JPS6024366B2 - Multistage incinerator equipment - Google Patents

Multistage incinerator equipment

Info

Publication number
JPS6024366B2
JPS6024366B2 JP56039337A JP3933781A JPS6024366B2 JP S6024366 B2 JPS6024366 B2 JP S6024366B2 JP 56039337 A JP56039337 A JP 56039337A JP 3933781 A JP3933781 A JP 3933781A JP S6024366 B2 JPS6024366 B2 JP S6024366B2
Authority
JP
Japan
Prior art keywords
incinerator
air
amount
fuel
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56039337A
Other languages
Japanese (ja)
Other versions
JPS57155016A (en
Inventor
均 小笠原
昭二 渡辺
直衛 泉
勝 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56039337A priority Critical patent/JPS6024366B2/en
Publication of JPS57155016A publication Critical patent/JPS57155016A/en
Publication of JPS6024366B2 publication Critical patent/JPS6024366B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/06Air or combustion gas valves or dampers at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel

Landscapes

  • Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

【発明の詳細な説明】 本発明は下水処理の過程において排出される有機性汚泥
を焼却処理する多段焼却炉装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multistage incinerator apparatus for incinerating organic sludge discharged in the process of sewage treatment.

一般に下水処理場においては下水処理の過程で排出され
る有機性汚泥を焼却するのに多段焼却炉が多く用いられ
ている。
Multistage incinerators are generally used in sewage treatment plants to incinerate organic sludge discharged during the sewage treatment process.

多段焼却炉は上下方向に複数段(5〜12段)の棚を形
成し、最上段に投入された汚泥を順次下段に落下させる
ことにより汚泥を乾燥、孫却、冷却とを行い処理するも
のである。
A multistage incinerator has multiple shelves (5 to 12) in the vertical direction, and the sludge placed in the top shelf is dropped to the bottom one after another, thereby drying, cooling, and processing the sludge. It is.

焼却炉の加熱は通常バーナーによって行われる。また焼
却の落下は中心部に配置される回転軸に設けられた縄梓
アームによって行われ、燃焼によって生じた灰は最下段
より排出される。ところで、多段焼却炉においては汚泥
処理を行う過程で発生する廃ガスの一部を焼却炉内に下
部から再循環させるようにしている。
Heating of incinerators is usually done by burners. Incineration is carried out by a rope arm attached to a rotating shaft located in the center, and the ash produced by combustion is discharged from the bottom stage. By the way, in a multi-stage incinerator, a part of the waste gas generated during the process of sludge treatment is recirculated into the incinerator from the lower part.

これは廃ガスの温度が200o 〜30000あり熱量
として再利用を図ることにある。また、他の目的は循環
により炉内の熱風量を多くして大気に放散する廃ガス量
を少なくし、かつ廃ガス中の酸素を燃焼に使用すること
により新たに供給する空気量を少なくすることによって
大気に放散する廃ガス量を少なくするためである。つま
り、酸素を有効に利用するためである。一方、焼却炉か
ら発生する廃ガス中の酸素濃度は3%程度で運転するの
が効果的であるとされている。
This is because the temperature of the waste gas is 200 to 30,000 degrees, and it is intended to be reused as heat. Another purpose is to increase the amount of hot air inside the furnace through circulation, thereby reducing the amount of waste gas released into the atmosphere, and to reduce the amount of newly supplied air by using oxygen in the waste gas for combustion. This is to reduce the amount of waste gas released into the atmosphere. In other words, this is to use oxygen effectively. On the other hand, it is said that it is effective to operate the incinerator at an oxygen concentration of about 3% in the waste gas generated from the incinerator.

これは、上述の如く廃ガス中の酸素を燃焼に再利用する
と共に不完全燃焼を防止するためである。ところで、従
来はバーナーに供給する空気量と燃料量の比、つまり空
燃比を予め設定した一定値にしている。
This is to reuse oxygen in the waste gas for combustion as described above and to prevent incomplete combustion. Incidentally, conventionally, the ratio between the amount of air and the amount of fuel supplied to the burner, that is, the air-fuel ratio, is set to a constant value set in advance.

