JPH0741313A - Method for selectively oxidizing carbon monoxide and catalyst used for the same method - Google Patents

Method for selectively oxidizing carbon monoxide and catalyst used for the same method

Info

Publication number
JPH0741313A
JPH0741313A JP5258805A JP25880593A JPH0741313A JP H0741313 A JPH0741313 A JP H0741313A JP 5258805 A JP5258805 A JP 5258805A JP 25880593 A JP25880593 A JP 25880593A JP H0741313 A JPH0741313 A JP H0741313A
Authority
JP
Japan
Prior art keywords
carbon monoxide
catalyst
cobalt
oxide
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5258805A
Other languages
Japanese (ja)
Inventor
Muneyoshi Yamada
宗慶 山田
Takashi Kono
隆志 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP5258805A priority Critical patent/JPH0741313A/en
Publication of JPH0741313A publication Critical patent/JPH0741313A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide a selective oxidation method for carbon monoxide and a catalyst used for the method capable of selectively oxidizing only carbon monoxide by heat treating an oxygen containing gas containing a small amount of carbon monoxide and hydrogen in the presence of a specific oxidation catalyst at a relatively high temp. of 200-400 deg.C. CONSTITUTION:Carbon monoxide is selectively oxidized by heat treating the oxygen containing gas containing the small amount of carbon monoxide and hydrogen to allow only carbon monoxide to catalytically react in the presence of the catalyst composed of a spinel type cobalt oxide such as cobalt iron oxide CoFe2O4 or zinc cobalt oxide ZnCo2O4 in the temp. range from the lowest temp. to practically completely oxidize carbon monoxide to the maximum temp. to practically unoxidize hydrogen, at 215-401 deg.C when the cobalt iron oxide catalyst is used and at 209-401 deg.C when the zinc cobalt oxide catalyst is used. And the catalyst used for the method is composed of the spinel type cobalt oxide such as cobalt iron oxide CoFe2O4 or zinc cobalt oxide ZnCo2O4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一酸化炭素の選択的酸
化方法および該方法に用いられる触媒に関する。
TECHNICAL FIELD The present invention relates to a method for selectively oxidizing carbon monoxide and a catalyst used in the method.

【0002】[0002]

【従来の技術およびその課題】特公昭55−33377
号公報には、スピネル型の結晶構造を持つCoイオンを
含むフェライトの存在下において、有毒成分として一酸
化炭素および酸化窒素を含むガス体を、加熱処理するこ
とにより、一酸化炭素および酸化窒素を同時に無毒化す
る方法が開示されているが、一酸化炭素および水素を含
むガス体について一酸化炭素のみを選択的に酸化させる
ことについては勿論のこと、一酸化炭素および水素を含
有するガス体についても記載されていない。
2. Description of the Related Art JP-B-55-33377
In the publication, in the presence of ferrite containing Co ions having a spinel type crystal structure, a gas body containing carbon monoxide and nitric oxide as toxic components is heat-treated to remove carbon monoxide and nitric oxide. Although a method for detoxifying at the same time is disclosed, not only for a gas body containing carbon monoxide and hydrogen but also for selectively oxidizing only carbon monoxide, a gas body containing carbon monoxide and hydrogen is disclosed. Is also not listed.

【0003】特開昭58−92850号公報には、還元
性ガスに感応して抵抗値が変化する金属酸化物半導体、
該金属酸化物半導体に装備された電極、および酸化触媒
を用いたガス選択透過性フィルターよりなる検知ガスの
選択性を有するガス検知素子が開示され、該ガス選択透
過性フィルターの素材として、NiO、Co、C
oO、ZnO、SnO、Fe、V、Ag
O、CuO等の各種金属酸化物触媒などが例示され、
これらの酸化触媒を用いたガス選択透過性フィルターに
よりCOガス、Hガス、エタノール、イソブタンおよ
びメタンを順次選択的に透過しうる旨教示されている。
しかしながら、特開昭58−92850号公報には、一
酸化炭素と水棄との系において一酸化炭素を選択的に透
過するための酸化触媒および反応条件について具体的に
記載されておらず、しかも酸化触媒としてスピネル型コ
バルト酸化物を用いることについても記載されていな
い。
Japanese Patent Laid-Open No. 58-92850 discloses a metal oxide semiconductor whose resistance value changes in response to a reducing gas,
Disclosed is a gas detection element having detection gas selectivity, which comprises an electrode equipped on the metal oxide semiconductor and a gas selection permeable filter using an oxidation catalyst, and NiO as a material of the gas selection permeable filter. Co 2 O 3 , C
oO, ZnO, SnO 2 , Fe 2 O 3 , V 2 O 5 , Ag
Examples include various metal oxide catalysts such as 2 O and CuO,
It is taught that CO gas, H 2 gas, ethanol, isobutane and methane can be sequentially selectively permeated by a gas selective permeable filter using these oxidation catalysts.
However, JP-A-58-92850 does not specifically describe an oxidation catalyst and reaction conditions for selectively permeating carbon monoxide in a system of carbon monoxide and water dump, and There is no mention of using spinel-type cobalt oxide as the oxidation catalyst.

