JPS60235711A - Formation of sio2 film - Google Patents

Formation of sio2 film

Info

Publication number
JPS60235711A
JPS60235711A JP8936184A JP8936184A JPS60235711A JP S60235711 A JPS60235711 A JP S60235711A JP 8936184 A JP8936184 A JP 8936184A JP 8936184 A JP8936184 A JP 8936184A JP S60235711 A JPS60235711 A JP S60235711A
Authority
JP
Japan
Prior art keywords
film
glass
silicone resin
base
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8936184A
Other languages
Japanese (ja)
Inventor
Kota Nishii
耕太 西井
Yasuhiro Yoneda
泰博 米田
Masashi Miyagawa
昌士 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP8936184A priority Critical patent/JPS60235711A/en
Publication of JPS60235711A publication Critical patent/JPS60235711A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Chemically Coating (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:The base is coated with a specific silicone resin on its surfaces and heat-treated in an oxygen atmosphere to form flat, dense SiO2 films which are physically and chemically stable on the base. CONSTITUTION:A dihydroxysilane resulting from hydrolysis of dialkoxysilane of formula I (R is monovalent aliphatic hydrocarbon group) is subjected to polycondensation reaction to give a silicone resin which has a weight-average molecular weight of 10,000-300,000 (calculated from polystyrene measured with GPC) and mainly consists of polydihydrodienesiloxane of formula II (R1-6 are H, lower alkyl). The resultant silicone resin is dissolved in a solvent such as benzene and the base on which a circuit has been formed 2 is spin-coated on its surface, heat- treated at 450-500 deg.C in air for 30min-1hr to decompose Si-H and Si-R bonds for replacing hydrogens and Rs with oxygens to form the objective SiO2 films.

Description

【発明の詳細な説明】 発明の技術分野 本発明は二酸化珪素(S ) 02 )陵の製造方決、
例えば、半導体装置用の絶縁膜あるいは液晶セル用ガラ
ス基板の表面保1llI膜として優れた5102呻の製
造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a method for producing silicon dioxide (S)02),
For example, the present invention relates to a method of manufacturing 5102, which is excellent as an insulating film for semiconductor devices or a surface protection film for glass substrates for liquid crystal cells.

従来技術と問題点 51021IIIけ半導体装置の絶縁膜として用いられ
、主に化学的気相堆積法(CVD )で形成されている
Prior Art and Problems 51021III It is used as an insulating film in semiconductor devices, and is mainly formed by chemical vapor deposition (CVD).

しかし、C■で作る8102膜は凹部への1わり込みや
平坦性に問題がある。シリコーン樹脂を半導体基板に塗
布い熱処理して5102膜を形成すれば、そうした問題
は解決される。このような用途におけるシリコーン樹脂
として、従来、ポリジアルコキシシロキサン、例えばポ
リノエトギンシロキサン、ポリジメトキシシロキサンが
用いられた。
However, the 8102 film made of C■ has problems in bending into recesses and flatness. Such problems can be solved by applying silicone resin to a semiconductor substrate and heat-treating it to form a 5102 film. Conventionally, polydialkoxysiloxanes such as polynoethogynesiloxane and polydimethoxysiloxane have been used as silicone resins for such applications.

しかし々がら、これらのシリコーン樹脂は有機基を多量
に含み、これが熱分解されて飛散するので、得られる8
102腿はピンホールを含み、かつ熱分F、′〆t*>
 にr・“i l゛Jが減/J)シて歪を外しひいては
クラックを:11ノ[fる欠点がある。
However, these silicone resins contain a large amount of organic groups, which are thermally decomposed and scattered, so the resulting 8
102 thighs include pinholes, and heat content F, ′〆t*>
There are 11 flaws: 11.

lft晶宙沖やTゾタル時計の普及にともない、液:L
’+セル用のガラス置板の需要が増大してきている。
With the spread of lft Akira Soraoki and T Zotal watches, liquid: L
'+ Demand for glass mounting plates for cells is increasing.

