JPS60239340A - Preparation of parent material for optical fiber - Google Patents

Preparation of parent material for optical fiber

Info

Publication number
JPS60239340A
JPS60239340A JP9613284A JP9613284A JPS60239340A JP S60239340 A JPS60239340 A JP S60239340A JP 9613284 A JP9613284 A JP 9613284A JP 9613284 A JP9613284 A JP 9613284A JP S60239340 A JPS60239340 A JP S60239340A
Authority
JP
Japan
Prior art keywords
burner
starting material
tip
optical fiber
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9613284A
Other languages
Japanese (ja)
Other versions
JPH0413298B2 (en
Inventor
Minoru Watanabe
稔 渡辺
Hiroshi Yokota
弘 横田
Toshio Tamazuka
弾塚 俊雄
Yoichi Ishiguro
洋一 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9613284A priority Critical patent/JPS60239340A/en
Publication of JPS60239340A publication Critical patent/JPS60239340A/en
Publication of JPH0413298B2 publication Critical patent/JPH0413298B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/40Mechanical flame shields
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/42Assembly details; Material or dimensions of burner; Manifolds or supports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/46Comprising performance enhancing means, e.g. electrostatic charge or built-in heater

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To prepare a parent material for optical fiber causing no cracking in the sintering stage by retracting a wind shielding cap of a burner in the direction of the axis of the burner after ingniting the burner ejecting the starting material for a glass and reducing gradually the converging density of the flame reaching the top end of the starting material. CONSTITUTION:In a reacting vessel 6 provided with a gas exhaust pipe 8, the starting material for the glass fed from a feeding pipe 11 thereof, and H2 and O2 fed from a fuel gas feeding pipe 12 are ejected from the burner 1 in the gaseous state, and fine particles of the glass formed by the flame hydrolysis are deposited and grown on the tip end 41 of the revolving starting material 4 to prepare a parent material for an optical fiber as a porous glass body. In this stage, the wind shielding cap 2 fitted on an ejecting port of the burner 1 is set close to the tip end 41 at the stage of igniting the burner 1. In this stage, the wind shielding cap 2 is retracted along the threaded parts 21-23 provided to the burner 1 and the wind shelding cap 2, and the threaded part 31 engaging therewith by driving a motor 3 to retract in the axial direction of the burner. Thus, the converging density of the flame 5 ejected from the burner 1 is reduced gradually and the temp. at the tip 41 is controlled. By this method, a porous glass body having high bulk density and causing no cracking during sintering is prepared.

Description

【発明の詳細な説明】 発明の技術分野 本発明は火炎加水分解法による光フアイバ母材の製造方
法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD OF THE INVENTION The present invention relates to an improvement in a method for manufacturing optical fiber preforms by flame hydrolysis.

技術の背景 火炎加水分解法による製造方法で得られる光フアイバ母
材を脱水、透明化して線引きすることによシ、低損失の
高品質光ファイバを製造することができる。この製造方
法は、出発材に、風帽を備えたバーナから火炎加水分解
法によシ生成したガラス微粒子を噴出して付着させ、こ
の付着したガラス微粒子を成長させて多孔質ガラス体と
した後、脱水、透明化し、線引きして光ファイバを得る
方法である。この製造方法では、ガラス微粒子を出発材
に安定に付着させ、多孔質ガラス体を形成するためにバ
ーナと出発材に付着、成長する多孔質ガラス体との相互
位置関係が重要となる。代表的な製造方法として、気相
軸付法(VAD法)がある。
Background of the Technology A low-loss, high-quality optical fiber can be manufactured by dehydrating, transparentizing, and drawing an optical fiber base material obtained by a manufacturing method using a flame hydrolysis method. In this manufacturing method, fine glass particles produced by flame hydrolysis are ejected from a burner equipped with a wind cap to adhere to the starting material, and the adhered glass particles are grown to form a porous glass body. This is a method of obtaining optical fiber by dehydrating, making it transparent, and drawing it. In this manufacturing method, the mutual positional relationship between the burner and the porous glass body that is attached to and grows on the starting material is important in order to stably adhere the glass particles to the starting material and form a porous glass body. A typical manufacturing method is the vapor deposition method (VAD method).