【0004】特開昭63−252908号公報には、水
素、一酸化炭素またはブタンをそれぞれ1容量%含む空
気について、金超微粒子固定化コバルトフェライト(C
oFe)担持ハニカム触媒を用いたところ、水
素、一酸化炭素およびブタンの酸化開始温度がそれぞれ
52℃、23℃および190℃であった旨記載されてい
るが、酸化触媒として酸化鉄コバルトCoFe
たは酸化コバルト亜鉛ZnCoを使用することに
ついては記載されていない。
Japanese Unexamined Patent Publication (Kokai) No. 63-252908 discloses cobalt ultrafine particles-immobilized cobalt ferrite (C) for air containing 1% by volume of hydrogen, carbon monoxide or butane.
It is described that when using an oFe 2 O 3 ) supported honeycomb catalyst, the oxidation start temperatures of hydrogen, carbon monoxide and butane were 52 ° C., 23 ° C. and 190 ° C., respectively. The use of CoFe 2 O 4 or cobalt zinc oxide ZnCo 2 O 4 is not mentioned.

【0005】特開昭64−83513号公報には、アル
カリ土類金属化合物に金超微粒子を固定化した金超微粒
子固定化アルカリ土類金属化合物よりなり、水素および
一酸化炭素の低温酸化活性にすぐれた酸化触媒が開示さ
れているが、酸化触媒として、スピネル型コバルト酸化
物を用いることについては記載されていない。
Japanese Unexamined Patent Publication (Kokai) No. 64-83513 discloses an ultrafine gold particle-immobilized alkaline earth metal compound in which ultrafine gold particles are immobilized on an alkaline earth metal compound, and has a low temperature oxidation activity of hydrogen and carbon monoxide. Although excellent oxidation catalysts are disclosed, there is no mention of using spinel type cobalt oxides as the oxidation catalyst.

【0006】特開平1−94945号公報には、金の超
微粒子を酸化鉄を主成分とする金属酸化物(MeO)に
固定化したものを触媒担体上に担持してなり、常温にお
ける一酸化炭素の酸化活性にすぐれた金超微粒子固定化
金属酸化物担持触媒体が開示されているが、一酸化炭素
の酸化触媒としてスピネル型コバルト酸化物を用いるこ
とについては記載されていない。
Japanese Patent Laid-Open No. 1-94945 discloses that ultrafine gold particles are immobilized on a metal oxide (MeO) containing iron oxide as a main component and supported on a catalyst carrier. Although a metal oxide-supported catalyst on which ultrafine gold particles are immobilized, which has excellent carbon oxidation activity, is disclosed, there is no description about using spinel-type cobalt oxide as an oxidation catalyst for carbon monoxide.

【0007】表面、Vol.28 No.5(199
0)には、水素または一酸化炭素1容量%空気混合ガス
について、Co金属酸化物触媒上での一酸化炭素
と水素の酸化反応率と温度との関係について開示されて
いるが、それぞれの酸化開始温度が比較的低く、水素に
対する一酸化炭素の選択性も満足すべき状態にない。
Surface, Vol. 28 No. 5 (199
0) discloses the relationship between the oxidation reaction rate of carbon monoxide and hydrogen and the temperature on a Co 3 O 4 metal oxide catalyst for hydrogen or carbon monoxide 1% by volume air mixed gas. The respective oxidation initiation temperatures are relatively low, and the selectivity of carbon monoxide with respect to hydrogen is not satisfactory.

