JPS60245233A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60245233A
JPS60245233A JP10208684A JP10208684A JPS60245233A JP S60245233 A JPS60245233 A JP S60245233A JP 10208684 A JP10208684 A JP 10208684A JP 10208684 A JP10208684 A JP 10208684A JP S60245233 A JPS60245233 A JP S60245233A
Authority
JP
Japan
Prior art keywords
nitride film
gas
titanium nitride
titanium
titanium tetrachloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10208684A
Other languages
Japanese (ja)
Inventor
Masahiko Nakamae
正彦 中前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP10208684A priority Critical patent/JPS60245233A/en
Publication of JPS60245233A publication Critical patent/JPS60245233A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To increase sufficiently treating ability and to form uniformly a titanium nitride film with uniform quality over a semiconductor substrate surface, by employing titanium tetrachloride and ammonia as principal raw materials. CONSTITUTION:Into the reacting chamber 12 in which a reacting gas introducing conduit 11 in T-shape is mounted at the central section, vapor of titanium tetrachloride and ammonia gas and nitrogen gas as a carrier gas, being mixed, are introduced through the conduit 11. In the reacting chamber 12 which is kept at a pressure of about 0.3-0.5Torr by exhausting means 15 and at a temperature of 500-650 deg.C, a titanium nitride film is deposited over each of surfaces of semiconductor substrates 14. In this way, by employing liquid titanium tetrachloride with a sufficiently high vapor pressure and ammonia gas as principal materials, the reduced pressure vapor phase epitaxy apparatus which has been employed usually and previously, can be utilized to form a titanium nitride film, so that sufficiently many substrates can be treated.

Description

【発明の詳細な説明】 (技術分野) 本発明は半導体装置の製造方法に関し、特にバリア膜で
ある窒化チタン膜を半導体基板上に堆積する半導体装置
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device in which a titanium nitride film, which is a barrier film, is deposited on a semiconductor substrate.

(従来技術) 従来、バリアメタルである窒化チタン膜の形成方法とし
ては、スパヅタ法、チタンへの窒素のイオン注入法、あ
るいはチタンを窒素雰囲気中で熱処理する方法が知られ
ている。
(Prior Art) Conventionally, as a method for forming a titanium nitride film which is a barrier metal, a sputtering method, a method of implanting nitrogen ions into titanium, or a method of heat-treating titanium in a nitrogen atmosphere are known.

そのうち、スパッタによる窒化チタン膜の形成法は、一
般的であるが、スパッタダメージによる素子特性の劣化
及びスパッタ中の残留ガスのトリ込みによる膜質の不安
定が大きいという欠点を有し、それに加え処理能力が低
いという欠点もあった。また第2の方法としてのチタン
への窒素イオン注入法では、極めて大量の窒素イオンド
ーズが必要のため、処理能力が極めて低く、又、イオン
注入ダメージも大きいので実用的でなかった。さらに第
3の方法であるチタンの窒素中での熱処理法は、通常用
いられる100OA程度の厚さのチタンを完全に窒化す
るには現実的には無理であ夛、膜厚全体にわたって均一
な膜が得られないという欠点があった。
Among these methods, the method of forming titanium nitride films by sputtering is common, but it has the drawbacks of deterioration of device characteristics due to sputter damage and instability of film quality due to trapping of residual gas during sputtering. There was also the drawback of low ability. Furthermore, the second method, nitrogen ion implantation into titanium, requires an extremely large dose of nitrogen ions, resulting in extremely low processing capacity and large ion implantation damage, making it impractical. Furthermore, the third method, heat treatment of titanium in nitrogen, is practically impossible to completely nitride titanium with a thickness of about 100 OA, which is usually used. The disadvantage was that it was not possible to obtain

(発明の目的) 本発明の目的は、上記欠点を除去し、処理能力を充分大
きくでき、かつ半導体基板表面に均一に均質な窒化チタ
ン膜を形成することの可能な半導体装置の製造方法を提
供することにある。
(Object of the Invention) An object of the present invention is to provide a method for manufacturing a semiconductor device that eliminates the above-mentioned drawbacks, can sufficiently increase the processing capacity, and can form a uniform titanium nitride film on the surface of a semiconductor substrate. It's about doing.