気相軸付法では、棒状の回転する出発材の先端にバーナ
から噴出するガラス微粒子を付着させ、出発材の軸方向
に成長させる。この際、出発材にガラス微粒子の付着を
開始してから、所定の直径にまで成長させる段階で、最
初に燃焼用ガスの流量を増大するか、またはガラス原料
ガスの流量を減少することによシ出発材表面の温度を高
くしてが重密度を大とし、多孔質ガラス体が出発材から
離脱、落下するのを防止している。従来の流量を変える
方法としては、たとえば、特開昭56−149335号
公報に開示されているように、自動流量制御器に可変抵
抗器を接続し、可変抵抗器の中間端子を摺動する方法に
よっている。
In the vapor phase axial attachment method, glass particles ejected from a burner are attached to the tip of a rotating rod-shaped starting material and grown in the axial direction of the starting material. At this time, after the glass particles start adhering to the starting material and are grown to a predetermined diameter, the flow rate of the combustion gas is increased or the flow rate of the glass raw material gas is decreased. By increasing the temperature of the surface of the starting material, the density is increased and the porous glass body is prevented from detaching from the starting material and falling. A conventional method for changing the flow rate is, for example, as disclosed in Japanese Patent Application Laid-Open No. 149335/1983, a method in which a variable resistor is connected to an automatic flow rate controller and the intermediate terminal of the variable resistor is slid. I am by.

従来技術と問題点 従来のバーナに供給する燃焼用ガスおよびガラス原料ガ
ス流量の変動は、光ファイバとしたときの光の屈折率分
布に極めて大きな変動を与える。
Prior Art and Problems Fluctuations in the flow rates of combustion gas and frit gas supplied to a conventional burner cause extremely large fluctuations in the refractive index distribution of light when used as an optical fiber.

従って従来性われていた流量制御器による方法では、流
量制御器を常に流量が一定になるよう設定しておくこと
が必要である。然し、常に一定の再現性のある流量に保
持しておくことが必要な気相軸付法の場合には、製造開
始時に、毎回流量を変えることは好ましくないという問
題がある。さらに従来の方法では、燃焼用ガスの流量を
増大して(も4=−g密度は高々1−0!i/am”程
度で、多孔質ガラス体形成後、焼結時に出発材から落下
することが屡屡起る。
Therefore, in the conventional method using a flow rate controller, it is necessary to set the flow rate controller so that the flow rate is always constant. However, in the case of the gas-phase axis method where it is necessary to always maintain a constant and reproducible flow rate, there is a problem in that it is not desirable to change the flow rate every time at the start of production. Furthermore, in the conventional method, the flow rate of the combustion gas is increased (4=-g density is at most about 1-0!i/am", and after the porous glass body is formed, it falls from the starting material during sintering. This happens often.

発明の目的 本発明は従来の欠点を除去し、高いかさ密度で、再現性
よく、安定に多孔質ガラス体を形成し、焼結工程におい
ても割れる現象のitとんど起らない光フアイバ母材の
製造方法を提供することを目的とする。
Purpose of the Invention The present invention eliminates the drawbacks of the conventional optical fiber matrix, forms a porous glass body with high bulk density, good reproducibility, and stability, and almost never cracks during the sintering process. The purpose is to provide a method for manufacturing materials.

発明の構成 本発明は、熱焼用ガスおよびガラス原料ガスを噴出する
、噴出口に風帽を有したバーナに点火後、風帽をバーナ
の軸方向に、出発材の先端から離間する位置に移動しな
がら出発材先端に至る火炎の集束密度を漸減することに
よシ、出発材先端の温度を制御する工程を含むことを特
徴とするものである。以下図によシ詳細に説明する。
Composition of the Invention The present invention provides a method of igniting a burner having a wind cap at its ejection port that spews out sintering gas and frit gas, and then moving the wind cap in the axial direction of the burner to a position away from the tip of the starting material. The present invention is characterized in that it includes a step of controlling the temperature at the tip of the starting material by gradually decreasing the concentration density of the flame reaching the tip of the starting material. This will be explained in detail below with reference to the figures.

