JPS60251667A - Thin-film transistor - Google Patents

Thin-film transistor

Info

Publication number
JPS60251667A
JPS60251667A JP10770784A JP10770784A JPS60251667A JP S60251667 A JPS60251667 A JP S60251667A JP 10770784 A JP10770784 A JP 10770784A JP 10770784 A JP10770784 A JP 10770784A JP S60251667 A JPS60251667 A JP S60251667A
Authority
JP
Japan
Prior art keywords
thin film
source
film transistor
gate electrode
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10770784A
Other languages
Japanese (ja)
Inventor
Mutsumi Matsuo
睦 松尾
Hiroyuki Oshima
弘之 大島
Satoshi Takenaka
敏 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP10770784A priority Critical patent/JPS60251667A/en
Publication of JPS60251667A publication Critical patent/JPS60251667A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a thin-film transistor, through which high mobility is acquired and which has self-alignment properties, by forming structure in which source-drain regions are shaped by a semiconductor layer, to which a high concentration impurity is added, and an intrinsic polycrystalline semiconductor layer, to which an impurity is not added, a gate insulating film layer and a gate electrode layer are laminated onto said regions in succession. CONSTITUTION:A semiconductor thin-film to which phosphorus as a high concentration impurity is added is used as a source region 5 and a drain region 6. The semiconductor thin-film containing phosphorus as the high concentration impurity may be deposited directly through a decompression CVD method by a gas in which phosphine and silane are mixed, but is can also be formed by implanting phosphorus ions to an intrinsic polycrystalline silicon thin-film. An intrinsic polycrystalline silicon film 4' is laminated and patterned, a gate insulating film 3 and a gate electrode 2 are laminated, a contact hole 9 is bored, and a source electrode terminal 7 and a drain electrode terminal 8 are shaped, thus completing a thin-film transistor.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、絶縁基板上でゲート電極がソース・ドレイン
領域よりも上側にある薄膜トランジスターにおいて、高
濃度不純物が添加された半導体層からなるソース・ドレ
イン領域とゲート電極の重なり構造に関するものであり
、重なりの仕方またはプロセスの追加によって、高移動
度を有した自己整合型の薄膜トランジスターや高耐圧の
薄膜トランジスターな提供するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a thin film transistor in which a gate electrode is located above a source/drain region on an insulating substrate, and in which the source/drain region is made of a semiconductor layer doped with a high concentration of impurities. The invention relates to an overlapping structure between a gate electrode and a gate electrode, and by changing the overlapping method or adding a process, a self-aligned thin film transistor with high mobility or a high breakdown voltage thin film transistor can be provided.

〔従来技術〕[Prior art]

近年、絶縁基板上に堆積した非晶質シリコンや多結晶シ
リコンχ能動領域として用いた薄膜トランジスターは、
液晶表示装置、論理回路、イメージセンサ等への応用と
して使われている。中でも非晶質シリコンヶ用いると低
温で大面積化が容易にでき、低コストの製品が実現でき
るため、多結晶シリコンを用いたテバイスよりもいちは
やく装置開発が進められている状況である。
In recent years, thin film transistors using amorphous silicon or polycrystalline silicon deposited on an insulating substrate as the active region,
It is used for applications such as liquid crystal display devices, logic circuits, and image sensors. Among these, the use of amorphous silicon makes it easy to increase the area at low temperatures and produce low-cost products, so equipment development is progressing faster than devices using polycrystalline silicon.

第1図は、従来の一般的な非晶質シリコンを用いた薄膜
トランジスターの断面図である。透明ガラス1上に、ゲ
ート電極2を堆イ貢しパターニングする。次にゲート絶
縁膜6と非晶質シリコン膜と高濃度不純物リンが象加さ
れたノース・ドレイン層とソース・ドレイン端子層乞順
次積層し、上側からソース電極端子7、ドレイン電極端
子8、ソース領域5、ドレイン領域6、非晶質シリコン
膜4乞パターン形成して完成する。この非晶質シリコン
薄膜トランジスターの大きな欠点は、次のごと(である
FIG. 1 is a cross-sectional view of a conventional general thin film transistor using amorphous silicon. A gate electrode 2 is deposited and patterned on a transparent glass 1. Next, a gate insulating film 6, an amorphous silicon film, a north drain layer in which high-concentration impurity phosphorus is added, and a source/drain terminal layer are sequentially laminated, and from the top, a source electrode terminal 7, a drain electrode terminal 8, a source The region 5, the drain region 6, and the amorphous silicon film 4 are patterned and completed. The major drawbacks of this amorphous silicon thin film transistor are as follows.

