JPS60244004A - Plastic magnet composition - Google Patents

Plastic magnet composition

Info

Publication number
JPS60244004A
JPS60244004A JP59099814A JP9981484A JPS60244004A JP S60244004 A JPS60244004 A JP S60244004A JP 59099814 A JP59099814 A JP 59099814A JP 9981484 A JP9981484 A JP 9981484A JP S60244004 A JPS60244004 A JP S60244004A
Authority
JP
Japan
Prior art keywords
magnetic powder
plastic magnet
plastic
composition
magnet composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59099814A
Other languages
Japanese (ja)
Inventor
Tokuji Abe
阿部 徳治
Hajime Kitamura
肇 北村
Michinori Tsuchida
土田 道則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP59099814A priority Critical patent/JPS60244004A/en
Publication of JPS60244004A publication Critical patent/JPS60244004A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a plastic magnet composition at comparatively low cost, and to make to be hardly ignited at mixing and melting time with plastics by a method wherein the plastic magnet composition is constructed of plastics and magnetic powder to be expressed by the composition formula RxMyBz and covering-treated by an organopolysiloxane compound. CONSTITUTION:A plastic magnet composition is constructed of plastics and magnetic powder to be expressed by the formula RxMyBz and covering-treated by an organopolysiloxane compound, R is a rare earth element, and M is an iron group element. The values of (x), (y) and (z) to indicate atomic % are made to be 8<=x<=30, 2<=z<=20, and (y) to indicate the quantity of M is made as the residue. According to the manufacturing method thereof, a plastic magnet of high performance can be obtained at low cost, and because magnetic powder is covering-treated, degeneration according to oxidation, and ignition are not generated even when comes in contact with air at a high temperature at molding time.

Description

【発明の詳細な説明】 本発明は高性能を示す新規プラスチック磁石組成物に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to novel plastic magnet compositions that exhibit high performance.

従来より知られている焼結磁石や鋳造磁石は、硬くても
ろいためC−複雑な形状の加工が困難であり、精密な加
工度が要求される場合C二はコスト高となることが避け
られず、また他の部材との一体成形が困難であるとか、
ラジアル異方性、多極異方性磁石を製造しようとしても
破損し製造が困難であるなどの問題がある。
Traditionally known sintered magnets and cast magnets are hard and brittle, making it difficult to process C-complex shapes, and C-2 avoids high costs when precision machining is required. Also, it is difficult to integrally mold with other parts.
Even if an attempt is made to manufacture a radial anisotropic or multipolar anisotropic magnet, there are problems such as damage and manufacturing difficulty.

プラスチック磁石は上記問題点を解決するために開発さ
れたものであり、各種磁性材料各種プラスチックの使用
が試みられている。特C二最近は磁石体の強力化、小型
・軽量化の要請から、当初のころのフェライト系磁性材
料に代ってam−C。
Plastic magnets were developed to solve the above problems, and attempts have been made to use various magnetic materials and various plastics. Special C2 Recently, due to the demand for stronger, smaller, and lighter magnets, am-C has replaced the original ferrite magnetic material.

系のようなきわめてすぐれた磁石性能を発揮する磁性材
料が使用されるに至っている。しかし、 8mは希土類
鉱石中でも特に少ない含有量であることと、その精製分
離に多大の費用を有することからきわめて高価であり、
他方Coも高価であるのみならず安定供給に問題がある
Magnetic materials such as those that exhibit extremely excellent magnetic performance have come into use. However, 8m is extremely expensive because it has a particularly low content among rare earth ores and requires a large amount of cost to purify and separate it.
On the other hand, Co is not only expensive but also has problems in stable supply.