【0008】従来実用化されているSnO系半導体
(SnOに、例えば、PtまたはPdを0.5重量%
添加したもの)によるCOセンサの反応性は、素子の作
動温度により変化し、100℃以下の低温では、COの
感度が最も大きく、次いでエタノール、水素である。し
かし、100℃以下では、応答速度が遅くなり、また水
蒸気吸着等による阻害もうけやすい。それでセンサに一
定周期の温度サイクルを与え、周期的にセンサを300
〜400℃程度に加熱し、水分や雑ガスが脱離した一定
の状態を保つことによって低温度での検知に良好な再現
性を得ることにしている。したがって、センサに一定周
期の温度サイクルを与える必要のない程度の高温におい
て、COの感度の高い素子の開発が要望されている。
A SnO 2 based semiconductor that has been practically used in the past (for example, 0.5 wt% of Pt or Pd in SnO 2 is used.
The reactivity of the CO sensor with (added) changes depending on the operating temperature of the element, and at a low temperature of 100 ° C. or lower, the sensitivity of CO is greatest, followed by ethanol and hydrogen. However, if the temperature is 100 ° C. or lower, the response speed becomes slower, and water vapor adsorption or the like tends to cause inhibition. Therefore, the sensor is given a constant temperature cycle, and the sensor is periodically moved to 300
By heating to about 400 ° C. and maintaining a constant state in which moisture and miscellaneous gas are desorbed, good reproducibility is obtained for detection at low temperature. Therefore, there is a demand for the development of an element having high CO sensitivity at a high temperature at which it is not necessary to apply a constant temperature cycle to the sensor.

【0009】本発明は、少量の一酸化炭素および水素を
含有する酸素含有ガスを、特定の酸化触媒の存在下、2
00〜400℃の比較的高温下に熱処理することによ
り、一酸化炭素のみを選択的に酸化することのできる一
酸化炭素の選択的酸化方法、および該方法に用いられる
触媒を提供することを目的とするものである。また、本
発明は、少量の一酸化炭素および水素を含有する酸素含
有ガスについて、従来のSnO系半導体によるCOセ
ンサの場合のように、センサに一定周期の温度サイクル
を与える必要がない、COセンサまたはHセンサ用の
ガスフィルターとして利用しうる一酸化炭素の選択的酸
化方法、および該方法に用いられる触媒を提供すること
を目的とするものである。
According to the present invention, an oxygen-containing gas containing a small amount of carbon monoxide and hydrogen is added in the presence of a specific oxidation catalyst to 2
An object of the present invention is to provide a method for selectively oxidizing carbon monoxide, which is capable of selectively oxidizing only carbon monoxide by heat treatment at a relatively high temperature of 00 to 400 ° C., and a catalyst used in the method. It is what Further, according to the present invention, for an oxygen-containing gas containing a small amount of carbon monoxide and hydrogen, it is not necessary to apply a constant temperature cycle to the sensor as in the case of a conventional CO sensor using SnO 2 based semiconductor. An object of the present invention is to provide a method for selectively oxidizing carbon monoxide that can be used as a gas filter for a sensor or an H 2 sensor, and a catalyst used in the method.

【0010】[0010]

【問題点を解決するための手段】本発明は、少量の一酸
化炭素および水素を含有する酸素含有ガスを、酸化鉄コ
バルトCoFeまたは酸化コバルト亜鉛ZnCo
のスピネル型コバルト酸化物よりなる触媒の存在
下、一酸化炭素が実質上完全に酸化される最低温度ない
し水素が実質上酸化されない最高温度の温度範囲で、一
酸化炭素のみを接触的に反応させ、該温度範囲が、酸化
鉄コバルト触媒を用いた場合215〜401℃範囲にあ
り、酸化コバルト亜鉛触媒を用いた場合209〜401
℃の範囲にあることを特徴とする一酸化炭素の選択的酸
化方法;および酸化鉄コバルトCoFeまたは酸
化コバルト亜鉛ZnCoのスピネル型コバルト酸
化物よりなり、該方法に用いられる触媒を提供するもの
である。
According to the present invention, an oxygen-containing gas containing a small amount of carbon monoxide and hydrogen is added to iron oxide cobalt cobalt CoFe 2 O 4 or cobalt oxide zinc ZnCo.
In the presence of a catalyst composed of 2 O 4 spinel-type cobalt oxide, only carbon monoxide is catalytically contacted in the temperature range from the lowest temperature at which carbon monoxide is substantially completely oxidized to the highest temperature at which hydrogen is not substantially oxidized. And the temperature range is 215 to 401 ° C. when the iron oxide cobalt oxide catalyst is used, and 209 to 401 when the cobalt oxide zinc oxide catalyst is used.
A method for the selective oxidation of carbon monoxide characterized by being in the range of ° C; and a catalyst used in the method, comprising a spinel-type cobalt oxide of iron oxide cobalt CoFe 2 O 4 or cobalt zinc oxide ZnCo 2 O 4. Is provided.