ガラスJ人相は高品質が要求されるため、高いコストの
ホウケイ酸ガラスが使われていたが、低コスト価の目的
で安価なソーダガラスを使用する方向に向っている。し
かし、ソーダガラスはガラスやけやアルカリイオンの溶
出があるため、これに接する筋晶セルに悪影響を与え、
ライフが短かかった。そこで、ソーダガラス表面にS 
i O2膜を形byして使用する方法が考えられる。一
般的な5102117、Sの形成法としては蒸着法やス
ノfyり法などがあるが、これらの方法は輿望系を用い
ることから装置i11が高価で、操作が煩雑になり、借
産性に劣るという欠点がある。テトラシラノール(81
(01−1)4)をガラス基板に塗布し、熱処理して5
tO2膜をコーティングする方法が知られているが、傅
らハるハーフ1曜は高々02μm程度で非常に薄い。
Because glass J physiognomy requires high quality, expensive borosilicate glass was used, but the trend is toward using inexpensive soda glass for the purpose of lower cost. However, soda glass causes glass burns and elution of alkali ions, which adversely affects the muscle cells in contact with it.
Life was short. Therefore, S on the soda glass surface.
A possible method is to use an iO2 film in the form of a film. Common methods for forming 5102117 and S include the vapor deposition method and the snoring method, but since these methods use a viewing system, the equipment i11 is expensive, the operation is complicated, and the property is inferior. There is a drawback. Tetrasilanol (81
(01-1) 4) was applied to a glass substrate, heat treated, and 5
A method of coating a tO2 film is known, but it is very thin, at most about 0.2 μm thick.

発明の目的 本発明の目的灯、。ヒ記の如き可来技術に1ζみ、基体
上に平坦かつ乃密で、物理的・化うf的に7i万’な5
ho2PJを形成する方法を隼供することである、発明
の構成 上記目的を達成する本発明は、基体上K yj? II
ツバイト”ロノエンシロキサンからなるシリコーン神↑
脂を塗布し、それを酸素雰囲気中で熱処理することによ
って酸化珪素膿を形成する。酸什珪FIlりは厳密に8
102になるとけ[を1“らない力1、部片のたy〕以
下単に5102膵と表わす。
OBJECT OF THE INVENTION A purpose light of the present invention. Based on the available technology as described above, it is possible to create a flat, dense, 70,000' 500,000 in terms of physical and physical properties on the substrate.
The present invention provides a method for forming ho2PJ on a substrate. II
Silicone god made of “Tubaite” ronoene siloxane↑
Silicon oxide pus is formed by applying oil and heat-treating it in an oxygen atmosphere. Acid silicon FIl is strictly 8
If it becomes 102, it will be simply expressed as 5102 pancreas.

発明の構成の具体的構成 本発明で用いるポリジノ・イドロノエンンロキサン(以
下PDIISという。)は一般式;(式中、R1−R6
は同一でも菫なっていてもよく、水素原子またVよ低級
アルギル基、例えばメチル、占(、エチル基を表わす。
Specific Structure of the Structure of the Invention The polydino-hydronoenroxane (hereinafter referred to as PDIIS) used in the present invention has the general formula;
may be the same or different and represent a hydrogen atom or a lower argyl group, such as methyl, ethyl group.

) をイjするもので、本発明者らが先に発明し、捺供した
ものである(特願昭58−392492丹)。
), which was previously invented and published by the present inventors (Japanese Patent Application No. 58-392492).

その製法および性質は以下の通りである。Its manufacturing method and properties are as follows.

一般式H2S1(OR)2(式中、R#′i−価の脂肪
族炭化水素を示す)で表わされるジアルコキシシランを
出発原料とし、次式に示すように、加水分解してジヒド
ロキシシランを生成し、引糾いて縮重合させてシラノー
ル末端ジハイドロジエンシロキサンを生成する。
A dialkoxysilane represented by the general formula H2S1(OR)2 (in the formula, represents an R#'i-valent aliphatic hydrocarbon) is used as a starting material and is hydrolyzed to produce dihydroxysilane as shown in the following formula. The silanol-terminated dihydrodiene siloxane is produced by condensation and condensation.