本発明者らは鋭意検討した結果、磁性材料(磁性粉体)
としてNd −Fe −B系のものを使用することによ
り、比較的低コストで高性能の磁石特性を示すプラスチ
ック磁石組成物が得られること、およびこの磁性粉体は
前記Sm−Co系磁性粉体と同様にプラスチックとの混
合溶融時に高温になると空気との接触で発火しやすい問
題点を有するがこの点は該磁性粉体をあらかじめオルガ
ノポリシロキサン化合物で被覆処理することにより解決
できることを確認し本発明を完成した。
As a result of intensive study, the inventors found that magnetic materials (magnetic powder)
By using Nd-Fe-B-based magnetic powder as the magnetic powder, a plastic magnet composition exhibiting high-performance magnetic properties at a relatively low cost can be obtained. Similarly, when mixed with plastic and melted at high temperatures, it is easy to catch fire on contact with air, but we confirmed that this problem could be solved by coating the magnetic powder with an organopolysiloxane compound in advance. Completed the invention.

すなわち本発明は、プラスチックと、オルガノポリシロ
キサン化合物で被覆処理した組成式RxMyB7 (式
中のRは希土類元素1Mは鉄族元素であり、x、yおよ
び2は原子%を示す、ただし8≦X≦30.2≦2≦2
0、y=ioo−x−z)で示される磁性粉体とからな
るプラスチック磁石組成物(二関するものである。該組
成式中RはNdまたはNdを主とする希土類元素であり
、MはFeまたけFeを主とする鉄族元素である。実用
上RとしてNdを主とする2種以上の混合物(ミツシュ
メタル、ジジム等)を使用し、またMとしてFeに少量
のCOもしくはN1を併用したもの(キューリ一点が向
上する)を使用することが望ましい。なお、B(ボロン
)にはAt、Si、0 などが不純物として混っていて
もよい。組成すなわち原子%を示すx+Yおよび2の値
は前記のとおりである。Rの量を示すXの値が大になる
と保磁力Haが向上し望ましいが磁性材粉の取扱いに際
し酸化燃えやすくなるので30原子%以下とすべきであ
り、好ましくは10≦X≦20の範囲とすることがよい
。またBの量を示す2の値が大になるとこの場合にも保
磁力Haが増大するがあまりに大きくすると残留磁束密
度Brが低下するようになるので20原子%以下とすべ
きであり、好ましくは5≦2≦15 の範囲とすること
がよい。
That is, the present invention provides a composition coated with plastic and an organopolysiloxane compound with the composition formula RxMyB7 (in the formula, R is a rare earth element, 1M is an iron group element, and x, y, and 2 represent atomic percent, provided that 8≦X ≦30.2≦2≦2
0, y=ioo-x-z), and a plastic magnet composition consisting of a magnetic powder represented by Fe is an iron group element mainly composed of Fe.Practically, a mixture of two or more types mainly composed of Nd (mitshu metal, didymium, etc.) is used as R, and a small amount of CO or N1 is used in combination with Fe as M. It is desirable to use B (boron) containing At, Si, 0, etc. as impurities. The values are as described above. It is desirable that the coercive force Ha increases as the value of is preferably in the range of 10 ≦ Therefore, the content should be 20 atomic % or less, preferably within the range of 5≦2≦15.

Mの慣を示すyは残量とされる。なお、保磁力をさらに
向上させるために、At、Ti−Zr%Hf。
y, which indicates the capacity of M, is the remaining amount. In addition, in order to further improve the coercive force, At, Ti-Zr%Hf.

V%Nb%Ta 、 Cr %Mo、W、Mn、 Sn
、Pb。
V%Nb%Ta, Cr%Mo, W, Mn, Sn
, Pb.

Sb、B1、Cu、Znなどの1種または2種以上を比
較的少量の範囲で添加することは差支えない。
One or more of Sb, B1, Cu, Zn, etc. may be added in a relatively small amount.

