JPS60238148A - Auriferous oxide catalyst for catalytic combustion of combustible gas - Google Patents

Auriferous oxide catalyst for catalytic combustion of combustible gas

Info

Publication number
JPS60238148A
JPS60238148A JP59095185A JP9518584A JPS60238148A JP S60238148 A JPS60238148 A JP S60238148A JP 59095185 A JP59095185 A JP 59095185A JP 9518584 A JP9518584 A JP 9518584A JP S60238148 A JPS60238148 A JP S60238148A
Authority
JP
Japan
Prior art keywords
catalyst
gold
oxide
catalytic combustion
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59095185A
Other languages
Japanese (ja)
Other versions
JPH0312934B2 (en
Inventor
Masaki Haruta
正毅 春田
Hiroshi Sano
寛 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59095185A priority Critical patent/JPS60238148A/en
Publication of JPS60238148A publication Critical patent/JPS60238148A/en
Publication of JPH0312934B2 publication Critical patent/JPH0312934B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To obtain an auriferous oxide catalyst capable of easily performing the flameless perfect combustion of combustible gas at relatively low temp., by constituting the same from oxide of at least one metal selected from a group consisting of Mn, iron, Co and Ni, and gold. CONSTITUTION:The titled catalyst is constituted of oxide of at least one metal selected from a group consisting of Mn, iron, Co and Ni, and gold. The gold content in this catalyst is usually 1-50atom%, most perf., 2-10atom%. This catalyst is used as one for the flameless perfect combustion of H, CO and combustible hydrocarbonaceous gas. Because this catalyst can perform the catalytic combustion of combustible gas such as H or CO at a low temp., it can be used a burner generating no air pollution nor fire dangerousness in various heating fields and a kitchen field or can be utilized in the drying and heating process in a food industry or a pharmaceutical industry. In addition, because this catalyst can be used at room temp. or less, it can be utilized in a filter for removing CO in air or a gas mask.

Description

【発明の詳細な説明】 本発明は、水素、−酸化炭素および炭化水素などの可燃
性ガスの接触燃焼用触媒に関し、より詳細にはこれらの
可燃性ガスを比較的低温で容易に無炎完全燃焼させうる
全系酸化物触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst for catalytic combustion of combustible gases such as hydrogen, carbon oxides, and hydrocarbons, and more particularly, the present invention relates to a catalyst for catalytic combustion of combustible gases such as hydrogen, carbon oxides, and hydrocarbons. This invention relates to a combustible all-system oxide catalyst.

従来、−酸化炭素やメタン、プロパン等の炭化水素を触
媒上で酸化し熱に変える接触燃焼法は、自動車排ガスを
はじめとする各種の排ガス中の有害成分の除去や、空気
中の可燃性ガスの検知などの分野で応用されているが、
近年になって窒素酸化物(NOx)を発生しない安全で
クリーンな燃焼方式として各種の暖房、厨房および加熱
用機器への応用が関心を集めている。
Conventionally, the catalytic combustion method, which oxidizes hydrocarbons such as carbon oxide, methane, and propane on a catalyst and converts them into heat, has been used to remove harmful components from various exhaust gases, including automobile exhaust gas, and to remove combustible gases from the air. It is applied in fields such as detection of
In recent years, interest has been growing in its application to various heating, kitchen, and heating equipment as a safe and clean combustion method that does not generate nitrogen oxides (NOx).

そして、かかる接触燃焼を安全に、かつ効率良く行うた
めには高活性で耐久性のある酸化触媒が要求され、通常
では白金系金属触媒、あるいは遷移金属酸化物触媒が使
用されている。
In order to perform such catalytic combustion safely and efficiently, a highly active and durable oxidation catalyst is required, and platinum-based metal catalysts or transition metal oxide catalysts are usually used.

しかし、白金系金属触媒は一酸化炭素の接触燃焼に対す
る活性が低く、一方遷移金属酸化物触媒は水素や炭化水
素に対する活性が低いので。
However, platinum-based metal catalysts have low activity against catalytic combustion of carbon monoxide, while transition metal oxide catalysts have low activity against hydrogen and hydrocarbons.

−酸化炭素に対しても水素や炭化水素系燃料に対しても
高い活性を持つ触媒の開発が望まれていた。
- It has been desired to develop a catalyst that has high activity against carbon oxides as well as hydrogen and hydrocarbon fuels.

本発明はかかる従来の要望に答えてなされたものであり
、特に、微量でも中毒症状を引き起こす一酸化炭素を低
温で接触燃焼できる触媒を提供せんとするものである。
The present invention has been made in response to such conventional needs, and in particular, it is an object of the present invention to provide a catalyst that can catalytically burn carbon monoxide, which causes poisoning symptoms even in minute amounts, at low temperatures.

