JPS60247841A - Disk for optical memory - Google Patents

Disk for optical memory

Info

Publication number
JPS60247841A
JPS60247841A JP59103813A JP10381384A JPS60247841A JP S60247841 A JPS60247841 A JP S60247841A JP 59103813 A JP59103813 A JP 59103813A JP 10381384 A JP10381384 A JP 10381384A JP S60247841 A JPS60247841 A JP S60247841A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal molecules
disk
lights
laser lights
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59103813A
Other languages
Japanese (ja)
Inventor
Shinji Morozumi
両角 伸治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP59103813A priority Critical patent/JPS60247841A/en
Publication of JPS60247841A publication Critical patent/JPS60247841A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/25Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing liquid crystals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To extend the life of a laser system, by using a liquid crystal material as the storage material of the domain forming pattern of a disk for optical memory. CONSTITUTION:A thin-film metallic layer 11 to be used for providing a reflecting surface is formed on a substrate 10 made of glass, plastic, etc., and liquid crystal molecules 12 are regularly arranged in X-axis direction on the layer 11. When the deflected wave surface of writing laser lights is inputted in a specific spot under the condition shown in Fig. (a), part of the liquid crystal molecules 12 is disturbed in orientation and becomes the condition shown in Fig. (b). Reading laser lights are irradiated upon the disturbed liquid crystal molecules 13. The deflected wave surface of the reading laser lights is in X-axis which is the same as the arranging direction of the molecules. The laser lights are scattered and distributed in various directions and only 10% or less quantity of the lights returns to a pickup located above. On the other hand, the laser lights made incident on the liquid crystal molecules 12 which are not distributed in orientation are reflected by the reflecting surface 11 and almost all quantity of the lights is returned to the pickup as shown by Fig. (c). Therefore, the optical characteristic changes at a low temperature and the stability can be maintained for a long time.

Description

【発明の詳細な説明】 〔技術分野〕 本発明け、光アクセスを用いた記憶用ディスクいわゆる
通称光メモリー用ディスクに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a storage disk using optical access, commonly known as an optical memory disk.

〔従来技術〕[Prior art]

従来光によるアクセス方式のディスクとしてTe系の合
金薄膜を用いてDRAW (Direct Read 
AfteτVlrjte )という光メモリーが考えら
れている。これはディスク上に微少レーザのスボlトを
拙射することにより、薄膜を蒸発はせて、所望のピット
を形成はせる。このピットの形成パターン(ピットの組
み合わせ)Kよりデータを省き込んで記憶はせる。この
後、薄膜を蒸発はせることない程度のレーザによりピッ
トの配列を読み出して蓄えたデータを出力する。第1図
はこの様子を示しており、光ディスク2と光ピックア・
ノブIKより動作する。この方式の特徴はレーザビーム
のスポットを極限的に小づくできることにより1枚あた
り数Gビットという大規模な情報フッイルを実現できる
。一般に装置のコンパクト化のため紀半導体レーザの使
用が普通とられているが、半導体レーザは出力が小さい
ために、ピットを形成する薄膜はレーザのできるだけ小
ざな出力、即ち低温で蒸発する材料が選ばれる、例えば
Tg系の合金や酸化物け低温で蒸発するが、それだけ不
安定であり長時間の記憶保持に問題があった、 〔目的〕 従って本発明の目的は、このような光メモリー用のディ
スクとして、低温で光学的特性が変化しかつ長時間の安
定性を保持する材料を提供することにある。
DRAW (Direct Read
An optical memory called AfteτVlrjte) has been considered. This evaporates a thin film by projecting a minute laser beam onto the disk, forming desired pits. Data is omitted from this pit formation pattern (pit combination) K and stored. Thereafter, the pit arrangement is read out using a laser beam that does not evaporate the thin film, and the stored data is output. Figure 1 shows this situation, showing the optical disc 2 and the optical pick-up.
Operates from knob IK. The feature of this method is that the spot of the laser beam can be made extremely small, thereby realizing a large-scale information film of several Gbits per sheet. In order to make the device more compact, semiconductor lasers are generally used, but since the output of semiconductor lasers is small, the thin film that forms the pits is selected from materials that evaporate at low temperatures. For example, Tg-based alloys and oxides evaporate at low temperatures, but are unstable and have problems with long-term memory retention. The object of the present invention is to provide a material that can be used as a disk and whose optical properties change at low temperatures and which maintains long-term stability.