磁性粉体を製造する方法としては、■原料金属元素(N
d、Fe 、 B等)を所定の配合で高周波溶解してイ
ンゴットをつくり、■これをジヨウクラッシャーおよび
ブラウンミルで35メツシユ以下の粒度に粗粉砕し、つ
いでボールミルで2〜10μ程度になるまで微粉砕し、
■磁場中で配向プレス成形し、■アルゴンガス中100
0〜1200℃の温度で焼結し、放冷後時効する、■こ
のものを前記■と同様Cユして粉砕し、乾燥して磁性粉
体とする方法があげられる。もちろんこれ以外の方法で
磁性粉体を製造してもよい。なお、プラスチック中への
高充填化のためには微粉とやや大きい粒度の粉を混合し
て使用することが望ましく、また多極のラジアル興方性
磁石には極の大きさの10分の1以下の充分小さな粒径
の粉を用いるとよい。
As a method for producing magnetic powder, ■Material metal element (N
d, Fe, B, etc.) in a predetermined composition by high frequency melting, ■ This is coarsely crushed using a Joe crusher and a Brown mill to a particle size of 35 mesh or less, and then finely crushed using a ball mill to a particle size of about 2 to 10 μm. crush,
■ Oriented press molding in a magnetic field, ■ 100% in argon gas
Examples of the method include sintering at a temperature of 0 to 1200° C., aging after cooling, and (2) crushing this material in the same way as in (2) above, followed by drying to obtain magnetic powder. Of course, magnetic powder may be produced by other methods. In addition, in order to highly fill the plastic, it is desirable to use a mixture of fine powder and powder with a slightly larger particle size. It is preferable to use powders with sufficiently small particle sizes as shown below.

上記磁性粉体な被覆処理するために使用されるオルガノ
ポリシロキサン化合物としては、シリコーンオイル〔望
ましくは3000c8 (20℃)以上の高分子量シリ
コーンオイル〕、シリコーンゴム、シリコーン樹脂(シ
リコーンワニス)、あるいはそれらの各種変性オルガノ
ポリシロキサンが例示される。
The organopolysiloxane compound used to coat the magnetic powder may include silicone oil [preferably high molecular weight silicone oil of 3000c8 (20°C) or higher], silicone rubber, silicone resin (silicone varnish), or any of the above. Examples include various modified organopolysiloxanes.

これらのオルガノポリシロキサンを用いて磁性粉体粉を
被覆するには、通常、このものの有機溶媒溶#i(被覆
液)を調製し、スプレーあるいは浸漬等の手段により磁
性粉体を被覆処理し、ついで室温ないし150℃程度ま
での温度で乾燥するという方法f二よればよい。この場
合の被覆液濃度はおおむね0.1〜10重量%特には0
.5〜5重量%程度とすればよく、また磁性粉体に対す
るオルガノボリシロキサン化合物の被覆量はおおむね0
05〜2重量%程度とすればよい。この被覆量が少なす
ぎると酸化防止能が悪くなり、一方多すぎるとコスト高
となるばかりでなく、バインダーとしてのプラスチック
の比率が相対的に低下するので、流動性の面からも磁性
粉体の高充填化の阻害になる。
In order to coat magnetic powder using these organopolysiloxanes, usually an organic solvent solution #i (coating liquid) of the organopolysiloxane is prepared, and the magnetic powder is coated by means such as spraying or dipping. Then, method f2 may be used, in which drying is performed at a temperature from room temperature to about 150°C. In this case, the concentration of the coating liquid is approximately 0.1 to 10% by weight, especially 0.
.. The amount may be about 5 to 5% by weight, and the amount of organoborisiloxane compound coated on the magnetic powder is approximately 0.
It may be about 0.05 to 2% by weight. If the amount of coating is too small, the anti-oxidation ability will deteriorate, while if it is too large, not only will the cost be high, but the ratio of plastic as a binder will be relatively reduced, so the magnetic powder will be less effective from the viewpoint of fluidity. This will hinder high filling.

オルガノポリシロキサン化合物を溶解するための溶媒と
しては、脂肪族炭化水素系溶剤、芳香族炭化水素系溶剤
、ハロゲン化炭化水素系溶剤、ケトン系溶剤、エーテル
系溶剤、エステル系溶剤、アルコール系溶剤および水な
どが例示され、これらは1種または2種以上の混合溶媒
として使用される。
Solvents for dissolving organopolysiloxane compounds include aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, halogenated hydrocarbon solvents, ketone solvents, ether solvents, ester solvents, alcohol solvents, and Water is exemplified, and one or more of these are used as a mixed solvent.