本発明はかかる目的達成のためになされたものであり、
マンガン、鉄、コバルト、ニッケル。
The present invention has been made to achieve such an objective,
Manganese, iron, cobalt, nickel.

及び銅からなる群から選ばれた少なくとも一種の金属の
酸化物と金とからなる金糸酸化物複合触媒である。
and copper and an oxide of at least one metal selected from the group consisting of copper and gold.

ここで、マンガン、鉄、コバルト、ニッケル及び銅の酸
化物は化学的にはMn02r Fe203rCo 30
4 r N 10およびCuOで表され、塩化金酸(H
AuC124)水溶液とマンガン(■)、鉄(■)、コ
バルト(■)、ニッケル(■)、および銅(II)の塩
化物、硫酸塩、または硝酸塩などの水溶液性塩水溶液と
の混合液に炭酸アルカリ、水酸化アルカリ、アンモニア
などの中和剤の水溶液を反応させて中和塩類を共沈させ
、次いで焼成することにより得られる。マンガン−全系
酸化物の場合は、マンガン(n)の前記水溶性塩と塩化
金酸の混合水溶液と前記中和剤と過マンガン酸カリウム
、次亜塩素酸ナトリウム、臭素酸ナトリウムなどの酸化
剤との混合水溶液を反応させて共沈させることもできる
Here, the oxides of manganese, iron, cobalt, nickel and copper are chemically Mn02rFe203rCo30
4 r N 10 and CuO, chloroauric acid (H
Add carbonate to a mixture of an aqueous solution of AuC124) and an aqueous solution of aqueous salts such as chlorides, sulfates, or nitrates of manganese (■), iron (■), cobalt (■), nickel (■), and copper (II). It is obtained by reacting an aqueous solution of a neutralizing agent such as an alkali, an alkali hydroxide, or ammonia to co-precipitate neutralized salts, followed by firing. In the case of manganese-all-based oxide, the above-mentioned water-soluble salt of manganese (n), a mixed aqueous solution of chloroauric acid, the above-mentioned neutralizing agent, and an oxidizing agent such as potassium permanganate, sodium hypochlorite, and sodium bromate. Co-precipitation can also be carried out by reacting a mixed aqueous solution with.

あるいは、金と前記金属の水酸化物を別々に沈殿させ、
しかる後に両沈殿物を混練しても良L’e 次いで、得られた沈殿物を水洗、乾燥後、空気の存在下
1通常300〜700℃で焼成して触媒を調製する。
Alternatively, gold and the hydroxide of said metal are precipitated separately,
After that, both precipitates may be kneaded.Next, the obtained precipitate is washed with water, dried, and then calcined in the presence of air at usually 300 to 700°C to prepare a catalyst.

得られた触媒中の金の含有量は通常1〜50原子%であ
り、好ましくは2〜20原子%、最も好ましくは2〜1
0原子%である。
The content of gold in the obtained catalyst is usually 1 to 50 atomic %, preferably 2 to 20 atomic %, most preferably 2 to 1 atomic %.
It is 0 atom%.

ここで原子%とは触媒中の特定元素の原子数の、触媒を
構成する全元素の原子数に対する百分率であり、たとえ
ばAuの原子%は(A u原子数/全金属の原子数) 
X 100で表される。
Here, atomic % is the percentage of the number of atoms of a specific element in the catalyst to the number of atoms of all elements constituting the catalyst. For example, atomic % of Au is (number of atoms of Au/number of atoms of all metals).
Represented by X 100.

かかる本発明の触媒は、触媒単独で使用の目的に応じた
粒体、成形体として使用しても良いし、あるいは、アル
ミナ、シリカ等の無機耐熱性物質に担持して使用するこ
ともできる。
The catalyst of the present invention may be used alone in the form of particles or molded bodies depending on the purpose of use, or it may be supported on an inorganic heat-resistant material such as alumina or silica.

更に本発明の触媒は水素、−酸化炭素、および炭化水素
系可燃性ガスの無炎完全燃焼用触媒として使用されるも
のである。
Furthermore, the catalyst of the present invention is used as a catalyst for complete flameless combustion of hydrogen, carbon oxide, and hydrocarbon-based combustible gases.

ここで炭化水素系可燃性ガスとは、メタ゛ノ。The hydrocarbon-based combustible gas here refers to methane.

エタン、プロパン、ブタン等の低級脂肪族炭化水素であ
るばかりでなく、ベンゼン、トルエン。
Lower aliphatic hydrocarbons such as ethane, propane, butane, as well as benzene and toluene.