【0011】本発明において、少量の一酸化炭素および
水素を含有する酸素含有ガスとしては、例えば一酸化炭
素0.2〜1容量%、および水素0.2〜1容量%を含
有し、該一酸化炭素を二酸化炭素に酸化するのに必要な
酸素を含有するガスが包含されるが、該酸素含有ガスの
具体例として空気があげられる。また、少量の一酸化炭
素および水素を含有する酸素含有ガスの具体例として、
一酸化炭素および水素で汚染されている空気、湯沸器な
どの不完全燃焼排ガス、火災の時に発生するガス、自動
車などの排ガスなどがあげられる。
In the present invention, the oxygen-containing gas containing a small amount of carbon monoxide and hydrogen contains, for example, 0.2 to 1% by volume of carbon monoxide and 0.2 to 1% by volume of hydrogen. A gas containing oxygen necessary for oxidizing carbon oxide to carbon dioxide is included, and a specific example of the oxygen-containing gas is air. Further, as a specific example of the oxygen-containing gas containing a small amount of carbon monoxide and hydrogen,
Examples include air polluted with carbon monoxide and hydrogen, incomplete combustion exhaust gas from water heaters, gas generated during a fire, and exhaust gas from automobiles.

【0012】本発明における触媒は、スピネル型コバル
ト酸化物としての酸化鉄コバルトCoFeまたは
酸化コバルト亜鉛ZnCoである。
The catalyst in the present invention is iron oxide cobalt CoFe 2 O 4 or cobalt oxide zinc ZnCo 2 O 4 as a spinel type cobalt oxide.

【0013】本発明における触媒として用いられる酸化
鉄コバルトは、例えば、硝酸コバルト水溶液と硝酸鉄水
溶液とをコバルト:鉄モル比が1:2になるように混合
し、この混合水溶液にNaCO水溶液を滴下して得
られる沈澱物を、洗浄、乾燥し、通常600℃〜800
℃で6〜8時間、好ましくは600℃で6時間焼成する
ことにより得られる。
The iron oxide cobalt used as the catalyst in the present invention is obtained by mixing an aqueous solution of cobalt nitrate and an aqueous solution of iron nitrate so that the molar ratio of cobalt: iron is 1: 2, and adding Na 2 CO 3 to the mixed aqueous solution. The precipitate obtained by dropping the aqueous solution is washed and dried, and usually 600 ° C to 800 ° C.
It is obtained by firing at 6 ° C for 6 to 8 hours, preferably at 600 ° C for 6 hours.

【0014】本発明における触媒として用いられる酸化
コバルト亜鉛は、例えば、硝酸コバルト水溶液と酢酸亜
鉛水溶液とをコバルト:亜鉛モル比が2:1になるよう
に混合し、この混合水溶液にNaCO水溶液を滴下
して得られる沈澱物を、洗浄、乾燥し、通常600℃〜
800℃で6〜8時間、好ましくは800℃で8時間焼
成することにより得られる。
The cobalt zinc oxide used as a catalyst in the present invention is prepared by mixing an aqueous solution of cobalt nitrate and an aqueous solution of zinc acetate at a cobalt: zinc molar ratio of 2: 1 and adding Na 2 CO 3 to the mixed aqueous solution. The precipitate obtained by dropping the aqueous solution is washed and dried, usually at 600 ° C or higher.
It is obtained by baking at 800 ° C. for 6 to 8 hours, preferably at 800 ° C. for 8 hours.