〔概要〕〔overview〕

本発明の光メモリー用ディスクは、従来表示装置の分野
で用いられてきた液晶を用いることにある。特に液晶材
料の中でも熱変化して保持するスメクティックタイプ、
又は前記液晶に染料を混入したタイプが適している。
The optical memory disk of the present invention uses a liquid crystal that has been conventionally used in the field of display devices. In particular, among liquid crystal materials, smectic type, which undergoes thermal change and retains its properties,
Alternatively, a type in which a dye is mixed into the liquid crystal is suitable.

第2図は本発明の原理図を示したものである。FIG. 2 shows a principle diagram of the present invention.

ガラスやプラスチック等の基板10上に反射面を形成す
るための薄膜の金属層11を形成し、この上に規則正し
くx軸方向忙配列した液晶分子12がある。(イ)の状
態において、まず書き込み用のレーザ光線の偏波面が、
光をよく吸収するように液晶分子の配列方向とけ直角の
Y軸方向に保りてあろ特定のスボリトに入力する。その
結果一部のみ配向が乱これて(ロ)のようになる。この
乱プれた液晶分子13上に請み取り用のレーザ光線を照
射する。この時のレーザ光の偏波面は、光をよく透過す
るよちに液晶分子の配列方向と同方向のX軸である。配
向が乱きれた液晶分子13に照射され次レーザ光は散乱
はれて、様々な方向に飛んでゆき真上のピックアップに
戻る光は10%以下になる。
A thin metal layer 11 for forming a reflective surface is formed on a substrate 10 made of glass, plastic, etc., and liquid crystal molecules 12 are arranged regularly in the x-axis direction on this metal layer 11. In state (a), first the polarization plane of the writing laser beam is
In order to absorb light well, the direction of alignment of liquid crystal molecules must be maintained in the Y-axis direction at right angles to the input to a specific suborit. As a result, only a portion of the orientation is disordered, as shown in (b). A pickup laser beam is irradiated onto the scattered liquid crystal molecules 13. The plane of polarization of the laser beam at this time is the X-axis in the same direction as the alignment direction of the liquid crystal molecules so that the light can be transmitted well. The laser light is irradiated onto the liquid crystal molecules 13 whose orientation is disordered, and then is scattered and travels in various directions, with less than 10% of the light returning to the pickup directly above.

一方配向の乱されなかった液晶分子12に入射したレー
ザ光は反射面11で反射しほとんどの光は真上のピ・ノ
クア・ツブに戻される、(ハ)はこの様子を平面図を用
いて示している。腓み増り用のレーザの偏波面は左の矢
印の方向である。
On the other hand, the laser light incident on the liquid crystal molecules 12 whose orientation is not disturbed is reflected by the reflecting surface 11, and most of the light is returned to the pi-no-qua-tube directly above. (C) shows this situation using a plan view. It shows. The polarization plane of the laser for increasing the angle is in the direction of the arrow on the left.

本発明の読入地り方式は4つの#l入合わせが考支らね
る。読み取り用レーザの偏波面が、液晶分子の配列方向
と平行な場合と直角の場合、又液晶下部の反射板11を
用いる場合と用いない場合、即ちこの2つのパラメータ
の2状態の組み合わせによる4つの場合である。第2図
の例は反射層を用いて、かつレーザの偏波面が液晶分子
と平行な場合である。その仲の場合、測知ば反射板を用
いずに、かつ、レーザの偏波面が液晶分子と直角の組み
合わせにおいては、ピ・ツクアップ系に戻ってくる光は
、液晶分子の配向が乱された領域は散乱光として10%
程度になるが、乱これなかった領域では、一部は液晶分
子に吸収され、残りは基板の下方へ透過してしまうので
殆んど戻らなくなる。
In the reading method of the present invention, four #l entries cannot be considered. When the polarization plane of the reading laser is parallel or perpendicular to the alignment direction of the liquid crystal molecules, and when the reflection plate 11 below the liquid crystal is used or not, in other words, there are four types depending on the combination of two states of these two parameters. This is the case. The example shown in FIG. 2 is a case where a reflective layer is used and the polarization plane of the laser is parallel to the liquid crystal molecules. In the middle case, if a reflector is not used and the polarization plane of the laser is perpendicular to the liquid crystal molecules, the light returning to the pick-up system will be reflected in the area where the orientation of the liquid crystal molecules is disturbed. is 10% as scattered light
However, in the undisturbed region, part of the light is absorbed by the liquid crystal molecules, and the rest is transmitted downward through the substrate, so it hardly ever returns.