本発明にかかわるプラスチック磁石組成物は、前記被覆
処理された磁性粉体とプラスチックとを混合することに
より得られるが、ここに使用されるプラスチックとして
はポリエチレン、ポリプロピレン、ポリスチレン、ポリ
塩化ビニル、アクリレート樹脂等のほか、いわゆるエン
ジニアリングプラスチックと称されているものたとえば
ポリアミド、ポリフェニレンサルファイド、ポリフェニ
レンオキサイド、ポリアセタール、ポリエチレンテレフ
タレート、ポリブチレンテレフタレート、ポリカーボネ
ートなどが例示される。
The plastic magnet composition according to the present invention is obtained by mixing the coated magnetic powder and plastic, and examples of the plastic used here include polyethylene, polypropylene, polystyrene, polyvinyl chloride, and acrylate resin. In addition to the above, so-called engineering plastics such as polyamide, polyphenylene sulfide, polyphenylene oxide, polyacetal, polyethylene terephthalate, polybutylene terephthalate, and polycarbonate are exemplified.

本発明によれば磁性粉体をきわめて高い含有率でプラス
チックと混合することができ、組成物中における磁性粉
体含量を最高95重量%程度まで高めることができる。
According to the present invention, magnetic powder can be mixed with plastic at an extremely high content, and the magnetic powder content in the composition can be increased to about 95% by weight at most.

この点従来は成形性ならび一二磁気配同性の点から磁性
粉体の充填密度を高めることが困難であったため、磁気
特性にすぐれたプラスチック磁石を得ることができなか
った。
In this regard, in the past, it was difficult to increase the packing density of magnetic powder from the viewpoint of moldability and magnetic alignment, so it was not possible to obtain a plastic magnet with excellent magnetic properties.

プラスチック磁石を得るための成形方法としては、従来
公知の方法たとえば射出成形、押出成形、圧縮成形等の
手段によればよく、成形方法それ自体に制限はない。
The molding method for obtaining the plastic magnet may be any conventionally known method such as injection molding, extrusion molding, compression molding, etc., and the molding method itself is not limited.

本発明によればつぎの諸利点が得られる。According to the present invention, the following advantages can be obtained.

(11高性能のプラスチック磁石を低コストで得ること
ができる。
(11 High performance plastic magnets can be obtained at low cost.

(2)磁性粉体は被覆処理されているので成形時に高温
で空気と接触しても酸化変質を受けたり発火したりする
ことがないので、きわめて高磁気特性のプラスチック磁
石が得られる。
(2) Since the magnetic powder is coated, it will not undergo oxidative deterioration or catch fire even if it comes into contact with air at high temperatures during molding, so a plastic magnet with extremely high magnetic properties can be obtained.

(3)プラスチックとして200℃以上のような高温成
形が必要とされるエンジニアリングプラスチックを使用
しても、不都合をともなうことなく、磁性粉体の高充填
成形品を射出成形、押出成形等の成形手段で容易に得る
ことができる。
(3) Even if engineering plastics that require high-temperature molding such as 200°C or higher are used, molding methods such as injection molding and extrusion molding can produce highly filled molded products of magnetic powder without causing any inconvenience. can be easily obtained.

このプラスチック磁石は高温下での使用に耐えかつ磁石
特性が経時的変化(劣化)することがなく信頼性の高い
ものである。
This plastic magnet can withstand use under high temperatures, and its magnetic properties do not change (degrade) over time, making it highly reliable.

(4)一体成形が簡単であり、複雑な形状に容易に成形
でき、後加工に要するコストが大幅に低減される。
(4) Integral molding is simple, it can be easily molded into complex shapes, and the cost required for post-processing is significantly reduced.

(5)性能の高いラジアル異方性、ラジアル多極性のプ
ラスチック磁石を容易に得ることができる。
(5) A plastic magnet with high performance radial anisotropy and radial multipolarity can be easily obtained.