H,Sl (011)2+2H20−+ H2S I 
(OH)2+2ROHこのとき、6<pl(<7とする
ことによって、GPCで測定したポリスチレン浄算によ
る1に騎平均分子曙を10.00(1〜300.0(1
0とすることができ、かつケトン、エーテル、芳香族炭
化水fまたは低級脂肪族アルコールにM度20〜25°
Oにおいて少なくとも市lI)比】、】まで溶解する。
H, Sl (011)2+2H20-+ H2S I
(OH)2+2ROH At this time, by setting 6<pl(<7), the knight average molecular weight is 10.00(1 to 300.0(1
0, and the M degree is 20-25° for ketones, ethers, aromatic hydrocarbons, or lower aliphatic alcohols.
Dissolve at least up to a temperature of 100%.

もしPII〈6のときけ81−H結合が分解して、三次
元架橋しケ゛ル什し、pH=7では縮重合反応が進行せ
ず、−1〉7のときはpl−1<6のときと1ift 
IflJにゲル什するので溶剤に溶解しなくなる。
If PII<6, the 81-H bond decomposes and three-dimensional crosslinking occurs, and the polycondensation reaction does not proceed at pH=7, and if -1>7, then pl-1<6. and 1ift
Since it forms a gel on IflJ, it becomes insoluble in solvents.

出発原料はジメトキシシラン()+、p、31’1℃)
オたけジメトキシシラン(b、p、80〜B ) ℃)
 カミA当であり、これらの[11休より高い沸点を有
する溶剤、たとえばメチルインブチルケトン(b、p。
The starting material is dimethoxysilane ()+, p, 31'1℃)
Otake dimethoxysilane (b, p, 80~B)℃)
Solvents with a boiling point higher than these [11], such as methyl imbutyl ketone (b, p.

117℃)に溶解し、単倚体濃度3〜71!1−RII
チとして反応させる。この濃青が3重l!チより低いと
反応が遅くて収率が少なく、77g4T+[より高いと
三次元架橋してrル什し、溶IAに不溶となる。また加
水分解および重縮合のJう応〆1υfすけ50”Cを超
えないように制御する。50℃より高いとケ9ル化し易
くなる。
117°C) to a single concentration of 3 to 71!1-RII
React as a chi. This dark blue is triple L! If it is lower than 1, the reaction will be slow and the yield will be low; if it is higher than 77g4T+, it will be three-dimensionally cross-linked and become insoluble in molten IA. In addition, the temperature limit for hydrolysis and polycondensation is controlled so as not to exceed 1υf/50"C. If the temperature is higher than 50°C, keratinization tends to occur.

このPDT(SけM(合樽造が単純と考えらね、粘稠な
液体オたけ固体であり、ベンゼン、トルエン、メチルイ
ンブチルケトン、メチルエチルケトン、THF 、エチ
ルアルコールマ* i−、tメチルアルコールに導度2
0〜25℃において少なくともpIg4比1=1まで溶
解する。
This PDT (SkeM) is a viscous liquid and a solid; conductivity 2
It dissolves at 0-25°C to at least a pIg4 ratio of 1=1.

もしジクロルシランを出発原料とすれば、加水分MKよ
り#XPII/を生成して強酸性となるので、−の制御
が困雛であって、生成する縮重合体は平均重合度p≦6
と低いの罠も拘らず、ベンゼンに不溶であり、塗布溶液
とすることができないので、5102−形成に利用する
ことができ々い。
If dichlorosilane is used as a starting material, it will generate #XPII/ from the hydrolyzed MK and become strongly acidic, making it difficult to control -, and the resulting condensation polymer will have an average degree of polymerization p≦6.
Despite its low temperature, it is insoluble in benzene and cannot be used as a coating solution, so it cannot be used for forming 5102-.