空燃比は例えば1.3にしている。しかし、焼却炉に没
入される汚泥量は前工程である脱水工程の運転方法など
によって変動する。汚泥も酸素を消費するため空燃比を
一定にしたのでは廃ガス中の酸素濃度を3%に保つこと
ができなくなる。また、焼却炉への汚泥投入量を一定に
しても汚泥の性質、つまり可燃性の有機物の割合は変化
する。何故ならば、下水処理で排出される汚泥には砂な
どの無機物が含まれており、無機物の量は降雨や一日の
下水量によって異なるからである。このように、焼却炉
を加熱するバーナーの空燃比を一定したのでは投入汚泥
量や汚泥の性質によって廃ガス中の酸素濃度が変化し、
所定値に保つことができなにという問題点を有する。
The air-fuel ratio is set to 1.3, for example. However, the amount of sludge immersed in the incinerator varies depending on the operating method of the dehydration step, which is the previous step. Sludge also consumes oxygen, so if the air-fuel ratio is kept constant, it is no longer possible to maintain the oxygen concentration in the waste gas at 3%. Furthermore, even if the amount of sludge input into the incinerator is constant, the properties of the sludge, that is, the proportion of combustible organic matter, change. This is because sludge discharged during sewage treatment contains inorganic substances such as sand, and the amount of inorganic substances varies depending on rainfall and the amount of sewage per day. In this way, even if the air-fuel ratio of the burner that heats the incinerator is kept constant, the oxygen concentration in the waste gas changes depending on the amount of sludge input and the properties of the sludge.
The problem is that it cannot be maintained at a predetermined value.

本発明は上記点に対処して成されたもので、その目的と
するところは廃ガス中の酸素濃度を所定の値にすること
のできる多段焼却炉装置を提供することにある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to provide a multi-stage incinerator device that can bring the oxygen concentration in waste gas to a predetermined value.

本発明の特徴とするところは廃ガス中の酸素濃度に応じ
て供給空気量を制御して空燃此を変えるようにしたこと
にある。
A feature of the present invention is that the amount of supplied air is controlled in accordance with the oxygen concentration in the waste gas to change the air/fuel ratio.

以下、本発明を第1図に示す実施例において詳細に説明
する。
The present invention will be explained in detail below with reference to the embodiment shown in FIG.

第1図において、各段焼却炉1は上下方向に複数段の棚
laを有し、その中央部に回転滋2が配置されている。
In FIG. 1, each stage incinerator 1 has a plurality of shelves la in the vertical direction, and a rotating feeder 2 is arranged in the center thereof.

回転軸2は電動機2Mによって駆動される。多段焼却炉
1にはホッパー13からベルトコンベア12を介して汚
泥が投入される。焼却炉1はバーナー3によって加熱さ
れる。このバーナー3は例えば焼却炉が12段の場合に
は7段目あるいは8段目に設置される。バーナー3には
燃料貯留槽6から燃料(例えば重油)が燃料ポンプ7、
流量計5および調節弁4を介して供給される。また、バ
ーナー3および多段焼却炉1には押込送風機1 1から
流量計9およびダンパ−8を介して空気が供蟻溝される
。調節弁4は調節弁26によって焼却炉内温度が設定値
となるような開度に制御される。焼却炉内温度は温度検
出器22で検出され、燃料量演算回路27で炉内温度が
設定値となるような燃料量を求め燃料量指令値Foとし
て調節計26に加える。バーナー3に供聯合している燃
料量Ffは流量計5によって検出される。空気量を調節
するダンパー8は調節計28によって制御される。調節
計28は流量計9の流量実際値Afが空気量演算回路2
9で求めた空気量目標値Aoとなるようにダンパー8を
制御する。空気量演算回路29は空燃比演算回路30で
求めた空燃比制御信号Qにより空気量目標値Aoを求め
る。空燃辻七演算回路30は酸素濃度計23で検出した
廃ガス中の酸素濃度02によって空燃比制御信号Qを求
める。その特性は第2図のようになる。焼却炉1の廃ガ
スは神込送風機15により再び焼却炉1に循環されると
共に議引送風機17によって誘引され処理塔16で洗浄
される。洗浄処理された廃ガスは煙突18から大気へ放
散される。次にその動作を説明する。脱水工程から送ら
てくる汚泥はホツパー13からベルトコンベア12で移
送され、焼却炉1に投入される。
The rotating shaft 2 is driven by an electric motor 2M. Sludge is fed into the multistage incinerator 1 from a hopper 13 via a belt conveyor 12. The incinerator 1 is heated by a burner 3. For example, when the incinerator has 12 stages, this burner 3 is installed at the 7th stage or the 8th stage. Fuel (for example, heavy oil) is supplied to the burner 3 from a fuel storage tank 6 by a fuel pump 7.
It is supplied via a flow meter 5 and a control valve 4. Further, air is supplied to the burner 3 and the multistage incinerator 1 from a forced air blower 11 via a flow meter 9 and a damper 8. The control valve 4 is controlled by the control valve 26 to an opening degree such that the temperature inside the incinerator becomes a set value. The temperature inside the incinerator is detected by a temperature detector 22, and the fuel amount calculation circuit 27 determines the amount of fuel that will bring the temperature inside the furnace to a set value, and adds it to the controller 26 as a fuel amount command value Fo. The amount of fuel Ff connected to the burner 3 is detected by a flow meter 5. A damper 8 that adjusts the amount of air is controlled by a controller 28. The controller 28 determines that the actual flow rate Af of the flow meter 9 is determined by the air amount calculation circuit 2.
The damper 8 is controlled so that the air amount target value Ao obtained in step 9 is achieved. The air amount calculation circuit 29 determines the air amount target value Ao based on the air-fuel ratio control signal Q determined by the air-fuel ratio calculation circuit 30. The air-fuel ratio calculation circuit 30 obtains the air-fuel ratio control signal Q based on the oxygen concentration 02 in the exhaust gas detected by the oxygen concentration meter 23. Its characteristics are shown in Figure 2. The waste gas from the incinerator 1 is circulated again to the incinerator 1 by the shingome blower 15, and is drawn in by the draft blower 17 and cleaned in the treatment tower 16. The cleaned waste gas is released into the atmosphere from the chimney 18. Next, its operation will be explained. The sludge sent from the dewatering process is transferred from the hopper 13 by a belt conveyor 12 and thrown into the incinerator 1.