【0015】本発明方法において、一酸化炭素の接触反
応は、酸素含有ガス中に含有される一酸化炭素が実質上
完全に酸化される最低温度ないし、共存する水素が実質
上酸化されない最高温度の温度範囲で行なわれる。ここ
に、一酸化炭素が実質上完全に酸化される最低温度と
は、一酸化炭素の転化率が80%に達する温度、好まし
くは該転化率が90%に達する温度を意味し、共存する
水素が実質上酸化されない最高温度とは、水素の転化率
が20%に達する温度、好ましくは該転化率が10%に
達する温度を意味する。具体的には、該温度範囲は、酸
化鉄コバルト触媒を用いた場合、215〜401℃、好
ましくは228〜377℃の範囲にあり、酸化コバルト
亜鉛触媒を用いた場合には、209〜401℃、好まし
くは216〜377℃の範囲にある。酸化鉄コバルト触
媒を用いた場合の反応温度が215℃未満であるか、あ
るいは酸化コバルト亜鉛触媒を用いた場合の反応温度が
209℃未満であると、水素は全く酸化されず、一酸化
炭素の酸化選択性は高くなるが、一酸化炭素の転化率が
低下するため好ましくなく、酸化鉄コバルト触媒を用い
た場合の反応温度が401℃を超えるか、あるいは酸化
コバルト亜鉛触媒を用いた場合の反応温度が401℃を
超えると、一酸化炭素が完全に酸化されると共に、水素
の転化率も20%を超えて増大し、一酸化炭素の酸化選
択性が低下するため好ましくない。
In the method of the present invention, the catalytic reaction of carbon monoxide has a minimum temperature at which carbon monoxide contained in the oxygen-containing gas is substantially completely oxidized or a maximum temperature at which coexisting hydrogen is not substantially oxidized. It is carried out in the temperature range. Here, the minimum temperature at which carbon monoxide is substantially completely oxidized means a temperature at which the conversion rate of carbon monoxide reaches 80%, preferably a temperature at which the conversion rate reaches 90%, and coexisting hydrogen is present. The maximum temperature at which hydrogen is not substantially oxidized means the temperature at which the conversion rate of hydrogen reaches 20%, preferably the temperature at which the conversion rate reaches 10%. Specifically, the temperature range is 215 to 401 ° C, preferably 228 to 377 ° C when the iron oxide cobalt catalyst is used, and 209 to 401 ° C when the cobalt oxide zinc catalyst is used. , Preferably in the range of 216 to 377 ° C. When the reaction temperature when the iron oxide cobalt oxide catalyst is used is less than 215 ° C. or when the reaction temperature when the cobalt oxide zinc catalyst is used is less than 209 ° C., hydrogen is not oxidized at all and carbon monoxide Although the oxidation selectivity is high, it is not preferable because the conversion rate of carbon monoxide is lowered, and the reaction temperature when using the iron oxide cobalt catalyst exceeds 401 ° C or the reaction when using the cobalt zinc oxide catalyst. When the temperature exceeds 401 ° C., carbon monoxide is completely oxidized, the conversion rate of hydrogen increases by more than 20%, and the oxidation selectivity of carbon monoxide decreases, which is not preferable.

【0016】[0016]

【発明の効果】本発明によれば、酸素含有ガス中に含有
される一酸化炭素が実質上完全に酸化される最低温度な
いし、共存する水素が実質上酸化されない最高温度の温
度範囲が、広くかつ200〜400℃の高温領域にある
ため、一酸化炭素を選択的に酸化することが可能であ
り、COセンサまたはHセンサ用のガスフィルターと
して利用した場合、センサに一定周期の温度サイクルを
与える必要がなく利用しうる一酸化炭素の選択的酸化方
法、および該方法に用いられる触媒が提供される。
According to the present invention, the temperature range of the lowest temperature at which carbon monoxide contained in an oxygen-containing gas is substantially completely oxidized or the highest temperature at which coexisting hydrogen is not substantially oxidized is wide. Moreover, since it is in a high temperature range of 200 to 400 ° C., it is possible to selectively oxidize carbon monoxide, and when used as a gas filter for a CO sensor or an H 2 sensor, the sensor is subjected to a constant cycle of temperature. Provided is a method for selectively oxidizing carbon monoxide that can be utilized without the need to provide it, and a catalyst used in the method.

【0017】[0017]

【実施例】以下、製造例、実施例および比較例により本
発明をさらに詳しく説明する。
EXAMPLES The present invention will be described in more detail with reference to production examples, examples and comparative examples.

【0018】製造例1 硝酸コバルト6水和物2.52重量%水溶液133g
と、硝酸鉄9水和物3.49重量%水溶液266gとを
混合してコバルト対鉄のモル比が1対2となる混合水溶
液を得た。この混合水溶液にNaCO1.05重量
%水溶液600gを滴下して沈澱物を得た。この沈澱物
を2回蒸留水を用いて洗浄し、乾燥し、600℃で6時
間焼成して酸化鉄コバルト触媒(触媒1)を得た。
Production Example 1 133 g of 2.52% by weight aqueous solution of cobalt nitrate hexahydrate
And 266 g of a 3.49 wt% aqueous solution of iron nitrate nonahydrate were mixed to obtain a mixed aqueous solution having a cobalt to iron molar ratio of 1: 2. To this mixed aqueous solution, 600 g of 1.05% by weight Na 2 CO 3 aqueous solution was added dropwise to obtain a precipitate. The precipitate was washed with double distilled water, dried, and calcined at 600 ° C. for 6 hours to obtain an iron cobalt oxide catalyst (catalyst 1).