PDI8のシリル化剤としては、分子量の小さい有機基
を有するクロルシランを使用する。たとえば、ジメチル
クロルシランをシリル化剤とするときけ次式忙示すジメ
チルシリル末端PDH8を生成する。
As the silylating agent for PDI8, chlorosilane having an organic group with a small molecular weight is used. For example, when dimethylchlorosilane is used as a silylating agent, a dimethylsilyl-terminated PDH8 having the following formula is produced.

このシリル末端PD’H3dケトンまた鉱芳香族炭化水
準たとえばベンゼン、トルエン、メチルインブチルケト
ン捷たはメチルエチルケトン、THFK。
This silyl-terminated PD'H3d ketone can also be used at aromatic carbonization levels such as benzene, toluene, methyl butyl ketone or methyl ethyl ketone, THFK.

U1120〜25℃において、少なくとも重量比1;1
壕で溶解する。
U11 At 20-25°C, at least a weight ratio of 1;1
Dissolve in the trench.

このシリル末端PDH8は熱分解において有PJ&の抜
穴が小さいと考えられ、−分MKより発生する歪やピン
ホールが極めて少ない。
This silyl-terminated PDH8 is thought to have a smaller hole in PJ& during thermal decomposition, and generates significantly fewer distortions and pinholes than -min MK.

ジアルコキシシランを出発原料として[9VしたPDI
8の重量平均分子y#および溶解度、さらにこれをシリ
ル化したシリル末端PDI−1sの赤外吸収スRクトル
から、この物質は、シロキサン結合を主骨格とし、ケイ
素原子に2個の水151!!原子が結合し、末端にS 
1−CH,結合を有する下翫1の構造であることがわか
った。
Using dialkoxysilane as a starting material [9V PDI]
Based on the weight average molecular y# and solubility of 8, and the infrared absorption spectrum of silyl-terminated PDI-1s obtained by silylating it, this substance has a siloxane bond as its main skeleton and two water atoms in the silicon atom (151!). ! Atoms are bonded and S at the end
It was found that the structure was lower wire 1 having a 1-CH bond.

PDI8の重量平均分子lIは、GPC法によるポリス
チレン換算値で、10.009から300. (100
の範囲に8った。
The weight average molecular lI of PDI8 is a polystyrene equivalent value determined by GPC method, and ranges from 10.009 to 300. (100
It was in the range of 8.

重量平均分子量が10.000よυ小さいと、熱処理の
際低分子量体が揮発してしまうため重iiI減少が大き
くなり、膜に歪が入りやすくなるので不適当であり、3
00.000より大きいと、三次元架橋を起こしrル化
し易くなり溶媒に不溶となるので不適当である。
If the weight average molecular weight is smaller than 10.000, the low molecular weight substance will volatilize during heat treatment, resulting in a large decrease in molecular weight, making it easier for the film to become strained, which is unsuitable.
If it is larger than 00.000, it is unsuitable because three-dimensional crosslinking occurs and it becomes easy to form a resin and become insoluble in a solvent.

シリル末端PDH8の分子量はPDI(Sの分子量と中
質的に同一と考えられる。
The molecular weight of silyl-terminated PDH8 is considered to be neutrally identical to that of PDI(S).

コ(7) PD)(S (7)ベンゼン、トルエン、メ
チルアルコールおよびメチルアルコールに対する温度2
0〜25℃の溶解度は、いずれも少なくとも重量比1:
1まで溶解し、またトリエチルシリル末端Pr)H8i
t、ベンゼン、トルエン、メチルイソブチルケトンおよ
びメチルエチルケトンに対する温度20〜25℃の溶解
度は、いずれも少なくとも重量比1:lまで溶解した。
(7) PD) (S (7) Temperature 2 for benzene, toluene, methyl alcohol and methyl alcohol
The solubility at 0 to 25°C is at least at a weight ratio of 1:
1 and also triethylsilyl-terminated Pr) H8i
The solubility in benzene, toluene, methyl isobutyl ketone, and methyl ethyl ketone at a temperature of 20 to 25° C. was such that they were all dissolved at a weight ratio of at least 1:1.