この場合t42図の例よ轢も光信号は弱くなるが、戻り
光によるO/′N比(−?ヤリアーノイズ比)を低下ζ
せることなく信号をとらえることができろ。
In this case, as shown in the example in the t42 diagram, the optical signal becomes weaker when the vehicle is hit, but the O/'N ratio (-?Year noise ratio) due to the returned light decreasesζ
Be able to catch the signal without letting it go.

戻り光によるO/N比の低下は、読み出し用の光出力と
なるレーザの光軸と読み取り用の光検出器(フォト・ダ
イオード等)が置かれる光軸が同一線上にあるので、光
検出器に入力きれる光が、全てディスク面からの反、射
光でなく、光出力となりレーザの出力が直接入り込んで
くることによる。
The decrease in the O/N ratio due to returned light is caused by the fact that the optical axis of the laser that outputs the light for reading and the optical axis on which the reading photodetector (photo diode, etc.) is placed are on the same line. This is because all of the light that can be input to the disk is not reflected or emitted from the disk surface, but becomes optical output and the output of the laser enters directly.

ところが前述の方式はディスク面からの散乱光を拾うた
め、必ずしも、光検出器の光軸を出力用のレーザダイオ
ードの光軸と一致させる必要がなく少しずらしておけば
よい、この結果数2図よりも0/N比において優りるこ
ともある。
However, since the above-mentioned method picks up scattered light from the disk surface, the optical axis of the photodetector does not necessarily have to match the optical axis of the output laser diode, and can be slightly shifted. In some cases, the 0/N ratio is superior to that of the 0/N ratio.

次にこの液晶材料を用Vまた光ディスクの構造について
述べる。
Next, the structure of an optical disk using this liquid crystal material will be described.

第3図は従来の液晶パネルに類似した構造であり、外形
は当然ながら円形である、下部基板20上に金属の光反
射嗅を形成し、上部基板22とスペーサ23により液晶
材料24をサンドイッチする。
FIG. 3 shows a structure similar to a conventional liquid crystal panel, in which the outer shape is circular as a matter of course. A metal light-reflecting panel is formed on a lower substrate 20, and a liquid crystal material 24 is sandwiched between an upper substrate 22 and a spacer 23. .

第4図は、ディスクを形成する上で第3図よりセルの厚
みを等測的にうすくして高密9化を可症とする方式であ
る。この時の液晶材料は沸点の高めの材料であり、常温
付近では固体に近い状態となっているものを選択する。
FIG. 4 shows a method in which the thickness of the cells is made isometrically thinner than that shown in FIG. 3 in forming a disk, thereby making it possible to achieve high density. The liquid crystal material used at this time is a material with a high boiling point, and one that is close to a solid state at around room temperature is selected.

円形基板30上に反射用の金属膜31を形成後、基板3
0を約50°C〜60℃の高温に保って、液晶材料をス
ピンコードして、2〜5μmの均一の膜厚となった所で
、更に100℃程度の高温にする2、分子が配向する。
After forming the reflective metal film 31 on the circular substrate 30, the substrate 3
0 is kept at a high temperature of approximately 50°C to 60°C, the liquid crystal material is spin-coded, and when a uniform film thickness of 2 to 5 μm is obtained, the temperature is further increased to approximately 100°C 2. The molecules are aligned. do.

この後に低温に冷却して固体になった所で、オーバコー
ト材32をコートしてから常温にもどす。
Thereafter, it is cooled to a low temperature and becomes solid, after which it is coated with an overcoat material 32 and then returned to room temperature.

この構造では液晶体が室温では液晶と固体に中間位の状
態であるので比較的固い状態を維持している。又液晶の
厚みが2〜3μmとへすくできるのでレーザ光の拡散が
少なく、スポットの微小化が可能となり、結果としてド
メインの大きさが小ざくなることにより、大容量化を可
能とする。
In this structure, the liquid crystal is in a state intermediate between liquid crystal and solid at room temperature, so it maintains a relatively hard state. In addition, since the thickness of the liquid crystal can be reduced to 2 to 3 μm, there is less diffusion of laser light, making it possible to miniaturize the spot, and as a result, the size of the domain becomes smaller, making it possible to increase the capacity.