(発明の構成) 本発明の半導体装置の製造方法は、四塩化チタンとアン
モニアを主原料とし、1気圧g低い雰囲気での気相成長
法によシ窒化チタン膜を半導体基板表面に堆積すること
により構成される。
(Structure of the Invention) The method for manufacturing a semiconductor device of the present invention includes depositing a titanium nitride film on the surface of a semiconductor substrate using titanium tetrachloride and ammonia as main raw materials by vapor phase growth in an atmosphere with a pressure of 1 atm. Consisted of.

(作用) 本発明においては、液体の充分蒸気圧の高い四塩化チタ
ンとアンモニアガスを主原料にすることにより通常用い
られる減圧気相成長装置をそのまま利用して窒化チタン
膜を形成することが出来るため、充分大量の基板を処理
することが可能となる。また減圧気相成長法のため膜厚
及び膜質の均一性も良い状態で得ることが可能である。
(Function) In the present invention, a titanium nitride film can be formed using a commonly used reduced pressure vapor phase growth apparatus as is by using liquid titanium tetrachloride and ammonia gas, which have sufficiently high vapor pressure, as the main raw materials. Therefore, it becomes possible to process a sufficiently large amount of substrates. Further, because of the reduced pressure vapor phase growth method, it is possible to obtain good uniformity in film thickness and film quality.

素子特性の劣化は認められない。No deterioration of device characteristics was observed.

従って本発明方法で窒化チタン1lI3!を形成した半
導体装置の特性は、ばらつきがすくなく、かつ信頼性の
高いものとなる。
Therefore, by the method of the present invention, titanium nitride 1lI3! The characteristics of the semiconductor device formed with the above-mentioned semiconductor device will have less variation and will be highly reliable.

(実施例) 以下、本発明の実施例について、図面を参照して説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第4図は本発明の第1の実施例を説明す不ための減圧気
相成長装置の説明図である。
FIG. 4 is an explanatory diagram of a reduced pressure vapor phase growth apparatus for explaining the first embodiment of the present invention.

第1図において、反応室12には、外部から反応室内部
が均一に加熱されるように赤外線ヒータ13が設けられ
ている。反応ガ漬導入管11が反応室中央にT字型の形
状で設けられ、上部水平管の下方にはガス吹出孔が設け
られそいる。四塩化チタンの蒸気とアンモニアガス及び
キャリアガスとしての窒素ガスが、ガス混合装置にて混
合された後、前記導入管11を通して反応室12内に1
0のように導かれる。反応室12は排気装置15によシ
約0.3〜0.5Torrに保たれ、また反応室12の
内部は500〜650℃の範囲で窒化チタン膜が半導体
基板140表面に堆積する。
In FIG. 1, an infrared heater 13 is provided in a reaction chamber 12 so that the inside of the reaction chamber is uniformly heated from the outside. A reaction gas introduction pipe 11 is provided in the center of the reaction chamber in a T-shape, and a gas blowing hole is provided below the upper horizontal pipe. After the titanium tetrachloride vapor, ammonia gas, and nitrogen gas as a carrier gas are mixed in a gas mixing device, they are introduced into the reaction chamber 12 through the introduction pipe 11.
It is derived as 0. The reaction chamber 12 is maintained at a pressure of approximately 0.3 to 0.5 Torr by an exhaust device 15, and a titanium nitride film is deposited on the surface of the semiconductor substrate 140 at a temperature within the reaction chamber 12 in the range of 500 to 650°C.

また、第2の実施例として、反応室内部に平朽平板電極
を半導体基板設置場所の上下に設けて反応ガスをプラズ
マ励起することにより更に反応温度を低くすることがで
きる。
In addition, as a second embodiment, the reaction temperature can be further lowered by providing flat plate electrodes inside the reaction chamber above and below the location where the semiconductor substrate is installed to excite the reaction gas into plasma.