キシレン等の低級芳香族炭化水素、シクロヘキセン、シ
クロヘキサン等の低級脂環族炭化水素およびメタノール
、アルコール等の含酸系有機化合物を含むものである。
It contains lower aromatic hydrocarbons such as xylene, lower alicyclic hydrocarbons such as cyclohexene and cyclohexane, and acid-containing organic compounds such as methanol and alcohol.

本発明の触媒は、それを構成する金あるいは全酸化物や
マンガン、コバルトなどの遷移金属酸化物を単独で使用
した触媒に比べ、高い触媒活性を有している。
The catalyst of the present invention has higher catalytic activity than a catalyst using only gold or a total oxide or a transition metal oxide such as manganese or cobalt.

例えば、後述するように酸化金(Au20a)。For example, gold oxide (Au20a) as described below.

酸化コバルト(CO304)l酸化マンガン(Mn02
)等、各々単独では、第1図の曲線■〜■に示すように
80℃以上の温度が水素の接触燃焼の開始に必要である
が、これらを複合化することにより20℃で燃焼が開始
できる。また、本発明の金糸酸化物触媒は一酸化炭素の
接触燃焼番二対して極めて高い活性を示し、特にFe−
Au系酸化物は第3図の右端の曲線に示すように一30
℃以下でも一酸化炭素を完全に燃焼できる。
Cobalt oxide (CO304) Manganese oxide (Mn02
) etc. alone, a temperature of 80°C or higher is required to start catalytic combustion of hydrogen, as shown in curves ■ to ■ in Figure 1, but by combining these, combustion starts at 20°C. can. Furthermore, the gold thread oxide catalyst of the present invention exhibits extremely high activity in the catalytic combustion of carbon monoxide, especially Fe-
As shown in the rightmost curve of Fig. 3, the Au-based oxide
Carbon monoxide can be completely combusted even at temperatures below ℃.

以上のように本発明の触媒は、低い温度で水素、−酸化
炭素などの可燃性ガスを接触燃焼できるので、大気汚染
や火災危険性のない燃焼器として各種暖房用、厨房用に
、また食品工業や医薬品工業における乾燥、加熱プロセ
スなどに一利用が期待され、実用的利点は極めて大きい
As described above, the catalyst of the present invention can catalytically burn combustible gases such as hydrogen and carbon oxide at low temperatures, so it can be used as a combustor without air pollution or fire hazards for various heating applications, kitchens, and food products. It is expected to be used in drying and heating processes in industry and the pharmaceutical industry, and its practical advantages are extremely large.

さらに、室温以下でも使用できるので、空気中の一酸化
炭素除去用フイルターや防毒マスクにも利用が可能であ
る。
Furthermore, since it can be used at temperatures below room temperature, it can also be used in filters for removing carbon monoxide from the air and gas masks.

以下に本発明の実施例を述べる。Examples of the present invention will be described below.

実施例1 硝酸マンガン6水塩77.5gと塩化金酸4水塩20.
6gの混合水溶液1500mlを過マンガン酸カリウム
28.4gと炭酸ナトリウム43.9g混合水溶液10
00.1に撹拌しながら約10分間で添加し、添加終了
後も約2時間撹拌を続けた。
Example 1 77.5 g of manganese nitrate hexahydrate and 20 g of chloroauric acid tetrahydrate.
1500 ml of a mixed aqueous solution of 6 g, 28.4 g of potassium permanganate and 43.9 g of sodium carbonate 10
00.1 over about 10 minutes while stirring, and stirring was continued for about 2 hours after the addition was completed.

このようにして得られた沈殿物を数回傾瀉法を繰り返し
て十分に水洗し、濾過した。これを120℃で12時間
乾燥した後粉砕し、空気流通下400℃で5時間焼成し
て、Mn−Au系酸化物触媒(原子% 90 : 10
)を得た。これをふるい分けして触媒として用いた。
The thus obtained precipitate was thoroughly washed with water by repeating the decanting process several times, and then filtered. This was dried at 120°C for 12 hours, pulverized, and calcined at 400°C for 5 hours under air circulation to obtain an Mn-Au based oxide catalyst (atomic % 90:10
) was obtained. This was sieved and used as a catalyst.

実施例2 硝酸第二鉄9水堀109gと塩化金酸4水塩12.4g
の混合水溶液1500mlを炭酸ナト1ノウム57.2
gの水溶液1000耐に撹拌しな力曵ら約10分間で添
加し、添加終了後も約2時間撹拌を続【tだ。
Example 2 109 g of ferric nitrate 9 water and 12.4 g of chloroauric acid tetrahydrate
1,500 ml of mixed aqueous solution of 57.2 ml of sodium carbonate
Add to the 1,000 g aqueous solution for about 10 minutes without stirring, and continue stirring for about 2 hours after the addition is complete.