1、 高い移動展が得られないため、高速のスイッチン
グ素子としては不適当である。
1. It is unsuitable as a high-speed switching element because high transfer expansion cannot be obtained.

2 ソース・ドレイン領域乞パターン形成でつくるため
、元来ゲート′虹極との間に自己整合性がなく、大面積
になればなるほどそれは強調される。
2. Since the source/drain region is formed by patterning, there is originally no self-alignment between the gate and the rainbow pole, and this becomes more pronounced as the area becomes larger.

〔目的〕〔the purpose〕

本発明は、かかる欠点ビ除去したもので、その目的は、
高い移動度を得ることと同時に自己整合性を有する薄膜
トランジスターを提供することである。
The present invention eliminates such drawbacks, and its purpose is to:
An object of the present invention is to provide a thin film transistor that has high mobility and self-alignment at the same time.

〔概要〕〔overview〕

高い移動度を得るために、真性半導体薄膜として非晶質
シリコンでなく、多結晶シリコンを用いている。また多
結晶シリコンは、膜成長に伴って結晶粒径が増大し、欠
陥密度が′減少することからゲート電&を上側に形成す
る構造にする。また自己整合性乞有するためには、あら
かじめ、オフセット領域(ゲート電極がソース・ドレイ
ン領域に重ならない部分)乞もうけておき、ゲート電極
のパターンヶマスクにしたイオン打込みによりソース・
ドレイン領域乞形成する方法ンとる。
In order to obtain high mobility, polycrystalline silicon is used instead of amorphous silicon as the intrinsic semiconductor thin film. Furthermore, since the crystal grain size of polycrystalline silicon increases as the film grows and the defect density decreases, the structure is such that the gate electrode & is formed on the upper side. In addition, in order to ensure self-alignment, an offset region (a portion where the gate electrode does not overlap with the source/drain region) is prepared in advance, and ion implantation is performed using the pattern of the gate electrode as a mask.
How to form the drain region.

〔実施例〕〔Example〕

以下実施例に基づいて本発明の詳細な説明する。 The present invention will be described in detail below based on examples.

第2図は、真性半導体薄膜として多結晶シリコン膜4′
を用いた薄膜トランジスターの断面図である。まずソー
ス領域5、ドレイン領域、61として昼濃度不純物リン
が添加された半導体薄膜ケ用いる。
Figure 2 shows a polycrystalline silicon film 4' as an intrinsic semiconductor thin film.
FIG. First, a semiconductor thin film doped with day-concentration impurity phosphorus is used as the source region 5, drain region, and 61.

高濃度不純物リンの半導体薄膜は直接ホスフィンとシラ
ンを混合したガスで減圧CVD法により堆積してもよい
が、真性多結晶シリコン薄膜にリンイオンを打込みして
もつ(ることかできる。次に真性多結晶シリコン膜4′
乞積層してバターニング後ゲート絶縁膜6とゲート電極
2を積層してコンタクトホール9を開口したのち、ソー
ス電極端子7、ドレイン電極端子8乞形成して完成する
。第3図は、第2図にはない自己整合性7有した薄膜ト
ランジスターの断面図である。第2図とは異なり、ゲー
ト電極2が、高濃度不純物乞添加した半4体iのソース
φドレイン領域5,6上に重ならない構造で、ゲート電
極2のパターン形成後リンのイオン打込みを行なうこと
により新たなソース参じレイン領域5/、 6/Yつ(
ることで自己整合性を有するものである。
A semiconductor thin film with a high concentration of impurity phosphorus may be deposited directly by low pressure CVD using a gas mixture of phosphine and silane, but it can also be deposited by implanting phosphorus ions into an intrinsic polycrystalline silicon thin film. Crystalline silicon film 4'
After stacking and patterning, the gate insulating film 6 and the gate electrode 2 are stacked, a contact hole 9 is opened, and a source electrode terminal 7 and a drain electrode terminal 8 are formed to complete the process. FIG. 3 is a cross-sectional view of a thin film transistor having self-alignment 7, which is not present in FIG. Unlike in FIG. 2, the structure is such that the gate electrode 2 does not overlap the source φ drain regions 5 and 6 of the semi-quaternary body doped with high concentration impurities, and phosphorus ions are implanted after patterning the gate electrode 2. By this, new source reference rain regions 5/, 6/Y (
By doing so, it has self-consistency.