(6)得られるプラスチック磁石は均一な磁気性能を示
すものであって、また耐衝撃性が大きいので、リレー、
ブザー等への使用に有利である。
(6) The obtained plastic magnet exhibits uniform magnetic performance and has high impact resistance, so it can be used as a relay,
It is advantageous for use in buzzers, etc.

(力 前記したように高温で成形しても酸化変質を受け
ず、発火を起こすというようなことがないので、生産工
程上安全が確保され、また再生使用できその際性能の低
下をともなわない。
As mentioned above, even when molded at high temperatures, it does not undergo oxidative deterioration and does not cause ignition, so safety is ensured in the production process, and it can be recycled and used without deteriorating performance.

つぎに参考例および実施例をあげる。Next, reference examples and examples will be given.

参考例1 約201FAの秤量ビンに希土類−鉄一ボロン系磁性粉
体N d 1s F e 78 B 7(粒度フィッシ
ャー法で3μ)を21秤取した。一方、第1表に示す各
種オルガノポリシロキチン化合物の溶媒溶液(いずれも
濃度は015重量%)を調製し、これの所定量を前記秤
取試料に加えて全体が均一に湿潤吸着されるようにかく
はんし、ついで60’Cで乾燥して溶剤分を除去し、さ
らに110℃で1時間加熱処理した。オルガノポリシロ
キチン化合物の被覆量はそれぞれ同表に示すとおりであ
った。
Reference Example 1 Twenty-one pieces of rare earth-iron-boron magnetic powder N d 1s Fe 78 B 7 (particle size: 3 μm by Fisher method) were weighed into a weighing bottle of approximately 201 FA. On the other hand, a solvent solution of various organopolysilochitin compounds shown in Table 1 (all concentrations are 0.15% by weight) was prepared, and a predetermined amount of this was added to the weighed sample so that the entire sample was evenly wet and adsorbed. The mixture was stirred and then dried at 60'C to remove the solvent, and further heat-treated at 110C for 1 hour. The coating amount of the organopolysilochitin compound was as shown in the table.

このようにしてオルガノポリシロキサン化合物で被覆処
理した磁性粉体試料l:ついて耐酸化性を調べるため、
送風式加熱炉中こて開放状態で20分間250℃に加熱
し、下記式によって重量変化率をめた。結果は第1表に
示すとおりであった。
Magnetic powder sample l coated with an organopolysiloxane compound in this way: In order to examine the oxidation resistance,
The sample was heated to 250° C. for 20 minutes in a blower heating furnace with the trowel open, and the rate of weight change was calculated using the following formula. The results were as shown in Table 1.

W2−W□ W1々秤置ビンの重さ w、 = 秤量ビン士試料の重さ W3==被覆処理し、110℃1時間加熱処理後の重さ W、=250℃20分加熱後の重さ 第1表の結果かられかるとおり、オルガノポリシロキチ
ン化合物で被覆処理を行わなかった試料11− 第1表中、オルガノポリシロキチン化合物を示の場合に
は酸化C:よる重量増加が大きかったのに対し、オルガ
ノポリシロキチン化合物で被覆処理したものは重量増加
が小さく、その被覆膜による耐酸化性付与の効果が大で
ある。
W2-W□ W1 Weight of the weighing bottle W, = Weight of the sample in the weighing bottle W3 = Weight after coating and heating at 110°C for 1 hour W, = Weight after heating at 250°C for 20 minutes As can be seen from the results in Table 1, in Sample 11, which was not coated with an organopolysilochitin compound, the weight increase due to oxidation C was large in the case of the organopolysilochitin compound shown in Table 1. On the other hand, those coated with an organopolysilochitin compound have a small increase in weight, and the coating film is highly effective in imparting oxidation resistance.