発明の実施例 図は本発明の詳細な説明するもので、バーナ1の噴出口
に取シ付けた風帽2は、外周に設けた凹凸部21とモー
タ3に取付けた螺子部31とのかみ合せ、および風帽2
の内面に設けた凹凸部22とバーナ1の外周に設けた凹
凸部23とのかみ合せによシ、モータ3の駆動に伴う螺
子部31の回転に応じてバーナ軸方向に移動する。バー
ナ1の点火前は、風帽2は図示するように出発材4の先
端41に近接して配置する。バーナ1に点火直後、火炎
5は、風帽2が出発材4の先端41に近接した位置にあ
るので、出発材4の先端41に到達するまで殆んど広が
ることなく集束した状態で先端41を加熱する。すなわ
ち火炎5のエネルギの集中性が良いため、出発材4の先
端41は燃焼用ガスの流量を制御するととなく約1.0
001?: 以上に加熱される。出発材4にガラス微粒
子が堆積するに従い、そ−夕3の駆動によシ、風帽2は
螺子310回転に伴い凹凸部21−22−23の連動で
、連続的にバーナ1の軸方向に、出発材4の先端41か
ら離間する位置に移動し、出発材4の先端41近傍の火
炎の広がシが増大し、火炎5の集中性が低下しはじめる
。このため出発材4の先端41に堆積し、成長していく
多孔質ガラス体の表面温度は徐々に下がシかさ密度は減
少する。風帽2はバーナ1にあらかじめ定めて設けであ
るストッパ7の位置に移動したとき、移動を停止し、そ
の後は一定の条件で出発材4上の多孔質ガラス体の形成
が行われる。
The embodiment diagram of the invention is a detailed explanation of the invention, and the wind cap 2 attached to the spout of the burner 1 has an uneven part 21 provided on the outer periphery and a threaded part 31 attached to the motor 3. , and wind hat 2
Due to the engagement of the uneven portion 22 provided on the inner surface of the burner 1 with the uneven portion 23 provided on the outer periphery of the burner 1, the burner moves in the burner axial direction in accordance with the rotation of the screw portion 31 as the motor 3 is driven. Before the burner 1 is ignited, the wind cap 2 is placed close to the tip 41 of the starting material 4 as shown. Immediately after igniting the burner 1, since the flame cap 2 is in a position close to the tip 41 of the starting material 4, the flame 5 hardly spreads until it reaches the tip 41 of the starting material 4, and remains converged. Heat. In other words, since the energy concentration of the flame 5 is good, the tip 41 of the starting material 4 has a flow rate of approximately 1.0 when the flow rate of the combustion gas is controlled.
001? : Heated to a higher level. As the glass particles are deposited on the starting material 4, the wind cap 2 is continuously moved in the axial direction of the burner 1 as the screw 310 rotates and the uneven parts 21-22-23 are interlocked with each other as the screw 310 rotates. It moves to a position away from the tip 41 of the starting material 4, the spread of the flame near the tip 41 of the starting material 4 increases, and the concentration of the flame 5 begins to decrease. Therefore, the surface temperature of the porous glass body deposited on the tip 41 of the starting material 4 and growing gradually decreases, and the bulk density decreases. When the wind cap 2 moves to the position of a stopper 7 provided in advance on the burner 1, it stops moving, and thereafter a porous glass body is formed on the starting material 4 under constant conditions.

なおモータ3の駆動は、たとえば図示しないバーナ点火
時、外部から、または自動連動機構など適宜採用する。
The motor 3 may be driven, for example, when igniting a burner (not shown), externally, or by an automatic interlocking mechanism, as appropriate.

また風帽2の移動がストッパ7の位置に到達した後は、
モータ駆動機構に自動停止機構を設けておく。図で6は
反応容器、8は排気管、11および12はそれぞれガラ
ス原料ガスおよび燃焼用ガス供給管である。
Moreover, after the movement of the wind cap 2 reaches the position of the stopper 7,
An automatic stop mechanism is provided in the motor drive mechanism. In the figure, 6 is a reaction vessel, 8 is an exhaust pipe, and 11 and 12 are glass raw material gas and combustion gas supply pipes, respectively.

次に本発明による具体的実施例を説明する。Next, specific examples according to the present invention will be described.