〔効果〕〔effect〕

以上のように本発明の構造は、高移動度を有した高速ス
イッチングが可能な薄膜トランジスターを作製できるば
かりでな(、イオン打込みのプロセスを入れることで自
己整合性を有するものである。また次のような句加効果
を生みだす。
As described above, the structure of the present invention not only makes it possible to fabricate a thin film transistor with high mobility and high-speed switching (it also has self-alignment by incorporating an ion implantation process. It produces a haiku effect like .

1、 高濃度の不純物を添加したソ」ス・ドレイン領域
乞イオン打込みにより形成する場せにおいて、真性多結
晶シリコンの堆積と同時に、ソース・ドレイン領域を低
抵抗にする。(単位面積当り数キロオームのものが数百
オーム°になる。)そのためソース・ドレイン電極端子
との接触抵抗を十分小さくすることができる。
1. In the case where a source/drain region doped with impurities at a high concentration is formed by ion implantation, the resistance of the source/drain region is made low at the same time as the intrinsic polycrystalline silicon is deposited. (The resistance of several kiloohms per unit area becomes several hundreds of ohms.) Therefore, the contact resistance with the source/drain electrode terminals can be made sufficiently small.

2、 真性多結晶シリコンの膜厚暑博(しても外部端子
との接触抵抗は変化しないため膜厚ン500A程度と薄
くすることが可能でオフ電流の低減とオン電流の増大が
おこりオンとオフの電流比の増大乞期待できる。
2. Even if the film thickness of intrinsic polycrystalline silicon increases (even if the contact resistance with external terminals does not change, the film thickness can be made as thin as about 500A, which reduces the off-state current and increases the on-state current. We can expect an increase in the off-state current ratio.