焼却炉1の最上段に投入された汚泥は回転軸2に取付け
られた蝿梓アーム(図示せず)により各段の棚la上で
円周部から中心部へ、中心部から円周部に交互に送られ
、回転軸2と棚laの隙間および棚laの外周部に設け
た穴(図示せず)から下段に落下する。汚泥は瓶次落下
する過程で乾燥、燃焼が行われる。燃焼によって無機物
の灰になり、冷却された後に最下段から排出される。こ
の汚泥の処理の発生した廃ガスの一部は押込送風機15
によって焼却炉1に再循環される。残りの廃ガスは譲引
送風機17によって譲引され処理済16で水洗い、酸(
硫酸)洗い、アルカリ(苛性ソーダ)洗いなどによって
洗浄処理された後に煙突18から大気に放散される。な
お、処理塔16の排水は排水処理工程へ送られる。さて
、焼却炉1を加熱するバーナー3には燃料ポンプ7によ
って燃料が供孫合され、また送風機11から空気が供給
される。燃料量は調節弁4の関度を制御し焼却炉1の燃
焼段の炉内温度が目標値となるように調節される。炉内
温度検出器22で炉内温度を検出し燃料量演算回路27
で燃料量目標値Foを求め調節計26を入力する。調節
計26は流量計5からの燃料量実際値Frが燃料量目標
値F。となるように調節弁4の閥度を制御する。具体的
には炉内温度が設定値より小さければ調節弁4の開度を
大きくし供給燃料量を増加させ、逆に炉内温度が設定値
より大きくなると調節弁4の開度を小さくし供聯合燃料
量を減少させる。一方、焼却炉1の廃ガス中の酸素濃度
02を濃度検出計23によって検出する。空燃比演算回
路30は第2図の如く廃ガス中の酸素濃度02が所定値
となるような空燃比制御信号Qを求める。廃ガス酸素濃
度02が所定値以上になると空燃比制御信号Qを小さく
し、所定値以下になると空燃比制御信号qを大きくする
。空気量演算回路29は空燃比演算回路30で求めた空
燃比制御信号Qによって空気量目標値Aoを求め、調節
計28に加える。調節計28は流量計9で検出した空気
流量実際値Afと目標値Aoの偏差に応じてダンパー8
の開度を制御し、バーナー3と焼却炉1に供給する空気
量を制御する。このようにしてバーナー3に供給する空
気量と燃料量を制御するのであるが、今廃ガス中の酸素
濃度が所定値以上になるとダンパー8の開度を小さくし
て空気量を減少させ、逆に酸素濃度が所定値以下になる
とダンパー8の関度を大きくして空気量を増加させる。
The sludge put into the top stage of the incinerator 1 is moved from the circumference to the center and from the center to the circumference on the shelves la of each stage by a fly arm (not shown) attached to the rotating shaft 2. They are sent alternately and fall to the lower stage through holes (not shown) provided in the gap between the rotating shaft 2 and the shelf la and on the outer periphery of the shelf la. The sludge is dried and burned as it falls from bottle to bottle. Combustion turns it into inorganic ash, which is cooled and discharged from the bottom stage. A part of the waste gas generated during the treatment of this sludge is transferred to the forced air blower 15.
is recycled to the incinerator 1 by The remaining waste gas is transferred by the transfer blower 17, washed with water in the treated 16, and treated with acid (
After being cleaned by washing with sulfuric acid), washing with alkali (caustic soda), etc., it is released into the atmosphere from the chimney 18. Note that the waste water from the treatment tower 16 is sent to a waste water treatment process. Now, fuel is supplied to the burner 3 that heats the incinerator 1 by a fuel pump 7, and air is supplied from a blower 11. The amount of fuel is adjusted by controlling the control valve 4 so that the temperature inside the combustion stage of the incinerator 1 reaches a target value. The furnace temperature is detected by the furnace temperature detector 22 and the fuel amount calculation circuit 27
The fuel amount target value Fo is determined and input to the controller 26. In the controller 26, the actual fuel amount value Fr from the flow meter 5 is the target fuel amount value F. The flow rate of the control valve 4 is controlled so that Specifically, if the temperature inside the furnace is lower than the set value, the opening of the control valve 4 is increased to increase the amount of fuel to be supplied, and conversely, when the temperature inside the furnace is higher than the set value, the opening of the control valve 4 is decreased to increase the amount of fuel supplied. Decrease the amount of combined fuel. On the other hand, the oxygen concentration 02 in the waste gas from the incinerator 1 is detected by the concentration detector 23. The air-fuel ratio calculation circuit 30 obtains an air-fuel ratio control signal Q such that the oxygen concentration 02 in the exhaust gas becomes a predetermined value as shown in FIG. When the exhaust gas oxygen concentration 02 exceeds a predetermined value, the air-fuel ratio control signal Q is decreased, and when it becomes below the predetermined value, the air-fuel ratio control signal q is increased. The air amount calculation circuit 29 determines the air amount target value Ao based on the air-fuel ratio control signal Q determined by the air-fuel ratio calculation circuit 30, and applies it to the controller 28. The controller 28 controls the damper 8 according to the deviation between the actual air flow rate Af detected by the flow meter 9 and the target value Ao.
The amount of air supplied to the burner 3 and the incinerator 1 is controlled. In this way, the amount of air and fuel supplied to the burner 3 is controlled, but when the oxygen concentration in the waste gas exceeds a predetermined value, the opening of the damper 8 is reduced to reduce the amount of air, and vice versa. When the oxygen concentration becomes less than a predetermined value, the damper 8 is increased to increase the amount of air.