バーナ1からH3,0,およびガラス原料を一定量噴出
し、火炎5中でガラス原料を火炎加水分解することによ
シ生成したガラス微粒子を、回転する棒状の出発材4の
先端41に付着させ、出発材4の軸方向に成長させる気
相軸付法を行う際、バーナ1の噴出口に取付けた風帽2
を最初出発材4の先端41から1 cmのところに配置
して多孔質ガラス体の製造を開始した。その度、引続き
肌3馴/分の速度でモータ5を駆動し、風帽2をバーナ
1側へ移動させた。出発材4は、多孔質ガラス体が成長
するに従い、多孔質ガラス体の付着、成長した出発材4
の先端41とバーナ1との位置関係が常にあらかじめ定
めておいた一定の距離、本実施例では3 amを保持し
ながら出発材4を引上げた。風帽2は、出発材4の先端
41に付着、成長した多孔質ガラス体の先端から3cm
の位置でストッパ7に達し移動を停止した。その後、通
常の気相軸付法によシ多孔質ガラス体の長さが60cm
 になるまで条件を変えることなく成長させた。本実施
例によシ得られた多孔質ガラス体の出発材近傍のかさ密
度を測定した結果、出発材に接した部分および近接部分
は1.5y/ams で、従来の気相軸付法によシ得ら
れたものに比し、約50−大のかさ密度が得られた。こ
のかさ密度は出発材の軸方向に成長する1 に従“ゆ6
や”に漸減し・約°0°“rO,3y/am”となシ、
以後一定値となっている。
A fixed amount of H3,0 and glass raw materials are ejected from the burner 1, and glass fine particles generated by flame hydrolysis of the glass raw materials in the flame 5 are attached to the tip 41 of the rotating rod-shaped starting material 4. , when performing the vapor phase axial growth method in which the starting material 4 is grown in the axial direction, the wind cap 2 attached to the spout of the burner 1
was initially placed at a distance of 1 cm from the tip 41 of the starting material 4, and production of the porous glass body was started. At that time, the motor 5 was continuously driven at a speed of 3 per minute to move the wind cap 2 toward the burner 1 side. As the porous glass body grows, the starting material 4 adheres to the porous glass body and the grown starting material 4
The starting material 4 was pulled up while maintaining the positional relationship between the tip 41 of the burner 1 and the burner 1 at a predetermined constant distance, which in this example was 3 am. The wind cap 2 is attached to the tip 41 of the starting material 4 and is 3 cm from the tip of the grown porous glass body.
It reached the stopper 7 at the position and stopped moving. After that, the length of the porous glass body was 60cm by the normal vapor phase mounting method.
It was grown without changing the conditions until it became . As a result of measuring the bulk density near the starting material of the porous glass body obtained in this example, the bulk density of the part in contact with the starting material and the adjacent part was 1.5 y/ams, compared to the conventional gas phase axial method. A bulk density of about 50-larger was obtained compared to that obtained otherwise. This bulk density increases due to the growth of the starting material in the axial direction.
It gradually decreases to about °0°"rO,3y/am",
It has remained a constant value since then.

発明の効果 以上述べたように、本発明によれば、ガラス原料ガス、
燃焼用ガスの流量を変えることなく、バーナの噴出口に
設けた風帽の位置を、バーナ点人後出発材先端から離間
する方向に移動し、バーナからの火炎の集束密度を漸減
させ乍ら、出発材先端に堆積、成長させた多孔質ガラス
体の温度を制御することによシ、多孔質ガラス体の出発
材に接する部分および近接する部分のか′さ密度を高め
、再現性よく安定に多孔質ガラス体を製造することがで
き、さらに得られた多孔質ガラス体の焼結工程において
も割れの現象は起らない効果がある。
Effects of the Invention As described above, according to the present invention, frit gas,
Without changing the flow rate of the combustion gas, the position of the wind cap provided at the burner nozzle is moved in the direction away from the tip of the starting material after the burner is lit, while gradually decreasing the concentration density of the flame from the burner. By controlling the temperature of the porous glass body deposited and grown on the tip of the starting material, the bulk density of the part of the porous glass body in contact with and in the vicinity of the starting material is increased, and the porosity is stably grown with good reproducibility. A porous glass body can be produced, and furthermore, the phenomenon of cracking does not occur during the sintering process of the obtained porous glass body.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の詳細な説明する図である。 1・・・バーナ、11・・・ガラス原料ガス供給管、1
2・・・燃焼用ガス供給管、2・・・風帽、21,22
.23・・・凹凸部、3・・・モータ、31・・・螺子
部、4・・・出発材、41・・・出発材4の先端、5・
・・火炎、6・・・反応容器、7・・・ストッパ、8・
・・排気管。 特許出願人 住友電気工業株式会社 代理人弁理士玉蟲久五部
The figure is a diagram for explaining the present invention in detail. 1... Burner, 11... Frit gas supply pipe, 1
2... Combustion gas supply pipe, 2... Wind cap, 21, 22
.. 23... Uneven part, 3... Motor, 31... Screw part, 4... Starting material, 41... Tip of starting material 4, 5...
...Flame, 6.Reaction container, 7.Stopper, 8.
··Exhaust pipe. Patent applicant: Sumitomo Electric Industries, Ltd. Patent attorney Gobe Tamamushi

