1984-05-30 Method of producing light transmission flat plate conductiveblank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59108611A JPS60253112A (en) 1984-05-30 1984-05-30 Method of producing light transmission flat plate conductiveblank

Publications (2)

Publication Number Publication Date
JPS60253112A true JPS60253112A (en) 1985-12-13
JPH0345487B2 JPH0345487B2 (en) 1991-07-11

Family

ID=14489185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59108611A Granted JPS60253112A (en) 1984-05-30 1984-05-30 Method of producing light transmission flat plate conductiveblank

Country Status (1)

Country Link
JP (1) JPS60253112A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61286224A (en) * 1985-06-12 1986-12-16 Ishihara Sangyo Kaisha Ltd Production of electroconductive fine powder
JPH01195606A (en) * 1988-01-29 1989-08-07 Mitsubishi Metal Corp White conductive powder
US5236737A (en) * 1989-08-02 1993-08-17 E. I. Du Pont De Nemours And Company Electroconductive composition and process of preparation
EP0630950A1 (en) * 1993-06-23 1994-12-28 Titan Kogyo Kabushiki Kaisha White conductive powder, a process for its production and a resin composition containing the powder
USH1447H (en) * 1992-11-20 1995-06-06 E. I. Du Pont De Nemours And Company Coated silica shells
US5512094A (en) * 1992-11-20 1996-04-30 E. I. Du Pont De Nemours And Company Metal oxide coated silica shells
US5585037A (en) * 1989-08-02 1996-12-17 E. I. Du Pont De Nemours And Company Electroconductive composition and process of preparation
US7449235B2 (en) 2003-04-01 2008-11-11 Hitachi Maxell, Ltd. Composite indium oxide particle which contains tin (Sn) and zinc (Zn), method for producing same, conductive coating material, conductive coating film, and conductive sheet

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61286224A (en) * 1985-06-12 1986-12-16 Ishihara Sangyo Kaisha Ltd Production of electroconductive fine powder
JPH0114174B2 (en) * 1985-06-12 1989-03-09 Ishihara Sangyo Kaisha
JPH01195606A (en) * 1988-01-29 1989-08-07 Mitsubishi Metal Corp White conductive powder
US5236737A (en) * 1989-08-02 1993-08-17 E. I. Du Pont De Nemours And Company Electroconductive composition and process of preparation
US5585037A (en) * 1989-08-02 1996-12-17 E. I. Du Pont De Nemours And Company Electroconductive composition and process of preparation
US5628932A (en) * 1989-08-02 1997-05-13 E. I. Du Pont De Nemours And Company Electroconductive composition and process of preparation
USH1447H (en) * 1992-11-20 1995-06-06 E. I. Du Pont De Nemours And Company Coated silica shells
US5512094A (en) * 1992-11-20 1996-04-30 E. I. Du Pont De Nemours And Company Metal oxide coated silica shells
EP0630950A1 (en) * 1993-06-23 1994-12-28 Titan Kogyo Kabushiki Kaisha White conductive powder, a process for its production and a resin composition containing the powder
US5853887A (en) * 1993-06-23 1998-12-29 Titan Kogo Kabushiki Kaisha White conductive powder, a process for its production and a resin composition containing the powder
US7449235B2 (en) 2003-04-01 2008-11-11 Hitachi Maxell, Ltd. Composite indium oxide particle which contains tin (Sn) and zinc (Zn), method for producing same, conductive coating material, conductive coating film, and conductive sheet

Also Published As

Publication number Publication date
JPH0345487B2 (en) 1991-07-11

Similar Documents

Publication Publication Date Title
EP0139557B1 (en) Light permeable conductive material
TWI292411B (en) Reduced temperature sensitive polymeric optical article and method of making same
JP3302186B2 (en) Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate
JPH02214782A (en) Conductive flaky pigment
Nagao et al. Fabrication of highly refractive, transparent BaTiO3/poly (methyl methacrylate) composite films with high permittivities
JP2007270099A (en) Composition for semiconductor light-emitting device sealing use
JPS60253112A (en) Method of producing light transmission flat plate conductiveblank
JP2002519829A (en) Light colored conductive coated particles
JP5400307B2 (en) White conductive powder and its use
JP2018123043A (en) Method for producing silica-based particle dispersion, silica-based particle dispersion, coating liquid for forming transparent coating film, and substrate with transparent coating film
JP2005186435A (en) Base material with hard coat film and coating solution for forming hard coat film
JP2005531661A (en) Curing and drying of surface coating systems and printing inks
JP2009108155A (en) Fibrous hollow silica fine particle dispersion, fibrous hollow silica fine particles, antireflection film forming composition containing the fine particles, and substrate with antireflection film
JP5400306B2 (en) White conductive powder and its use
JP4979876B2 (en) Base material with hard coat film
JP5284632B2 (en) Conductive fibrous hollow silica fine particle dispersoid and process for producing the same
KR20020033431A (en) Process for preparing electrically conductive pigments
US5201929A (en) Apparatus for producing flakes of glass
JP3955971B2 (en) Base material with antireflection film
De et al. Coarsening of Ag nanoparticles in SiO 2–PEO hybrid film matrix by UV light
JP2825926B2 (en) Glass materials, glass composite materials and their manufacturing methods
JP3557688B2 (en) Strip-shaped conductive powder, its production method and use
JP3647929B2 (en) Method for producing conductive antimony-containing tin oxide fine powder
CN110564406A (en) Quantum dot modified TiO2the synthesis method of the hybrid nano-rod and the optical transmission control device using the synthesis method
JP2020019692A (en) Zirconium nitride film and method of manufacturing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term