【0019】製造例2 製造例1における600℃で6時間の焼成に代えて80
0℃で8時間焼成した以外、製造例1と同様にして酸化
鉄コバルト触媒(触媒2)を得た。
Production Example 2 Instead of firing at 600 ° C. for 6 hours in Production Example 1, 80
An iron oxide cobalt catalyst (catalyst 2) was obtained in the same manner as in Production Example 1 except that the calcination was performed at 0 ° C. for 8 hours.

【0020】製造例3 硝酸コバルト6水和物2.63重量%水溶液266gと
硝酸亜鉛2水和物1.98重量%水溶液133gとを混
合して、コバルト対亜鉛のモル比が2対1となる混合水
溶液を得た。この混合水溶液にNaCO1.05重
量%水溶液600gを滴下して沈澱物を得た。得られた
沈澱物を2回蒸留水を用いて洗浄し、乾燥し、600℃
で6時間焼成して酸化コバルト亜鉛触媒(触媒3)を得
た。
Production Example 3 266 g of a 2.63 wt% aqueous solution of cobalt nitrate hexahydrate and 133 g of a 1.98 wt% aqueous solution of zinc nitrate dihydrate were mixed to give a molar ratio of cobalt to zinc of 2: 1. A mixed aqueous solution was obtained. To this mixed aqueous solution, 600 g of 1.05% by weight Na 2 CO 3 aqueous solution was added dropwise to obtain a precipitate. The precipitate obtained is washed with double distilled water, dried and dried at 600 ° C.
The mixture was calcined for 6 hours to obtain a cobalt zinc oxide catalyst (catalyst 3).

【0021】製造例4 製造例3における600℃で6時間の焼成に代えて80
0℃で8時間焼成した以外、製造例3と同様にして酸化
コバルト亜鉛触媒(触媒4)を得た。
Production Example 4 Instead of firing at 600 ° C. for 6 hours in Production Example 3, 80
A cobalt zinc oxide catalyst (catalyst 4) was obtained in the same manner as in Production Example 3 except that the baking was performed at 0 ° C for 8 hours.

【0022】比較触媒1 四酸化三コバルト触媒(ナカライ(株)製)を比較触媒
1として用いた。
Comparative Catalyst 1 A tricobalt tetraoxide catalyst (manufactured by Nakarai Co., Ltd.) was used as Comparative Catalyst 1.

【0023】比較触媒2 硝酸コバルト6水和物2.41重量%水溶液133gと
硫酸アルミニウム9水和物3.10重量%水溶液266
gとを混合して、混合水溶液を得た。この混合水溶液に
1.05重量%NaCO水溶液を滴下して沈澱物を
得た。この沈澱物を2回蒸留水を用いて洗浄し、乾燥
し、600℃で6時間焼成して酸化アルミニウムコバル
ト(CoAl)触媒(比較触媒2)を得た。
Comparative catalyst 2 133 g of a 2.41% by weight aqueous solution of cobalt nitrate hexahydrate and an aqueous solution of 3.10% by weight of aluminum sulfate nonahydrate 266
and g were mixed to obtain a mixed aqueous solution. A 1.05 wt% Na 2 CO 3 aqueous solution was added dropwise to this mixed aqueous solution to obtain a precipitate. The precipitate was washed with double distilled water, dried, and calcined at 600 ° C. for 6 hours to obtain an aluminum cobalt oxide (CoAl 2 O 4 ) catalyst (comparative catalyst 2).

【0024】比較触媒3 比較触媒2において、600℃で6時間の焼成に代えて
800℃で8時間焼成した以外、比較触媒2と同様にし
て、酸化アルミニウムコバルト触媒(比較触媒3)を得
た。
Comparative Catalyst 3 An aluminum cobalt oxide catalyst (Comparative Catalyst 3) was obtained in the same manner as Comparative Catalyst 2, except that Comparative Catalyst 2 was calcined at 800 ° C. for 8 hours instead of 600 ° C. for 6 hours. .