このようにして得られた沈殿物を数回傾瀉法を繰り返し
て十分に水洗し、濾過した。これを120℃で12時間
乾燥した後粉砕し、空気流通下400℃で5時間焼成し
て、Go−Au系酸化物触媒(原子% 90 : 10
)を得た。これを7Sするし)分けして触媒として用い
た。
The thus obtained precipitate was thoroughly washed with water by repeating the decanting process several times, and then filtered. This was dried at 120°C for 12 hours, pulverized, and calcined at 400°C for 5 hours under air circulation to form a Go-Au based oxide catalyst (atomic % 90:10
) was obtained. This was separated (7S) and used as a catalyst.

実施例3 実施例1あるいは2と同様な方法で得られた金およびマ
ンガン、鉄、コバルト、ニッケル。
Example 3 Gold, manganese, iron, cobalt, and nickel obtained in the same manner as in Example 1 or 2.

銅の少なくとも一種以上を含む酸化物触媒を用いて、水
素に対する接触燃焼活性を調べた。なお、触媒はそれぞ
れ400℃で5時間焼成し、42−70メツシユに粉砕
したものを帆30g用b)、水素1容積%の空気混合ガ
スを100m1/分で流通させた。結果を第1図および
第1表に示す。
Catalytic combustion activity against hydrogen was investigated using an oxide catalyst containing at least one type of copper. The catalysts were each calcined at 400° C. for 5 hours and pulverized into 42-70 mesh pieces for 30 g of sail b), and an air mixed gas containing 1% by volume of hydrogen was passed through at 100 ml/min. The results are shown in FIG. 1 and Table 1.

第1表 各種触媒の50%燃焼率温度と比表面積第1表
から明らかなように、金との複合化により、酸化物の触
媒活性は大巾に向上する。このことは金を全く含まない
比較例、例えばMnO2単独+ F e ?、03単独
の場合のT+A(水素の50%が燃焼消失する温度)と
の比較が示すように、金の添加によるTy、の著しい低
下から明らかである。
Table 1 50% Burning Rate Temperature and Specific Surface Area of Various Catalysts As is clear from Table 1, the catalytic activity of oxides is greatly improved by compounding with gold. This means that comparative examples containing no gold, such as MnO2 alone + Fe? , 03 alone (the temperature at which 50% of the hydrogen is burned out), it is clear from the significant decrease in Ty due to the addition of gold.

実施例4 実施例2と同様な方法で得られたFe−Au系。Example 4 Fe-Au system obtained in the same manner as in Example 2.

C0−Au系およびNi−Au系複合酸化物触媒を用い
た場合の、水素の50%燃焼率温度(Ty)と金の含有
率との関係について検討した。結果を第2図に示す。第
2図から明らかなように、金を1原子%添加するだけで
Ty2は急激に低下し。
The relationship between the 50% combustion rate temperature (Ty) of hydrogen and the gold content in the case of using a C0-Au type and Ni-Au type composite oxide catalyst was investigated. The results are shown in Figure 2. As is clear from FIG. 2, the addition of 1 atomic % of gold causes a rapid decrease in Ty2.

著しい活性の向上が見られる。更に金の添加量が増加す
ると、Tyは一層低下し、Fe−Au系およびCo−A
u系の場合は5原子%で、Ni−Au系の場合は10原
子%の所でTyが最低となり、それ以上の金含有率では
Tyが逆に高くなる。したがって、これらの金糸複合酸
化物では活性の極大が得られる最適金含有率が存在し、
金5=10原子%含むことが最も望ましい。特にF e
 −A u系では金5原子%の所でTyが39℃となり
、最も活性の高い触媒が得られた。
A significant improvement in activity is seen. When the amount of gold added further increases, Ty decreases further, and Fe-Au and Co-A
In the case of U-based alloys, Ty reaches its lowest value at 5 atomic %, and in the case of Ni--Au based alloys, Ty reaches its lowest value at 10 atomic %, and at higher gold content rates, Ty increases. Therefore, in these gold thread composite oxides, there is an optimal gold content that provides maximum activity.
It is most desirable to contain gold 5 = 10 atomic %. Especially Fe
In the -Au system, Ty was 39° C. at 5 atomic % of gold, and the most highly active catalyst was obtained.