なお、同表に併記したように、従来ブラスチッ物 クー無−戸合材1:おける無機物の表面処理剤として用
いられているN−β(アミノエチル)r−アミノプロピ
ルトリメトキシシラン(以下シランKBM6Q 3と略
記する)を取り上げ検討して見たが、高温加熱時の酸化
による重量増加率が大きく耐酸化防止効果が小さいこと
が判った。さらに従来行われている樹脂コーティング法
としてエポキシコーティング(※下記参照)を取り上げ
検討したが、高温加熱時の酸化による重量増加率が大き
く、本発明の効果とは比較C:ならないほど悪かった。
In addition, as shown in the same table, N-β (aminoethyl)r-aminopropyltrimethoxysilane (hereinafter referred to as silane KBM6Q), which is conventionally used as a surface treatment agent for inorganic materials in plastic composite materials 1: 3) was taken up and examined, and it was found that the weight increase rate due to oxidation during high temperature heating was large and the oxidation prevention effect was small. Furthermore, we considered epoxy coating (see below) as a conventional resin coating method, but the weight increase rate due to oxidation during high-temperature heating was large, and the effect was so bad that it was compared to the effect of the present invention.

(※) シェル化学社製、エビコー)828(3%)+
セメダインc (2%)、150℃で1時間キュア。
(*) Made by Shell Chemical Co., Ltd., Ebiko) 828 (3%) +
Cemedine c (2%), cured at 150°C for 1 hour.

12− 第 1 表 す各記号の意味は下記のとおりである。12- Table 1 The meaning of each symbol is as follows.

1)KF96 ニジメチルシリコーン油、6,0OOo
8(25℃)、 信越化学工業製 2)KR251:塗料用シリコーン生ゴム、信越化学工
業製 3)KR272ニスリーブ用シリコーンフェス、信越化
学工業製 4)KF54 :メチルフェニルシリコーン油、6.0
00c8(25℃)、 信越化学工業製 5)KE76BS : シリコーン生ゴム、信越化学工
業製 (3)KP358:塗料添加用変性シリコーンオイル、
信越化学工業製 14− 実施例1 1tのビーカーに、希土類−鉄一ボロン系磁性粉体 N
d1.Fe、、 B、(フィッシャー粒度3μ)をIK
f秤取し、これに第2表に示すオルガノポリシロキサy
化合物の0.5%トルエン溶液を同表の被覆量となるよ
うに添加し、よ(かくはん混合して(要すれば溶媒を追
加して)全体を湿潤させ。
1) KF96 Nidimethyl silicone oil, 6,0OOo
8 (25°C), manufactured by Shin-Etsu Chemical 2) KR251: Silicone raw rubber for paint, manufactured by Shin-Etsu Chemical 3) KR272 Silicone face for sleeves, manufactured by Shin-Etsu Chemical 4) KF54: Methylphenyl silicone oil, 6.0
00c8 (25°C), Shin-Etsu Chemical Co., Ltd. 5) KE76BS: Silicone raw rubber, Shin-Etsu Chemical Co., Ltd. (3) KP358: Modified silicone oil for paint addition,
Shin-Etsu Chemical Co., Ltd. 14- Example 1 In a 1 ton beaker, rare earth-iron-boron magnetic powder N
d1. IK Fe, B, (Fisher particle size 3μ)
F is weighed out, and organopolysiloxane y shown in Table 2 is added to it.
Add a 0.5% toluene solution of the compound to the coating amount shown in the table, and mix well (adding a solvent if necessary) to wet the entire area.

ついで60℃で乾燥して溶剤を揮散させ、さらに110
℃で1時間加熱処理した。
Next, dry at 60°C to volatilize the solvent, and then dry at 110°C.
Heat treatment was performed at ℃ for 1 hour.

このようにして被覆処理した磁性粉体440.11とU
Bgナイロン12P−3014U(宇部興産(株)製)
55.’lおよびステアリン酸アミド1.2gを1tビ
ーカーに秤取し、常温でかくはん後、窒素ガス雰囲気中
ジャケット温度200℃でプラベンダー社製8−300
0H型ンキサーにてかくはん造粒した。
Magnetic powder 440.11 coated in this way and U
Bg nylon 12P-3014U (manufactured by Ube Industries, Ltd.)
55. 'l and 1.2 g of stearic acid amide were weighed into a 1 t beaker, stirred at room temperature, and heated to a jacket temperature of 200°C in a nitrogen gas atmosphere using Prabender 8-300.
The mixture was stirred and granulated using an 0H type mixer.