【0025】実施例1 外径6mm、内径4mmの連続流通式リアクターに、前
記触媒1の粉末0.2gに対し、希釈剤SiOを容量
で5対3の割合で混合したものを充填し、一酸化炭素1
容量%、水素1容量%、酸素5容量%および残り窒素よ
りなる反応ガスを用いて、反応ガス流量50ml/mi
n(SV=1.5×10−1・ml/g)の条件
下、反応温度を変化させて、一酸化炭素および水素の接
触的酸化反応実験を行ない、一酸化炭素および水素の酸
化反応による転化率と反応温度との関係を求めた。得ら
れた結果を表1および表2に示す。
Example 1 A continuous flow reactor having an outer diameter of 6 mm and an inner diameter of 4 mm was filled with 0.2 g of the powder of the catalyst 1 mixed with a diluent SiO 2 in a volume ratio of 5: 3, Carbon monoxide 1
A reaction gas flow rate of 50 ml / mi using a reaction gas consisting of vol.%, Hydrogen 1 vol.%, Oxygen 5 vol.% And the remaining nitrogen.
Under the condition of n (SV = 1.5 × 10 4 h −1 · ml / g), the reaction temperature was changed and the catalytic oxidation reaction experiment of carbon monoxide and hydrogen was conducted to oxidize carbon monoxide and hydrogen. The relationship between the conversion rate by the reaction and the reaction temperature was determined. The obtained results are shown in Tables 1 and 2.

【0026】実施例2〜4および比較例1〜3 実施例1の触媒1に代えて、それぞれ表1に示される触
媒を用いた以外、実施例1と同様の実験を行なった。得
られた結果を表1および表2に示す。
Examples 2 to 4 and Comparative Examples 1 to 3 The same experiment as in Example 1 was carried out except that the catalysts shown in Table 1 were used instead of the catalyst 1 of Example 1. The obtained results are shown in Tables 1 and 2.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少量の一酸化炭素および水素を含有する
酸素含有ガスを、酸化鉄コバルトCoFeまたは
酸化コバルト亜鉛ZnCoのスピネル型コバルト
酸化物よりなる触媒の存在下、一酸化炭素が実質上完全
に酸化される最低温度ないし水素が実質上酸化されない
最高温度の温度範囲で、一酸化炭素のみを接触的に反応
させ、該温度範囲が、酸化鉄コバルト触媒を用いた場合
215〜401℃範囲にあり、酸化コバルト亜鉛触媒を
用いた場合209〜401℃の範囲にあることを特徴と
する一酸化炭素の選択的酸化方法。
1. An oxygen-containing gas containing a small amount of carbon monoxide and hydrogen is oxidized in the presence of a catalyst composed of a spinel-type cobalt oxide of iron oxide cobalt CoFe 2 O 4 or cobalt zinc oxide ZnCo 2 O 4. In the temperature range from the lowest temperature at which carbon is substantially completely oxidized to the highest temperature at which hydrogen is not substantially oxidized, only carbon monoxide is catalytically reacted, and the temperature range is 215 when an iron oxide cobalt catalyst is used. To 401 ° C, and in the case of using a cobalt zinc oxide catalyst, it is in the range of 209 to 401 ° C.
【請求項2】 酸化鉄コバルトCoFeまたは酸
化コバルト亜鉛ZnCoのスピネル型コバルト酸
化物よりなり、請求項1記載の方法に用いられる触媒。
2. A catalyst for use in the method according to claim 1, which comprises a spinel-type cobalt oxide of iron oxide cobalt CoFe 2 O 4 or cobalt zinc oxide ZnCo 2 O 4 .
JP5258805A 1993-07-27 1993-07-27 Method for selectively oxidizing carbon monoxide and catalyst used for the same method Pending JPH0741313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5258805A JPH0741313A (en) 1993-07-27 1993-07-27 Method for selectively oxidizing carbon monoxide and catalyst used for the same method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5258805A JPH0741313A (en) 1993-07-27 1993-07-27 Method for selectively oxidizing carbon monoxide and catalyst used for the same method

Publications (1)

Publication Number Publication Date
JPH0741313A true JPH0741313A (en) 1995-02-10

Family

ID=17325301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5258805A Pending JPH0741313A (en) 1993-07-27 1993-07-27 Method for selectively oxidizing carbon monoxide and catalyst used for the same method