& 第4図のような、ゲート電極2が高濃度不純物乞添
加した半導体層からなるドレイン領域上に重ならないオ
フセットゲート構造の薄膜トランシスターン用いれば、
ドレイン層表面近くの電界集中が緩和され耐圧が高くな
るため、エレクトロルミネッセンスのディスプレイの駆
動が可能である。
& If a thin film transistor with an offset gate structure in which the gate electrode 2 does not overlap the drain region made of a semiconductor layer doped with high concentration impurities as shown in FIG. 4 is used,
Since the electric field concentration near the surface of the drain layer is relaxed and the withstand voltage is increased, it is possible to drive an electroluminescent display.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の非晶質シ゛リコン乞用いた薄膜トラン
ジスターの断面図である。第2〜4図は、本発明による
多結晶シリコンケ用いた薄膜トランジスターの断面図で
あり、第2図は、自己整合性が無いもの、第3図は自己
整合性2有するもの、第4図は、オフセットゲート構造
のものである。 1・・・・・・透明ガラス 2・・・・・・ゲート電極
3・・・・・・ゲート絶縁膜 4・・・・・・非晶質シ
リコン膜4′・・・・・・多結晶シリコン膜 5・・・
・・・ソース領域5′・・・・・打込みで形成された新
たなソース領域6・・・・・・ドレイン領域 6′・・・・・・打込みで形成された新たなドレイン領
域7・・・・・・ソース電極端子 8・・・・・・ドレイン電極端子 9・・・・・・コンタクトホール。 以上 出願人 株式会社諏訪精工舎 代理人弁理士 最 上 務 第2図 第4図
FIG. 1 is a cross-sectional view of a conventional thin film transistor using amorphous silicon. Figures 2 to 4 are cross-sectional views of thin film transistors using polycrystalline silicon according to the present invention. Figure 2 shows one without self-alignment, Figure 3 shows one with self-alignment 2, and Figure 4 shows one with self-alignment. , which has an offset gate structure. 1... Transparent glass 2... Gate electrode 3... Gate insulating film 4... Amorphous silicon film 4'... Polycrystalline Silicon film 5...
... Source region 5' ... New source region 6 formed by implantation ... Drain region 6' ... New drain region 7 formed by implantation . . . Source electrode terminal 8 . . . Drain electrode terminal 9 . . . Contact hole. Applicant: Suwa Seikosha Co., Ltd. Representative Patent Attorney Tsutomu Mogami Figure 2 Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)絶縁基板上に堆積された半導体薄膜を能動領域と
して用いた薄膜トランジスターにおいて、ソースφドレ
イン領域Z高濃度不純物を添加した半導体層より形成し
、該領域の上に不純物を添加しない真性多結晶半導体層
とゲート絶縁膜層とゲート電極層乞順次積層した構造Z
%徴とする薄膜トランジスター。
(1) In a thin film transistor using a semiconductor thin film deposited on an insulating substrate as an active region, the source φ drain region Z is formed from a semiconductor layer doped with a high concentration of impurities, and an intrinsic multilayer transistor with no impurities added above the region is formed. Structure Z in which a crystalline semiconductor layer, a gate insulating film layer, and a gate electrode layer are sequentially laminated
Thin film transistor with % characteristics.
(2)前記真性多結晶半導体層が多結晶シリコン薄膜で
ある特許請求の範囲第1項記載の薄膜トランジスター。
(2) The thin film transistor according to claim 1, wherein the intrinsic polycrystalline semiconductor layer is a polycrystalline silicon thin film.
(3) ゲート電極が前記高濃度不純!Iylを添加し
た半導体層からなるドレイン領域上に重ならないオフセ
ットゲート構造をもつ特許請求の範囲第1項記載の薄膜
トランジスター。
(3) The gate electrode has the above-mentioned high concentration impurity! The thin film transistor according to claim 1, having an offset gate structure that does not overlap the drain region made of the semiconductor layer doped with Iyl.
(4) ゲート電極か尚濃度不純物Z范加した半導体層
のソース・ドレイン領域上に重ならない構造で、かつソ
ース・ドレイン領域の不純物と同型のイオンの打込みt
ゲート電極をマスクに行ない、新たにソース・ドレイン
領域を形成した特許請求の範囲第1項記載の薄膜トラン
ジスター。
(4) Implantation of ions of the same type as the impurity in the source/drain region in a structure in which the gate electrode does not overlap the source/drain region of the semiconductor layer to which the impurity concentration Z has been increased.
2. The thin film transistor according to claim 1, wherein source and drain regions are newly formed using the gate electrode as a mask.
JP10770784A 1984-05-28 1984-05-28 Thin-film transistor Pending JPS60251667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10770784A JPS60251667A (en) 1984-05-28 1984-05-28 Thin-film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10770784A JPS60251667A (en) 1984-05-28 1984-05-28 Thin-film transistor

Publications (1)

Publication Number Publication Date
JPS60251667A true JPS60251667A (en) 1985-12-12

Family

ID=14465903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10770784A Pending JPS60251667A (en) 1984-05-28 1984-05-28 Thin-film transistor

Country Status (1)