実施例5 実施例4で得られたFe−Au(原子% 95:5)酸
化物、Co−Au(原子% 91 : 10)酸化物、
およびNi−Au(M子% 90 : 10)酸化物に
ついて、−酸化炭素に対する接触燃焼活性を調べた。結
果を第3図に示す。測定の条件は実施例4において水素
を一酸化炭素に代えただけで、他は全く同一である。上
記3種の複合酸化物触媒では、−酸化炭素の酸化は0℃
以下で容易に進行し、極めて高い触媒活性を有している
ことが明らかである。従来から一酸化炭素の酸化触媒と
して市販されているホブカライド触媒では、本発明によ
る触媒と同じ活性を得るには約70℃高い温度が必要で
ある。また、アルミナやシリカに担持したパラジウム触
媒は、一般的に酸化触媒として最も優れたものであるが
、本発明の触媒と比較すると極めて活性が低いことがわ
かった。さらに、金をアルミナに担持した触媒では30
0℃以上にならないと触媒活性が現われず、金を鉄、コ
バルト、ニッケルの酸化物と組み合わせることにより、
活性が非常に顕著に向上することが明らかである。水素
の燃焼の場合(実施例3)と同様に、−酸化炭素の燃焼
においても、コバルトや鉄の酸化物だけでは高い温度を
必要とし、このことからも金とこれらの酸化物との複合
化による活性向上の効果が明らかである。
Example 5 Fe-Au (atomic % 95:5) oxide, Co-Au (atomic % 91:10) oxide obtained in Example 4,
The catalytic combustion activity against carbon oxide was investigated for Ni-Au (M% 90:10) oxides. The results are shown in Figure 3. The measurement conditions were exactly the same as in Example 4 except that hydrogen was replaced with carbon monoxide. In the three types of composite oxide catalysts mentioned above, the oxidation of -carbon oxide is at 0°C.
It is clear that the process proceeds easily and has extremely high catalytic activity. Hobcalide catalysts, which have traditionally been commercially available as carbon monoxide oxidation catalysts, require temperatures approximately 70° C. higher to achieve the same activity as the catalysts of the present invention. Furthermore, palladium catalysts supported on alumina or silica are generally the best oxidation catalysts, but it was found that their activity was extremely low compared to the catalyst of the present invention. Furthermore, for a catalyst with gold supported on alumina, 30
Catalytic activity does not occur unless the temperature exceeds 0℃, and by combining gold with oxides of iron, cobalt, and nickel,
It is clear that the activity is very significantly improved. As in the case of combustion of hydrogen (Example 3), in the case of combustion of -carbon oxide, high temperatures are required for cobalt and iron oxides alone, and for this reason, it is necessary to combine gold and these oxides. The effect of improving activity is clear.

実施例6 実施例4で得られた金を5原子%含むFe−Au系、C
o−Au系、Ni−Au系酸化物のX線回折を測定した
ところ、第4図および第5図の結果を得た。このX線回
折パターンより金は金属の状態で存在していることがわ
かった。従って、金と鉄、コバルト等の遷移金属酸化物
との複合効果は新しい複合酸化物相が形成されるために
出現するものでなく、これら遷移金属酸化物中に分散し
た微粒子状金の作用であると考えられるので、微粒千金
を蒸着法で添加するか、予め作成した金コロイド微粒子
と上記遷移金属酸化物とを混練することにより同様の効
果が期待される。そこで、上述の2通りの方法でFea
h3 Au系複合物を調製して触媒活性を測定したとこ
ろ、実施例4で得られた触媒とほぼ同様の活性が得られ
た。
Example 6 Fe-Au system containing 5 at% of gold obtained in Example 4, C
When the X-ray diffraction of o-Au type and Ni-Au type oxides was measured, the results shown in Figs. 4 and 5 were obtained. This X-ray diffraction pattern revealed that gold existed in a metallic state. Therefore, the composite effect of gold and transition metal oxides such as iron and cobalt does not appear due to the formation of a new composite oxide phase, but is due to the action of fine particulate gold dispersed in these transition metal oxides. Therefore, a similar effect is expected by adding fine gold particles by vapor deposition or by kneading pre-prepared gold colloid fine particles and the transition metal oxide. Therefore, using the two methods mentioned above,
When a h3 Au-based composite was prepared and its catalytic activity was measured, it was found that almost the same activity as the catalyst obtained in Example 4 was obtained.

実施例7 硝酸コバルト6水塩29g、硝酸マンガン6水塩3.s
g、塩化金酸4水塩2gの混合水溶液10100Oを、
過マンガン酸カリウム1.3gと炭酸ナトリウム15.
2gの混合水溶液500耐に撹拌しながら約20分間で
添加し、添加終了後も約2時間撹拌を続けた。
Example 7 29 g of cobalt nitrate hexahydrate, 3. manganese nitrate hexahydrate. s
g, 10100O mixed aqueous solution of 2g of chloroauric acid tetrahydrate,
1.3 g potassium permanganate and 15. sodium carbonate.
The mixture was added to a 2 g aqueous solution of 500 ml over about 20 minutes with stirring, and stirring was continued for about 2 hours after the addition was completed.