Mil1分析は、ジメチルシリル末端PDH8の未硬化
のものの型針を100係とし、昇温速度5℃、/m l
 nで900℃まで加熱した。重量の変化は250℃か
ら始まって450℃では約110%に達した。これは5
l−)(が分解して酸素が付加したためと考えられ、酸
化は450℃でほぼ完了し、その後は800℃を超える
まで変化のないことがわかった。
For Mil1 analysis, the mold needle of uncured dimethylsilyl-terminated PDH8 was set to 100 mm, and the heating rate was 5°C/ml.
Heated to 900°C at n. The weight change started at 250°C and reached about 110% at 450°C. This is 5
This is thought to be due to the decomposition of l-)( and the addition of oxygen), and it was found that the oxidation was almost completed at 450°C, and thereafter there was no change until the temperature exceeded 800°C.

こうして得られるPD)(S Vi溶剤を用いてスピン
コードすることが可能である。そ(7て、例えば、空気
中450〜500℃で30分〜1時間程度熱処理すると
、5t−H結合および5t−R結合が分解し、体積の小
さい水素原子が飛散する一方、酸素が付加して、S+O
2膜となる。スピンコードが可能であるから、8102
Nが平坦化する。熱処理によって飛散するのけ体積の小
さい水素原子であるから、ピンホールの発生、歪の形成
ひいてクラックの発生を彦〈シ、緻密な5102膠を得
ることができる。これらの性質から、本発明による51
02膜の形成方法は半導体装置の絶縁膜を形成するのに
好適である。例えば、第1図を参照すると、シリコンウ
ェハ1上に5μm間隔で1i、I F1μm1厚さ17
aのアルミニウム配lf+!2があっても、本発明の方
法によれば、図に示す如く平坦な81021i@3を形
成することができる。
The PD obtained in this way can be spin-coded using S Vi solvent. Then, for example, when heat-treated in air at 450 to 500°C for about 30 minutes to 1 hour, 5t-H bonds and 5t -R bond decomposes and hydrogen atoms with small volume scatter, while oxygen is added and S+O
There will be two films. Since the spin code is possible, 8102
N becomes flat. Since hydrogen atoms have a small volume and scatter during heat treatment, the generation of pinholes, distortion, and cracks can be prevented, and a dense 5102 glue can be obtained. From these properties, 51 according to the present invention
The method for forming the 02 film is suitable for forming an insulating film of a semiconductor device. For example, referring to FIG.
Aluminum arrangement lf+ of a! Even if there is 2, according to the method of the present invention, a flat 81021i@3 can be formed as shown in the figure.

また、PDI8を硬化して得る5102膜はガラス基体
との密着性に優れており、ガラス基体にある傷や突起物
を被覆し、平坦化できる。ガラス基体−\のPr)H8
??’ 在方法としてはスピンコードのt分か、大型相
料の場合など浸漬法によることもできる。
Further, the 5102 film obtained by curing PDI8 has excellent adhesion to the glass substrate, and can cover and flatten scratches and protrusions on the glass substrate. Glass substrate-\Pr)H8
? ? As a method of depositing, it is possible to use a t-minute spin cord method, or a dipping method in the case of large phase materials.

5102膜の厚#tj:0.05戸程度から0.7〜0
.8 ttm程度まで容易にコントロールできる。そし
て、ガラス集体にコーティングすることによってソーダ
がラスの「ガラスやけ」を防止できる。こうした性質か
ら、本発明によるs+o2I11!け形成1’を液晶セ
ルあるい岐光学材料用のガラス基板に応用できる。
5102 Membrane thickness #tj: 0.05 to 0.7 to 0
.. It can be easily controlled up to about 8 ttm. By coating the glass aggregate, soda can prevent glass from burning. From these properties, s+o2I11! according to the present invention! The layer formation 1' can be applied to glass substrates for liquid crystal cells or optical materials.

あるいけ、さらに、例えば高純度を要求される薬品を保
存するビンの内壁に5IO2膜を形成し、アルカリイオ
ンが薬品に混入するのを防ぐことにも応用できる。
Furthermore, it can also be applied to, for example, forming a 5IO2 film on the inner wall of a bottle for storing chemicals that require high purity to prevent alkali ions from mixing with the chemicals.