Country Link
JP (1) JPS60251667A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150278A (en) * 1984-12-25 1986-07-08 Toshiba Corp Thin film transistor
JPS6386572A (en) * 1986-09-30 1988-04-16 Seiko Epson Corp Thin film transistor
JPS6386571A (en) * 1986-09-30 1988-04-16 Seiko Epson Corp Thin film transistor
JPS6386573A (en) * 1986-09-30 1988-04-16 Seiko Epson Corp Thin film transistor
JPS6386570A (en) * 1986-09-30 1988-04-16 Seiko Epson Corp Thin film transistor
JPS63107068A (en) * 1986-09-30 1988-05-12 Seiko Epson Corp Thin film transistor
JPS63190386A (en) * 1986-10-03 1988-08-05 Seiko Epson Corp Thin-film transistor and manufacture thereof
US4821091A (en) * 1986-07-22 1989-04-11 The United States Of America As Represented By The United States Department Of Energy Polysilicon photoconductor for integrated circuits
JPH01136373A (en) * 1987-11-24 1989-05-29 Nippon Telegr & Teleph Corp <Ntt> Manufacture of thin-film semiconductor device
JPH0230147A (en) * 1988-07-19 1990-01-31 Nec Corp Manufacture of thin film transistor
JPH07183520A (en) * 1993-12-24 1995-07-21 Nec Corp Thin film transistor
US5648663A (en) * 1985-08-05 1997-07-15 Canon Kabushiki Kaisha Semiconductor structure having transistor and other elements on a common substrate and process for producing the same
DE4445568C2 (en) * 1994-12-19 2002-11-28 Korea Electronics Telecomm Method of manufacturing a thin film transistor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105574A (en) * 1981-12-17 1983-06-23 Seiko Epson Corp Thin film transistor
JPS58115864A (en) * 1981-12-28 1983-07-09 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device
JPS58123772A (en) * 1982-01-19 1983-07-23 Canon Inc Semiconductor element
JPS58142566A (en) * 1982-02-19 1983-08-24 Seiko Epson Corp Thin film semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105574A (en) * 1981-12-17 1983-06-23 Seiko Epson Corp Thin film transistor
JPS58115864A (en) * 1981-12-28 1983-07-09 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device
JPS58123772A (en) * 1982-01-19 1983-07-23 Canon Inc Semiconductor element
JPS58142566A (en) * 1982-02-19 1983-08-24 Seiko Epson Corp Thin film semiconductor device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150278A (en) * 1984-12-25 1986-07-08 Toshiba Corp Thin film transistor
US5648663A (en) * 1985-08-05 1997-07-15 Canon Kabushiki Kaisha Semiconductor structure having transistor and other elements on a common substrate and process for producing the same
US4821091A (en) * 1986-07-22 1989-04-11 The United States Of America As Represented By The United States Department Of Energy Polysilicon photoconductor for integrated circuits
JPS6386572A (en) * 1986-09-30 1988-04-16 Seiko Epson Corp Thin film transistor
JPS6386571A (en) * 1986-09-30 1988-04-16 Seiko Epson Corp Thin film transistor
JPS6386573A (en) * 1986-09-30 1988-04-16 Seiko Epson Corp Thin film transistor
JPS6386570A (en) * 1986-09-30 1988-04-16 Seiko Epson Corp Thin film transistor
JPS63107068A (en) * 1986-09-30 1988-05-12 Seiko Epson Corp Thin film transistor
JPS63190386A (en) * 1986-10-03 1988-08-05 Seiko Epson Corp Thin-film transistor and manufacture thereof
JPH01136373A (en) * 1987-11-24 1989-05-29 Nippon Telegr & Teleph Corp <Ntt> Manufacture of thin-film semiconductor device
JPH0230147A (en) * 1988-07-19 1990-01-31 Nec Corp Manufacture of thin film transistor
JPH07183520A (en) * 1993-12-24 1995-07-21 Nec Corp Thin film transistor
DE4445568C2 (en) * 1994-12-19 2002-11-28 Korea Electronics Telecomm Method of manufacturing a thin film transistor

Similar Documents

Publication Publication Date Title
JP2731056B2 (en) Method for manufacturing thin film transistor
KR100205373B1 (en) Manufacturing method of liquid crystal display element
JPH03173480A (en) Manufacture of semiconductor device having multilayer conduction line lying on board
JPH03155676A (en) Thin film transistor and manufacture and device therefor
JPS60251667A (en) Thin-film transistor
JPH02166762A (en) Compact cmos device and
JPH0818016A (en) Preparation of semiconductor
JPH06349853A (en) Mos transistor and its manufacture
US5652158A (en) Method for making thin film transistors for a liquid crystal display
JP2572379B2 (en) Method for manufacturing thin film transistor
JP3057770B2 (en) Method for manufacturing thin film transistor
JPH08167646A (en) Simox substrate, manufacture of simox substrate and manufacture of semiconductor device
JPH0637314A (en) Thin-film transistor and manufacture thereof
JPH0697694B2 (en) Complementary thin film transistor
JPH06260644A (en) Manufacture of semiconductor device
KR940007652B1 (en) Method of fabricating a dynamic memory
JP2001185628A (en) Semiconductor device and method of fabrication
JPH084143B2 (en) Semiconductor device and manufacturing method thereof
JPH06275830A (en) Accumulation-type polycrystalline silicon thin-film transistor
JPH0230147A (en) Manufacture of thin film transistor
JP2777101B2 (en) Transistor and manufacturing method thereof
JP2754184B2 (en) Thin film transistor and method of manufacturing the same
JPS61231767A (en) Manufacture of active matrix substrate
JPH11150277A (en) Thin-film transistor and manufacture thereof
KR0172256B1 (en) Tft having a double gate electrode