このようにして得られた沈殿物を数回傾瀉法を繰り返し
て十分に水洗し濾過した。これを120℃で一昼夜乾燥
後粉砕し、空気流通下400℃で10時間焼成してCo
−Mn−Au系酸化物触媒(原子% 80:16:4)
を得た。これをふるい分けして触媒として用いた。実施
例3と同様な条件で水素燃焼に対する活性を調べたとこ
ろ、図1の曲線■に示すように低い温度で高い燃焼率を
得た。水素の50%燃焼率温度が69℃であり。
The thus obtained precipitate was thoroughly washed with water by repeating the decanting process several times, and then filtered. This was dried at 120°C for a day and night, then pulverized, and fired at 400°C for 10 hours under air circulation to produce Co.
-Mn-Au based oxide catalyst (atomic % 80:16:4)
I got it. This was sieved and used as a catalyst. When the activity against hydrogen combustion was investigated under the same conditions as in Example 3, a high combustion rate was obtained at low temperatures, as shown by curve (■) in FIG. The 50% combustion rate temperature of hydrogen is 69°C.

この3元系複合酸化物を構成するCo3O4゜MnO2
,Auz03またはAuを単独で使用した場合より50
℃以上低い温度となり、本発明の効果は3元系複合酸化
物にも出現することが明らかとなった。
Co3O4゜MnO2 that constitutes this ternary complex oxide
, 50 compared to using Auz03 or Au alone
The temperature was lower than 0.degree. C., and it became clear that the effects of the present invention also appeared in ternary composite oxides.

実施例8 実施例7と同様な方法で各種のG o −M n −A
 u系複合酸化物を調製し、マンガンに対するコバルト
の原子比Go/Mn=20/4にして、コバルト20原
子に対する金の原子数(X)を種々変化させた。こうし
て得られたCo−Mn−Au(原子比 20:4:X)
複合酸化物の水素燃焼に対する触媒活性を測定した結果
、水素が50%燃焼するのに要する温度(T3A、℃)
とXとの関係は第6図のようであった。図から明らかな
ように、金を含まないCo−Mn(原子比 20:4)
複合酸化物だけではT+Aが130℃と高いのに対し、
X=1以上の金を含むものではT〆が約70℃となり、
金を添加することにより触媒活性が顕著に向上した。
Example 8 Various types of G o -M n -A were prepared in the same manner as in Example 7.
A u-based composite oxide was prepared, the atomic ratio of cobalt to manganese Go/Mn was set to 20/4, and the number of gold atoms (X) to 20 cobalt atoms was varied. Co-Mn-Au (atomic ratio 20:4:X) thus obtained
As a result of measuring the catalytic activity of composite oxide for hydrogen combustion, the temperature required for 50% hydrogen combustion (T3A, °C)
The relationship between and X was as shown in Figure 6. As is clear from the figure, Co-Mn (atomic ratio 20:4) does not contain gold.
While the T+A is as high as 130°C with only composite oxide,
For those containing gold with X=1 or more, T〆 is approximately 70℃,
The catalyst activity was significantly improved by adding gold.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、希薄水素/空気混合気の触媒燃焼。 使用した触媒は、 1 : Fe/Au=19/I II : Go/Mn/Au=20/4/1m : A
u、IV: Auz03t V : CO304、VI : Nip。 ■: Mn02 、■:Fea03 第2図は、水素の触媒燃焼立上り温度(T〆)の全含有
量依存性。 第3図は、−酸化炭素の触媒燃焼速度の温度依存性。 第4図は、ニッケルー金系、コバルトー金系触媒のX線
回折パターン Ni−Au系: N x/ A u =19/ 1 を
表面積54イ/g Go−Au系: Co/Au=19/1 、表面積79
イ/g 第5図は、鉄−全系触媒のX線回折パターン。 第6図は、Coo−Mn−Au系複合酸化物触媒の触媒
燃焼立上り温度の金含有依存性。 特許出願人 工業技術院長 川 1)裕 部指定代理人
 工業技術院大阪工業技術試験所長速木諒三 大1図 尤2図 Au@量、原子O1゜ 触媒fL覆 oC
Figure 1 shows catalytic combustion of a dilute hydrogen/air mixture. The catalysts used were: 1: Fe/Au=19/I II: Go/Mn/Au=20/4/1m: A
u, IV: Auz03t V: CO304, VI: Nip. ■: Mn02, ■: Fea03 Figure 2 shows the dependence of hydrogen catalytic combustion start-up temperature (T〆) on total content. FIG. 3 - Temperature dependence of the catalytic combustion rate of carbon oxide. Figure 4 shows the X-ray diffraction patterns of nickel-gold and cobalt-gold catalysts. , surface area 79
i/g Figure 5 shows the X-ray diffraction pattern of the iron-all-based catalyst. FIG. 6 shows the gold content dependence of the catalytic combustion start-up temperature of a Coo-Mn-Au composite oxide catalyst. Patent Applicant: Director of the Agency of Industrial Science and Technology Kawa 1) Hirobe Designated Agent: Ryo Hayaki, Director of the Osaka Institute of Industrial Science and Technology, Agency of Industrial Science and Technology