第5図及び第6図は液晶分の配向方法について示してい
る。通常液晶分子はラビングと呼ばれる゛ように木綿等
の繊維にて、配向剤と呼ばれるポリビニールアルコール
(PvA)等の有機材料をこすることにより行なわれる
。これけPVA等を、300〜500大の薄く塗布した
上をこすることにより、PVA上に微小なこすり跡が形
成これ、その上に液晶材料をのせ、た時に、液晶分子が
このこすり跡にそって並ぶから配向ができるというよう
に説明されている。
FIGS. 5 and 6 show a method for aligning liquid crystal components. Normally, liquid crystal molecules are separated by rubbing an organic material such as polyvinyl alcohol (PvA) called an aligning agent with a fiber such as cotton, which is called rubbing. By rubbing a thin layer of 300 to 500 coats of PVA, etc., minute scratch marks are formed on the PVA. When a liquid crystal material is placed on top of this, liquid crystal molecules are applied to the scratch marks. It is explained that orientation is possible because they are lined up side by side.

第5図の場合は、ラビング用の繊維を巻きつけたロール
41をディスク40の面に圧迫ζせて、この状態でディ
スク40を回転すると、液晶分子け42のように、半径
方向と垂直な方向すなわち円周方向にそって配向する。
In the case of FIG. 5, when the roll 41 wrapped with rubbing fibers is pressed against the surface of the disk 40 and the disk 40 is rotated in this state, the liquid crystal molecules 42 are aligned perpendicularly to the radial direction. direction, ie, along the circumferential direction.

第6図においてはラビング用のロール52をディスク5
0に圧迫上せた状pKおl/lて、ロール52をディス
クの中心から外周方向へ移動する。ディスクの外周へ達
したら又中心へもど17て、ヌ外周方向へといへ操作を
何回も繰り返しながら、ディスク50をゆっくり回転し
てゆくと、液晶分子け51のように径方向に、即ち放射
状に配向することができる。
In FIG. 6, the rubbing roll 52 is replaced by a disc 5.
The roll 52 is moved from the center of the disk toward the outer periphery while pK is pressed up to 0. When it reaches the outer periphery of the disk, it returns to the center 17 and moves toward the outer periphery.While repeating the operation many times, the disk 50 is slowly rotated, and the liquid crystal molecules 51 move in the radial direction, that is, radially. It can be oriented to

〔効果〕〔effect〕

本発明け、光メモリー用ディスクのドメイン形成パター
ンの記憶材料として、液晶材料を用いたことにより、従
来の材料では記憶の保持が1年程度で不安定となってV
)たものが、5年や10年は簡単に傍証できることが可
卵になったことに加えて、液晶の熱変化は低温でも簡単
に起こすことができ半導体レーザを従来のように無理し
て高パワーで用いる必要がないので、レーザ系の寿命を
伸ばすことができる。
By using a liquid crystal material as the storage material for the domain formation pattern of the optical memory disk of the present invention, the retention of memory becomes unstable after about one year with conventional materials.
) In addition to the fact that it is now possible to easily prove that something that has been used for 5 or 10 years, thermal changes in liquid crystals can easily occur even at low temperatures, and semiconductor lasers cannot be heated to higher temperatures than in the past. Since there is no need to use power, the life of the laser system can be extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光メモリー用ディスクの栢念図、第2図は本発
明による液晶を用いた光ディスクの原理図で(イ)は書
き送入前、(ロ)け寮き込人後の断面図、(ハ)はその
平面図である。′y第第3図竿第4は本発明による、光
ディスクの構造断面例である。ヌ第5図、第6図は本発
明の液晶分子の1向方法を示している。 以 上 出願人 株式会社 諏訪精工舎 代理人 弁理士 最士 務 第1図 (IllI) °パ2 第2図
Figure 1 is a conceptual diagram of an optical memory disk, and Figure 2 is a diagram of the principle of an optical disk using liquid crystal according to the present invention. , (c) is a plan view thereof. Figure 3, column 4, is a cross-sectional example of the structure of an optical disk according to the present invention. 5 and 6 show the one-way method of liquid crystal molecules of the present invention. Applicant Suwa Seikosha Co., Ltd. Agent Patent Attorney Saishi Figure 1 (IllI) °P2 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1) レーザ光をディスク面上に照射し、前記ディス
ク面上にデータを書き込み、又はディスク面上からデー
タの読み出しを行なう光メモリー装置において、前記デ
ィスクの記憶材料とし液晶を用いかつ、前記液晶はディ
スクの円周方向又は半径方向に一軸配向処理がなされて
いることを特徴とする光メモリー用ディスク。
(1) In an optical memory device that irradiates a disk surface with a laser beam to write data on the disk surface or read data from the disk surface, a liquid crystal is used as the storage material of the disk, and the liquid crystal An optical memory disk characterized in that the disk is uniaxially aligned in the circumferential direction or radial direction.
JP59103813A 1984-05-23 1984-05-23 Disk for optical memory Pending JPS60247841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59103813A JPS60247841A (en) 1984-05-23 1984-05-23 Disk for optical memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59103813A JPS60247841A (en) 1984-05-23 1984-05-23 Disk for optical memory