このような制御によって廃ガスの酸素濃度を第3図に示
す如く所定値(3%)に制御することができる。したが
って、廃ガス中の酸素を焼却炉内の燃焼に利用できるの
で送風機11から送る空気量を少なくでき、その結果と
して大気に放散する廃ガス量を低減できる。これにより
、処理塔16で使用される薬品量を少なくできる。以上
説明したように、本発明は空燃比を調整し焼却炉の廃ガ
スの酸素濃度を一定にしているので不完全燃焼を防止で
きるのは勿論、大気に放散する廃ガス量を低減でき大気
汚染を少なくできる。
Through such control, the oxygen concentration of the waste gas can be controlled to a predetermined value (3%) as shown in FIG. Therefore, since oxygen in the waste gas can be used for combustion in the incinerator, the amount of air sent from the blower 11 can be reduced, and as a result, the amount of waste gas released into the atmosphere can be reduced. Thereby, the amount of chemicals used in the treatment tower 16 can be reduced. As explained above, the present invention adjusts the air-fuel ratio to keep the oxygen concentration of the waste gas from the incinerator constant, which not only prevents incomplete combustion, but also reduces the amount of waste gas released into the atmosphere, resulting in air pollution. can be reduced.

また、大気に放散する廃ガスの洗浄に用いる薬品量を少
なくすることができる。
Furthermore, the amount of chemicals used for cleaning waste gas released into the atmosphere can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は第1
図の空燃比演算回路の入出力特性図、第3図は本発明の
動作を説明するための特・性図である。 1・・・・・・多段焼却炉、2・・・・・・回転軸、3
・・・・・・バーナー、4・・・・・・調整弁、8…・
・・ダンパー、11,15,17・・・・・・送風機、
16・・・・・・処理塔。 第2図第3図 多′図
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
FIG. 3 is an input/output characteristic diagram of the air-fuel ratio calculation circuit, and FIG. 3 is a characteristic diagram for explaining the operation of the present invention. 1...Multi-stage incinerator, 2...Rotating shaft, 3
...Burner, 4...Adjusting valve, 8...
...Damper, 11,15,17...Blower,
16... Processing tower. Figure 2 Figure 3 Multi-figure