Claims (1)

【特許請求の範囲】[Claims] マンガン、鉄、コバルト、ニッケル、及び銅からなる群
から選ばれた少なくとも一種の金属酸化物と金とからな
る可燃性ガスの接触燃焼用触媒。
A catalyst for catalytic combustion of combustible gas, comprising gold and at least one metal oxide selected from the group consisting of manganese, iron, cobalt, nickel, and copper.
JP59095185A 1984-05-11 1984-05-11 Auriferous oxide catalyst for catalytic combustion of combustible gas Granted JPS60238148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59095185A JPS60238148A (en) 1984-05-11 1984-05-11 Auriferous oxide catalyst for catalytic combustion of combustible gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59095185A JPS60238148A (en) 1984-05-11 1984-05-11 Auriferous oxide catalyst for catalytic combustion of combustible gas

Publications (2)

Publication Number Publication Date
JPS60238148A true JPS60238148A (en) 1985-11-27
JPH0312934B2 JPH0312934B2 (en) 1991-02-21

Family

ID=14130689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59095185A Granted JPS60238148A (en) 1984-05-11 1984-05-11 Auriferous oxide catalyst for catalytic combustion of combustible gas

Country Status (1)

Country Link
JP (1) JPS60238148A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3832268A1 (en) * 1987-09-24 1989-04-06 Agency Ind Science Techn ULTRAFINE GOLD PARTICLES IMMOBILIZED ON EARTH ALKALINE METAL COMPOUNDS, METHOD FOR THE PRODUCTION THEREOF, AND CATALYSTS AND SENSORS FOR FLAMMABLE GASES WHICH CONTAIN SUCH COMPOUNDS AS ESSENTIAL MAIN COMPONENTS
JPH0235915A (en) * 1988-07-26 1990-02-06 Nippon Sanso Kk Removing process and carbon monoxide
US5051394A (en) * 1989-03-24 1991-09-24 Agency Of Industrial Science & Technology Method for production of ultra-fine gold particle-immobilized oxides
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258340A (en) * 1991-02-15 1993-11-02 Philip Morris Incorporated Mixed transition metal oxide catalysts for conversion of carbon monoxide and method for producing the catalysts
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5266543A (en) * 1991-07-31 1993-11-30 Matsushita Electric Industrial Co., Ltd. Catalytic composite for deodorizing odorous gases and a method for preparing the same
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
US5789337A (en) * 1995-11-07 1998-08-04 Agency Of Industrial Science & Technology Material having ultrafine gold particles immobilized thereon and method for production thereof
EP1043059A1 (en) * 1999-04-08 2000-10-11 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying an exhaust gas
WO2003099434A1 (en) * 2002-05-01 2003-12-04 National Institute Of Advanced Industrial Science And Technology Catalyst for water gas shift reaction
WO2005120686A1 (en) * 2004-06-08 2005-12-22 National Institute Of Advanced Industrial Science And Technology Catalyst for carbon monoxide removal and method of removing carbon monoxide with the catalyst
JP2010017649A (en) * 2008-07-10 2010-01-28 Tokyo Metropolitan Univ Highly active catalyst and its preparing method
WO2013068737A2 (en) 2011-11-07 2013-05-16 Johnson Matthey Public Limited Company Apparatus for the treatment of air
CN104128199A (en) * 2014-07-08 2014-11-05 东南大学 Nano-gold catalyst and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7457984B2 (en) 2018-09-11 2024-03-29 東京都公立大学法人 gold supported catalyst