Publications (1)

Publication Number Publication Date
JPS60247841A true JPS60247841A (en) 1985-12-07

Family

ID=14363841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59103813A Pending JPS60247841A (en) 1984-05-23 1984-05-23 Disk for optical memory

Country Status (1)

Country Link
JP (1) JPS60247841A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2589256A1 (en) * 1985-10-29 1987-04-30 Kernforschungsanlage Juelich SWITCH OR OPTICAL MEMORY FOR INFORMATION
EP0273691A2 (en) * 1986-12-23 1988-07-06 RAYCHEM CORPORATION (a California corporation) Liquid crystal optical read/write storage medium and system using same
US5319481A (en) * 1986-12-23 1994-06-07 Raychem Corporation Encapsulated liquid crystal optical read/write storage medium and system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120235A (en) * 1981-12-04 1982-10-30 Yokogawa Hewlett Packard Ltd Storage device
JPS57201217A (en) * 1981-05-26 1982-12-09 Yokogawa Hewlett Packard Ltd Optical storage device
JPS58125247A (en) * 1982-01-21 1983-07-26 Tdk Corp Optical recording medium
JPS5910930A (en) * 1982-07-10 1984-01-20 Konishiroku Photo Ind Co Ltd Information recording medium
JPS5994734A (en) * 1982-11-22 1984-05-31 Oki Electric Ind Co Ltd Optical recording medium
JPS5994733A (en) * 1982-11-22 1984-05-31 Oki Electric Ind Co Ltd Optical recording medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57201217A (en) * 1981-05-26 1982-12-09 Yokogawa Hewlett Packard Ltd Optical storage device
JPS57120235A (en) * 1981-12-04 1982-10-30 Yokogawa Hewlett Packard Ltd Storage device
JPS58125247A (en) * 1982-01-21 1983-07-26 Tdk Corp Optical recording medium
JPS5910930A (en) * 1982-07-10 1984-01-20 Konishiroku Photo Ind Co Ltd Information recording medium
JPS5994734A (en) * 1982-11-22 1984-05-31 Oki Electric Ind Co Ltd Optical recording medium
JPS5994733A (en) * 1982-11-22 1984-05-31 Oki Electric Ind Co Ltd Optical recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2589256A1 (en) * 1985-10-29 1987-04-30 Kernforschungsanlage Juelich SWITCH OR OPTICAL MEMORY FOR INFORMATION
EP0273691A2 (en) * 1986-12-23 1988-07-06 RAYCHEM CORPORATION (a California corporation) Liquid crystal optical read/write storage medium and system using same
US5319481A (en) * 1986-12-23 1994-06-07 Raychem Corporation Encapsulated liquid crystal optical read/write storage medium and system

Similar Documents

Publication Publication Date Title
CA1220552A (en) Information recording medium
US4405993A (en) Liquid crystal disc memory system
MY112838A (en) Optical data storage system with multiple write-once phase-change recording layers
EP0092113B1 (en) Optical recording medium for use in an optical storage system and method for making such recording medium
US6650615B1 (en) Optical recording medium and recording and/or reproducing method and apparatus employing the optical recording medium
CN108320758A (en) A kind of reversible phase transition material high density memory Set
JPS6318252B2 (en)
US4857427A (en) Recording medium
JPS60247841A (en) Disk for optical memory
US20030165105A1 (en) Data memory
LV11390B (en) Data storage medium and methods for recording and reading of data
JPS6130329B2 (en)
JP2515566B2 (en) Storage media
JPH0453195B2 (en)
JPH0477968B2 (en)
JPH1139704A (en) Optical information reader and recorder
JPH0416355B2 (en)
WO2003005283A2 (en) Multilayer combined liquid crystal optical memory systems with means for recording and reading information
JPS63255830A (en) Optical information reproducing device
JPS634221A (en) Optical information recording carrier
RU2174715C1 (en) Information carrier of optical storage and process of recording of optical information on it
JP2811603B2 (en) Optical information recording medium
JPH0441916B2 (en)
KR100257888B1 (en) Erasable type both side organic optical recording disk
JP2768702B2 (en) Phase change optical disk