この造粒品をタナベプウギ日つ社製磁場射出成形機’I
’L−150MGBを用い、空気中への射出による発火
性ならびに成形品の磁気特性を測定した。
This granulated product was molded using a magnetic field injection molding machine manufactured by Tanabe Puugi Nitsu Co., Ltd.
Using 'L-150MGB, ignitability by injection into air and magnetic properties of molded products were measured.

結果は第2表に示すとお曝〕であった。The results are shown in Table 2.

射出成形条件ニジリンダ一温度(ホッパー側から)01
=170℃、O,=230℃。
Injection molding conditions Niji cylinder temperature (from hopper side) 01
= 170°C, O, = 230°C.

ノズル温度220℃、 金型温度90℃。Nozzle temperature 220℃, mold temperature 90℃.

スクリュー回転数28 Orpm(無負荷時の設定)、
配向磁場20 koe 第2表の結果から表面被覆処理を全く行わなかった場合
には、空気中への射出により瞬時に発火するが、オルガ
ノポリシルキサン化合物による被覆処理を施こすことに
よって顕著な耐酸化性が付与され1発火現象が抑制され
ることが判った。また成形時の負荷の軽減(スクリュー
回転が大になる)と角形性の向上が認められた。
Screw rotation speed 28 Orpm (setting at no load),
Orienting magnetic field 20 koe From the results in Table 2, if no surface coating treatment was performed, ignition would occur instantaneously upon injection into the air, but by applying coating treatment with an organopolysiloxane compound, remarkable acid resistance was achieved. It was found that the ignition phenomenon was suppressed. It was also observed that the load during molding was reduced (screw rotation increased) and the squareness was improved.

上記効果によI】磁性粉体のナイロン中への配合量を大
幅に高めることができた。
Due to the above effects, it was possible to significantly increase the amount of magnetic powder incorporated into nylon.

なお、第2表中に得られた成形品の外観を調べた結果を
併記した。
Note that Table 2 also shows the results of examining the appearance of the molded products obtained.

15− 成形品外観 ◎ : 外観きわめてすぐれている 0 : 外観普通 △ : 外観悪い 第2表中処理剤として使用したシリコーンオイル96■
〜■はそれぞれ下記粘度(25℃)を有するものである
15- Appearance of molded product ◎: Very good appearance 0: Fair appearance △: Poor appearance Silicone oil used as a treatment agent in Table 2 96■
~■ have the following viscosity (25°C), respectively.

KF96 ■:100S KF96 ■: 100 as KF96 ■: 3oooos KF96■: 1万 08 KF96■: 6万 0B KF96■: 100万 0B −17−−16− 16一KF96 ■: 100S KF96 ■: 100 as KF96 ■: 3oooos KF96■: 10,000 08 KF96■: 60,000 0B KF96■: 1 million 0B -17--16- 16 one

Claims (1)

【特許請求の範囲】 1、プラスチックと、オルガノポリシロキサン化合物で
被覆処理した組成式RxMyB2(式中のRは希土類元
素、Mは鉄族元素であり、X。 yおよび2は原子%を示す、ただし8≦X≦30、2≦
2≦20、y−100−x −z)で示される磁性粉体
とからなるプラスチック磁石組成物 2、組成式RxMyB2 中のRがNdまたはNdを主
とする希土類元素、MがFeまたはFeを主とする鉄族
元素である特許請求の範囲第1項記載のプラスチック磁
石組成物
[Claims] 1. Plastic and composition formula RxMyB2 coated with an organopolysiloxane compound (in the formula, R is a rare earth element, M is an iron group element, X. y and 2 represent atomic %, However, 8≦X≦30, 2≦
2≦20, y-100-x-z) Plastic magnet composition 2 consisting of magnetic powder represented by the composition formula RxMyB2, where R is Nd or a rare earth element mainly composed of Nd, and M is Fe or Fe. The plastic magnet composition according to claim 1, which is mainly composed of iron group elements.
JP59099814A 1984-05-18 1984-05-18 Plastic magnet composition Pending JPS60244004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59099814A JPS60244004A (en) 1984-05-18 1984-05-18 Plastic magnet composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59099814A JPS60244004A (en) 1984-05-18 1984-05-18 Plastic magnet composition