Country Status (1)

Country Link
JP (1) JPH0741313A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100522042B1 (en) * 2002-07-15 2005-10-18 김희정 Process for Preparing Catalyst for Oxidizing Carbon Monoxide
EP1896178A1 (en) * 2005-06-29 2008-03-12 Samsung Engineering Co., Ltd. Metal oxide catalyst for hydrogen generation and method of producing the same
KR100847443B1 (en) * 2007-02-23 2008-07-22 고려대학교 산학협력단 Cr-free catalysts for high temperature water gas shift reaction to remove carbon monoxide
JP2011078947A (en) * 2009-10-09 2011-04-21 Agc Seimi Chemical Co Ltd Ammonia decomposition catalyst and ammonia decomposition method
WO2013108424A1 (en) * 2012-01-19 2013-07-25 トヨタ自動車株式会社 Exhaust gas purifying catalyst and method for producing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100522042B1 (en) * 2002-07-15 2005-10-18 김희정 Process for Preparing Catalyst for Oxidizing Carbon Monoxide
EP1896178A1 (en) * 2005-06-29 2008-03-12 Samsung Engineering Co., Ltd. Metal oxide catalyst for hydrogen generation and method of producing the same
EP1896178A4 (en) * 2005-06-29 2011-10-05 Samsung Eng Co Ltd Metal oxide catalyst for hydrogen generation and method of producing the same
KR100847443B1 (en) * 2007-02-23 2008-07-22 고려대학교 산학협력단 Cr-free catalysts for high temperature water gas shift reaction to remove carbon monoxide
JP2011078947A (en) * 2009-10-09 2011-04-21 Agc Seimi Chemical Co Ltd Ammonia decomposition catalyst and ammonia decomposition method
WO2013108424A1 (en) * 2012-01-19 2013-07-25 トヨタ自動車株式会社 Exhaust gas purifying catalyst and method for producing same
CN104053503A (en) * 2012-01-19 2014-09-17 丰田自动车株式会社 Exhaust gas purifying catalyst and method for producing same
JPWO2013108424A1 (en) * 2012-01-19 2015-05-11 トヨタ自動車株式会社 Exhaust gas purification catalyst and method for producing the same
US9314775B2 (en) 2012-01-19 2016-04-19 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst and method for producing same
CN104053503B (en) * 2012-01-19 2016-11-02 丰田自动车株式会社 Exhaust emission control catalyst and manufacture method thereof

Similar Documents

Publication Publication Date Title
US4921829A (en) Catalyst for purifing exhaust gases
US4157316A (en) Polyfunctional catalysts
Yao The oxidation of hydrocarbons and CO over metal oxides: IV. Perovskite-type oxides
US5500198A (en) Composite catalyst for carbon monoxide and hydrocarbon oxidation
US4010238A (en) Proces for selective removal of nitrogen oxides from waste gases
EP0222497B1 (en) Method of simultaneous oxidation of carbon monoxide and unburned fuel in methanol-fueled vehicle exhaust
US5384301A (en) Catalyst for elemental sulfur recovery process
KR970009558B1 (en) Copper oxide and ceria catalyst
US4552733A (en) Polyfunctional catalysts and method of use
US5283055A (en) Process using novel catalysts for the selective reduction of nitrogen oxides
EP0208434A1 (en) Process for removing nitrogen oxides and carbon monoxide simultaneously
Lindstedt et al. High-temperature catalytic reduction of nitrogen monoxide by carbon monoxide and hydrogen over La1− xSrxMO3 perovskites (M= Fe, Co) during reducing and oxidising conditions
US4018710A (en) Reduction catalysts and processes for reduction of nitrogen oxides
JPH03186346A (en) Catalyst for purifying exhaust gas and catalyst structure
US5192515A (en) Reduction of nitrogen oxide and carbon monoxide in effluent gases
JPH0741313A (en) Method for selectively oxidizing carbon monoxide and catalyst used for the same method
US4228138A (en) Catalysis
US3801697A (en) Process for reducing the content of nitrogen oxides in the exhaust gases from internal combustion engines
EP0741607B1 (en) Method of making a catalyst
JPH0220561B2 (en)
JP2001058130A (en) Catalyst for nitrogen oxide decomposition
Imamura et al. Oxidation of acetic acid on Co Bi composite oxide catalysts
JP4016193B2 (en) Denitration catalyst
JP3634795B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
US5302365A (en) Process for the catalytic combustion of methane