Claims (1)

【特許請求の範囲】[Claims] 噴出口に風帽を有するバーナから気体のガラス原料を噴
出させ、火炎加水分解させることによシ生ずるガラス微
粒子を回転する出発材に付着させ、成長させて多孔質ガ
ラス体とする光フアイバ母材の製造方法において、該バ
ーナに点火後、該バーナの噴出口に設けた風帽を、該バ
ーナの軸方向に、該出発材の先端から離間する位置に移
動しながり該出発材先端に至る該バーナから噴出する火
炎の集束密度を漸減することによシ、該出発材先端の温
度を制御する工程を含むことを特徴とする光フアイバ母
材の製造方法。
An optical fiber base material in which a gaseous glass raw material is ejected from a burner having a wind cap at its ejection port and subjected to flame hydrolysis, and the resulting glass fine particles are attached to a rotating starting material and grown to form a porous glass body. In the manufacturing method, after the burner is ignited, a wind cap provided at the spout of the burner is moved in the axial direction of the burner to a position away from the tip of the starting material, and the burner reaches the tip of the starting material. A method for producing an optical fiber preform, comprising the step of controlling the temperature at the tip of the starting material by gradually reducing the convergence density of the flame ejected from the starting material.
JP9613284A 1984-05-14 1984-05-14 Preparation of parent material for optical fiber Granted JPS60239340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9613284A JPS60239340A (en) 1984-05-14 1984-05-14 Preparation of parent material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9613284A JPS60239340A (en) 1984-05-14 1984-05-14 Preparation of parent material for optical fiber

Publications (2)

Publication Number Publication Date
JPS60239340A true JPS60239340A (en) 1985-11-28
JPH0413298B2 JPH0413298B2 (en) 1992-03-09

Family

ID=14156862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9613284A Granted JPS60239340A (en) 1984-05-14 1984-05-14 Preparation of parent material for optical fiber

Country Status (1)

Country Link
JP (1) JPS60239340A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100640405B1 (en) 2004-12-16 2006-10-31 삼성전자주식회사 Deposition burner for optical fiber preform
JP2017088464A (en) * 2015-11-16 2017-05-25 古河電気工業株式会社 Manufacturing method for optical fiber preform and manufacturing apparatus for optical fiber preform

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100640405B1 (en) 2004-12-16 2006-10-31 삼성전자주식회사 Deposition burner for optical fiber preform
JP2017088464A (en) * 2015-11-16 2017-05-25 古河電気工業株式会社 Manufacturing method for optical fiber preform and manufacturing apparatus for optical fiber preform

Also Published As

Publication number Publication date
JPH0413298B2 (en) 1992-03-09

Similar Documents

Publication Publication Date Title
KR880001607B1 (en) Preparation for making of glass fiber preform
KR102545712B1 (en) Method and apparatus for manufacturing porous glass preform for optical fiber
JP3521681B2 (en) Manufacturing method of optical fiber preform
CN101481207B (en) Apparatus for manufacturing optical fiber preform part
US7437893B2 (en) Method for producing optical glass
JPS60239340A (en) Preparation of parent material for optical fiber
EP2221281B1 (en) Burner for manufacturing porous glass base material, and manufacturing method of porous glass base material
JP2000272930A (en) Production of optical fiber preform
JP3816268B2 (en) Method for producing porous glass base material
JP5485003B2 (en) Optical fiber preform manufacturing method
JP2000272929A (en) Production of optical fiber preform
JPS6044258B2 (en) synthesis torch
JPH05319849A (en) Production of silica porous preform
JP3221059B2 (en) Method for producing glass particle deposit
JPH0776108B2 (en) Method for manufacturing base material for optical fiber
JPH0258218B2 (en)
JPS6081035A (en) Manufacture of base material for optical fiber
JPS6210936B2 (en)
JPH0583497B2 (en)
JPS6259063B2 (en)
CN115849701A (en) Device and method for preparing conical loose body in deposition process
JP2000063141A (en) Production of porous glass preform for optical fiber
JPS63107825A (en) Production of synthetic quartz tube
JP3741832B2 (en) Dispersion shifted fiber glass preform manufacturing method
KR860001979B1 (en) Making method for preform of optical fiber