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3832268A1 (en) * 1987-09-24 1989-04-06 Agency Ind Science Techn ULTRAFINE GOLD PARTICLES IMMOBILIZED ON EARTH ALKALINE METAL COMPOUNDS, METHOD FOR THE PRODUCTION THEREOF, AND CATALYSTS AND SENSORS FOR FLAMMABLE GASES WHICH CONTAIN SUCH COMPOUNDS AS ESSENTIAL MAIN COMPONENTS
JPH0235915A (en) * 1988-07-26 1990-02-06 Nippon Sanso Kk Removing process and carbon monoxide
US5051394A (en) * 1989-03-24 1991-09-24 Agency Of Industrial Science & Technology Method for production of ultra-fine gold particle-immobilized oxides
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5511972A (en) * 1990-11-26 1996-04-30 Catalytica, Inc. Catalyst structure for use in a partial combustion process
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
US5405260A (en) * 1990-11-26 1995-04-11 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5258340A (en) * 1991-02-15 1993-11-02 Philip Morris Incorporated Mixed transition metal oxide catalysts for conversion of carbon monoxide and method for producing the catalysts
US5266543A (en) * 1991-07-31 1993-11-30 Matsushita Electric Industrial Co., Ltd. Catalytic composite for deodorizing odorous gases and a method for preparing the same
US5789337A (en) * 1995-11-07 1998-08-04 Agency Of Industrial Science & Technology Material having ultrafine gold particles immobilized thereon and method for production thereof
EP1043059A1 (en) * 1999-04-08 2000-10-11 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying an exhaust gas
US6362129B1 (en) 1999-04-08 2002-03-26 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying an exhaust gas
WO2003099434A1 (en) * 2002-05-01 2003-12-04 National Institute Of Advanced Industrial Science And Technology Catalyst for water gas shift reaction
WO2005120686A1 (en) * 2004-06-08 2005-12-22 National Institute Of Advanced Industrial Science And Technology Catalyst for carbon monoxide removal and method of removing carbon monoxide with the catalyst
JPWO2005120686A1 (en) * 2004-06-08 2008-04-03 独立行政法人産業技術総合研究所 Catalyst for removing carbon monoxide and method for removing carbon monoxide using the catalyst
JP2010017649A (en) * 2008-07-10 2010-01-28 Tokyo Metropolitan Univ Highly active catalyst and its preparing method
WO2013068737A2 (en) 2011-11-07 2013-05-16 Johnson Matthey Public Limited Company Apparatus for the treatment of air
CN104128199A (en) * 2014-07-08 2014-11-05 东南大学 Nano-gold catalyst and preparation method thereof

Also Published As

Publication number Publication date
JPH0312934B2 (en) 1991-02-21

Similar Documents

Publication Publication Date Title
JPS60238148A (en) Auriferous oxide catalyst for catalytic combustion of combustible gas
Chen et al. Performance of transition metal (Cu, Fe and Co) modified SCR catalysts for simultaneous removal of NO and volatile organic compounds (VOCs) from coal-fired power plant flue gas
KR101685044B1 (en) Complex metal oxides catalyst based multi-component ceria-zirconia for removal of volatile organic compounds and the preparation method thereof
CN111889101B (en) Modified composite oxide catalyst for synergistic purification of VOCs and NO and preparation method thereof
TW201041826A (en) Base metal catalysts for the oxidation of carbon monoxide and volatile organic compounds
JPH08217461A (en) Production of perovskite type compound oxide
JPS61283348A (en) Oxidizing catalyst
CN107511160A (en) A kind of MOX/g C3N4@SiO2The preparation method and applications of catalyst
CN106669704A (en) Preparation method of integral CO reduction denitration catalyst
JP2018001080A (en) Co oxidation catalyst and method for producing the same, supported catalyst and exhaust gas treatment apparatus
JPS6051544A (en) Oxidizing catalyst
CN107456977B (en) Denitration reaction carbon monoxide-olefin polymeric and preparation method thereof and non-fully regeneration catalyzing cracking regenerating unit denitration method for flue gas
JP2002233755A (en) Catalyst for oxidizing saturated hydrocarbon
JP2000504620A (en) Catalyst for complete oxidation of volatile organic compounds
JP3795603B2 (en) Catalyst composition for combustion removal of acetaldehyde
JPH04281846A (en) Gold catalyst for removal of nitrogen oxide and method for removing nitrogen oxide
CN105854892A (en) Preparation method of porous rod-shaped spinel structured catalyst
CN108607574A (en) A kind of anti-H2O、SO2With the catalyst for denitrating flue gas and preparation method thereof of heavy metal detoxification evil
JPH0435744A (en) Catalytic body for purification of exhaust gas
WO2024066032A1 (en) Preparation method for modified hopcalite catalyst and use thereof
CN113877587B (en) Preparation method and application of flaky cobalt-yttrium-aluminum ternary composite catalyst
JPH0741313A (en) Method for selectively oxidizing carbon monoxide and catalyst used for the same method
CN114950466B (en) Non-noble metal catalyst and preparation method and application thereof
JP2011224554A (en) Catalyst for decomposing ammonia, method for producing the catalyst, and method for producing hydrogen using the catalyst
JPH04150944A (en) Oxidizing catalyst

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term