Claims (1)

【特許請求の範囲】[Claims] 1 上下方向に複数段の棚を有し、最上段に投入される
汚泥を順次下段に落下させて焼却処理する多段焼却炉と
、該多段焼却炉を加熱するバーナーと、該バーナーに燃
料を供給する燃料供給手段と、前記多段焼却炉の炉内温
度が設定値なるように前記燃料供給手段から供給する燃
料量を制御する燃料量制御手段と、前記バーナーと前記
多段焼却炉に空気を供給する空気供給手段と、前記焼却
炉の廃ガスの一部を焼却炉の下部へ再循環させるガス循
環手段と、前記廃ガス中の酸素濃度を検出する酸素濃度
計と、前記酸素濃度が所定値となるように前記空気供給
手段から供給する空気量を制御する空気量制御手段とを
具備する多段焼却炉装置。
1. A multi-stage incinerator that has multiple shelves in the vertical direction and incinerates sludge that is put into the top stage by sequentially dropping it to the lower stage, a burner that heats the multi-stage incinerator, and supplies fuel to the burner. a fuel supply means for controlling the amount of fuel supplied from the fuel supply means so that the internal temperature of the multistage incinerator reaches a set value; and supplying air to the burner and the multistage incinerator. an air supply means; a gas circulation means for recirculating part of the waste gas from the incinerator to a lower part of the incinerator; an oxygen concentration meter for detecting the oxygen concentration in the waste gas; A multi-stage incinerator apparatus comprising: an air amount control means for controlling the amount of air supplied from the air supply means so that the amount of air supplied from the air supply means is maintained.
JP56039337A 1981-03-20 1981-03-20 Multistage incinerator equipment Expired JPS6024366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56039337A JPS6024366B2 (en) 1981-03-20 1981-03-20 Multistage incinerator equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56039337A JPS6024366B2 (en) 1981-03-20 1981-03-20 Multistage incinerator equipment

Publications (2)

Publication Number Publication Date
JPS57155016A JPS57155016A (en) 1982-09-25
JPS6024366B2 true JPS6024366B2 (en) 1985-06-12

Family

ID=12550272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56039337A Expired JPS6024366B2 (en) 1981-03-20 1981-03-20 Multistage incinerator equipment

Country Status (1)

Country Link
JP (1) JPS6024366B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543893Y2 (en) * 1988-03-19 1993-11-05
CN100345718C (en) * 2000-08-30 2007-10-31 株式会社小松制作所 Rubber crawler belt

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4459923A (en) * 1983-02-18 1984-07-17 Sterling Drug, Inc. Method and apparatus for efficiently controlling the incineration of combustible materials in a multiple hearth furnace system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543893Y2 (en) * 1988-03-19 1993-11-05
CN100345718C (en) * 2000-08-30 2007-10-31 株式会社小松制作所 Rubber crawler belt

Also Published As

Publication number Publication date
JPS57155016A (en) 1982-09-25

Similar Documents

Publication Publication Date Title
US3958920A (en) System for controlling the operation of a multiple hearth furnace
AU2002231125B2 (en) Method and apparatus for drying and incineration of sewage sludge
US5054405A (en) High temperature turbulent gasification unit and method
KR19990083127A (en) Process and device for incineration of particulate solids
US4215637A (en) System for combustion of wet waste materials
JPS633209B2 (en)
US5957064A (en) Method and apparatus for operating a multiple hearth furnace
JPS6024366B2 (en) Multistage incinerator equipment
KR200226144Y1 (en) Device for drying and incinerating the sludge of incinerating furnace
JP2712017B2 (en) Combustion system and combustion furnace
US6006682A (en) Garbage incinerator with tunnel furnace combustion
KR20000054505A (en) Device for drying and incinerating the sludge of incinerating furnace
US2121662A (en) Incineration of sewage sludge and other waste materials
KR102046329B1 (en) Incineration apparatus for hot water/wind
JP3170654B2 (en) Operation control method of dry incineration equipment
KR200152695Y1 (en) Garbage disposer using the waste heat of incinerator
KR100507991B1 (en) Apparatus to iacinerate sludge
KR200346821Y1 (en) Drying-burnout apparatu for swage sludge
JP3462749B2 (en) Incinerator incineration method
JPH11294731A (en) Incineration method of incinerator
KR100500429B1 (en) Apparatus to iacinerate sludge
JPH0130050B2 (en)
US3818847A (en) Material treating furnace
JPH0360011B2 (en)
KR20050072860A (en) Drying-burnout apparatu for swage sludge