(発明の効果) 以上説明したように、本発明によれば、処理能力が大き
く、かつ素子特性の劣化がない状態で、均一な膜厚でか
つ均質な膜質でバリアメタルたる窒化チタン膜を半導体
基板表面に堆積することが可能となる。
(Effects of the Invention) As explained above, according to the present invention, a titanium nitride film, which is a barrier metal, can be made into a semiconductor with a uniform thickness and a uniform film quality, while having a large processing capacity and without deterioration of device characteristics. It becomes possible to deposit on the substrate surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するための双互気相成
長装置の断面図である。 1−0・・・・・・反応ガス、11・・・・・・反応ガ
ス導入管、12・・・・・・反応室、13・・・・・・
赤外線ヒーター、14・・・・・・半導体基板、15・
・・・・・排気装置。 代理人 弁理士 内 原 晋1.y; 5 jP77閲
FIG. 1 is a sectional view of a reciprocal vapor phase growth apparatus for explaining one embodiment of the present invention. 1-0...Reaction gas, 11...Reaction gas introduction pipe, 12...Reaction chamber, 13...
Infrared heater, 14... Semiconductor substrate, 15.
...Exhaust device. Agent: Susumu Uchihara, patent attorney 1. y; 5 jP77 review

Claims (1)

【特許請求の範囲】[Claims] 四塩化チタンとアンモニアを主原料とし1気圧よシ低い
雰囲気での気相成長法により窒化チタン膜を半導体基板
表面に堆積する事を特徴とする半導体装置の製造方法。
A method for manufacturing a semiconductor device, characterized in that a titanium nitride film is deposited on a semiconductor substrate surface by a vapor phase growth method using titanium tetrachloride and ammonia as main raw materials in an atmosphere lower than 1 atm.
JP10208684A 1984-05-21 1984-05-21 Manufacture of semiconductor device Pending JPS60245233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10208684A JPS60245233A (en) 1984-05-21 1984-05-21 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10208684A JPS60245233A (en) 1984-05-21 1984-05-21 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60245233A true JPS60245233A (en) 1985-12-05

Family

ID=14317962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10208684A Pending JPS60245233A (en) 1984-05-21 1984-05-21 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60245233A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300321A (en) * 1992-05-12 1994-04-05 Kawasaki Steel Corporation Process for depositing titanium nitride film by CVD
EP1641031A3 (en) * 2004-09-22 2007-09-05 Asm International N.V. Deposition of TiN films in a batch reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300321A (en) * 1992-05-12 1994-04-05 Kawasaki Steel Corporation Process for depositing titanium nitride film by CVD
EP1641031A3 (en) * 2004-09-22 2007-09-05 Asm International N.V. Deposition of TiN films in a batch reactor

Similar Documents

Publication Publication Date Title
US4579609A (en) Growth of epitaxial films by chemical vapor deposition utilizing a surface cleaning step immediately before deposition
US6197669B1 (en) Reduction of surface defects on amorphous silicon grown by a low-temperature, high pressure LPCVD process
US6402850B1 (en) Depositing polysilicon films having improved uniformity and apparatus therefor
US5695819A (en) Method of enhancing step coverage of polysilicon deposits
EP0015694A2 (en) Method for forming an insulating film on a semiconductor substrate surface
JPH06302528A (en) Vapor deposition of silicon nitride thin film
JP3432601B2 (en) Film formation method
JPH0377655B2 (en)
JPS621565B2 (en)
JPS60245233A (en) Manufacture of semiconductor device
JPH0786173A (en) Film deposition
JP2803556B2 (en) Method of forming barrier metal layer
JP2004508706A (en) Plasma treatment
JP2723053B2 (en) Method and apparatus for forming thin film
US20020197828A1 (en) Method and apparatus for manufacturing a semiconductor device and processing a substrate
JP2928929B2 (en) Impurity doping method
JPH0645257A (en) Method for forming semiconductor thin film
US5063086A (en) Vacuum deposition process and apparatus for producing films having high uniformity
JP2657305B2 (en) Method of forming metal silicide film
JP2510340B2 (en) Method for producing Si-based crystal thin film
JPS61144029A (en) Method and apparatus for manufacturing silicon oxide film containing phosphorus
JPH0524999A (en) Production of silicon carbide thin film
JP2876414B2 (en) Manufacturing method of diffusion resistance element
JPS58164777A (en) Formation of metallic compound film
JPH1161421A (en) Formation of conductive film