Publications (1)

Publication Number Publication Date
JPS60244004A true JPS60244004A (en) 1985-12-03

Family

ID=14257311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59099814A Pending JPS60244004A (en) 1984-05-18 1984-05-18 Plastic magnet composition

Country Status (1)

Country Link
JP (1) JPS60244004A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134646A (en) * 1986-11-26 1988-06-07 Sumitomo Special Metals Co Ltd Rare earth magnet excellent in corrosion resistance
EP0320861A2 (en) * 1987-12-14 1989-06-21 The B.F. Goodrich Company Oxidation resistant compositions for use with rare earth magnets
US5087302A (en) * 1989-05-15 1992-02-11 Industrial Technology Research Institute Process for producing rare earth magnet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117326A (en) * 1976-03-29 1977-10-01 Yoshida Kogyo Kk <Ykk> Method of coating an extruded aluminum material
JPS5662903A (en) * 1979-10-23 1981-05-29 Hitachi Maxell Ltd Metal magnetic powder and its treatment
JPS5946008A (en) * 1982-08-21 1984-03-15 Sumitomo Special Metals Co Ltd Permanent magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117326A (en) * 1976-03-29 1977-10-01 Yoshida Kogyo Kk <Ykk> Method of coating an extruded aluminum material
JPS5662903A (en) * 1979-10-23 1981-05-29 Hitachi Maxell Ltd Metal magnetic powder and its treatment
JPS5946008A (en) * 1982-08-21 1984-03-15 Sumitomo Special Metals Co Ltd Permanent magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134646A (en) * 1986-11-26 1988-06-07 Sumitomo Special Metals Co Ltd Rare earth magnet excellent in corrosion resistance
EP0320861A2 (en) * 1987-12-14 1989-06-21 The B.F. Goodrich Company Oxidation resistant compositions for use with rare earth magnets
US5087302A (en) * 1989-05-15 1992-02-11 Industrial Technology Research Institute Process for producing rare earth magnet

Similar Documents

Publication Publication Date Title
US7402349B2 (en) Thick film composition yielding magnetic properties
EP0134949B1 (en) A composition for plastic magnets
KR900001377B1 (en) Plastic magnet composition
JP2005520351A (en) Bond magnet manufactured using atomized permanent magnet powder
US6136265A (en) Powder metallurgy method and articles formed thereby
Brown et al. The dependence of magnetic properties and hot workability of rare earth-iron-boride magnets upon composition
EP1197975B1 (en) Method of producing corrosion resistant magnet powder
US4190548A (en) Plastic bonded permanent magnet and method of making same
JPS60240105A (en) Plastic magnet composition
JPS60244004A (en) Plastic magnet composition
JPS6338216A (en) Manufacture of corrosion-resistant rare-earth magnetic powder and magnetic unit made of the powder
JPH043651B2 (en)
Xi et al. Preparation and characterization of phenol formaldehyde bonded Nd–Fe–B magnets with high strength and heat resistance
JPH05247601A (en) Alloy for corrosion resistant permanent magnet and method for producing permanent magnet therefrom
JP2967827B2 (en) Hard ferrite powder for composite magnet, compound using the same, and composite magnet
JPS6041202A (en) Plastic magnet composition
JP2619653B2 (en) Rare earth magnet
JPH06316745A (en) Production of r-fe-b series sintered magnet by injection molding method
KR970010296B1 (en) Polyethylene glycol binders and production thereof
JPS6013826A (en) Plastic magnet composition
JPS60130649A (en) Plastic magnet composition
JPH04191302A (en) Manufacture of rare earth metal-iron based permanent magnet
JPS60216524A (en) Manufacture of permanent magnet
JPH0212801A (en) Compound for bonding magnet and its manufacture
JPH04224116A (en) Ferrite magnetic powder for magnetic-field-oriented bond magnet