PDH8の塗布方法は適当な溶剤、例えばベンゼン、キ
シレン、トルエンなどの芳香族炭化水素系、メチルエチ
ルケトン、メチルイソブチルケトン、などのケトン系の
有機溶剤K PDH8を溶解し、スピンコード法、浸漬
法その他の方法で基体上に塗布する。このとき、塗布溶
液の濃度を変えて、得らhる5102膜の膜厚を調整す
ることができる。
The coating method for PDH8 is to dissolve K PDH8 in an appropriate solvent, such as an aromatic hydrocarbon such as benzene, xylene, toluene, or a ketone organic solvent such as methyl ethyl ketone or methyl isobutyl ketone, and apply the spin code method, dipping method, or other method. method to coat the substrate. At this time, the thickness of the resulting 5102 film can be adjusted by changing the concentration of the coating solution.

PDH8溶液を塗布後、溶剤を飛ばしてから、酸素雰囲
気中で熱処理する。例えば、空気中450〜500℃で
30分〜1時間程度熱処理する。
After applying the PDH8 solution, the solvent is blown off, and then heat treatment is performed in an oxygen atmosphere. For example, heat treatment is performed in air at 450 to 500°C for about 30 minutes to 1 hour.

実施例 市販のジェトキシシラン](lに純水]00gを加え、
よく振盪した。分増した水層の−1は58であったので
、精密蒸留し、得た沸点800〜805℃の留分の中の
30.9を再び100gの純水で水洗したものは一1=
66であった。
Example: Add 00 g of commercially available jetoxysilane (pure water to 1 l),
Shake well. -1 of the increased water layer was 58, so 30.9 of the fraction with a boiling point of 800 to 805°C obtained by precision distillation was washed again with 100 g of pure water, and the result was -1 =
It was 66.

こうして精製したジェトキシシラン50.?l’lf製
したメチルインブチルケトン950gを加λ1、水冷し
て攪拌しながら蒸留水75gを5秒に】滴ずつの割合で
滴下して加水分解脱アルコールし、さらに約30分間水
冷を続けた後、徐々に温度を昇ばて35℃として2時間
この温度で攪拌をり、幻て加水分解し縮重合させた。こ
の間50納Hg減圧として生成したアルコールと水とを
除き反応をイjl進した。残留液はPDH8を約3軍f
#チ含むジメチルイソブチルケトン溶液550gであっ
た。
Jetoxysilane thus purified 50. ? 950 g of methyl imbutyl ketone produced by l'lf was added to the solution for λ1, water-cooled, and while stirring, 75 g of distilled water was added dropwise for 5 seconds to perform hydrolytic dealcoholization, followed by continued water cooling for about 30 minutes. Thereafter, the temperature was gradually raised to 35° C. and stirred at this temperature for 2 hours to cause phantom hydrolysis and condensation polymerization. During this time, the pressure was reduced by 50 tons of Hg to remove the produced alcohol and water, and the reaction was allowed to proceed. The residual liquid is about 3 forces of PDH8
The amount of dimethyl isobutyl ketone solution containing 550g was 550g.

このPDH8溶液にジェトキシシランと回当偕のジメチ
ルクロルシラン39.9を攪拌しながら加え、30℃で
30分間攪拌し続けてシリル化を冗了した。蒸留水2j
を1秒に1滴ずつの割合で滴下して、jμ別のジメチル
クロルシランを分解し、さらに水洗し、減圧濃縮した。
Jetoxysilane and 39.9 g of dimethylchlorosilane were added to this PDH8 solution with stirring, and stirring was continued at 30° C. for 30 minutes to complete silylation. distilled water 2j
was added dropwise at a rate of 1 drop per second to decompose the dimethylchlorosilane, followed by washing with water and concentrating under reduced pressure.

得た有機*に5P容素の了セトニトリルを加えてシリル
末fi PDH8を沈瞬させ、アセトニトリルによる傾
斜洗浄を3回反復して、白色粉末のジメチルシリル末端
PDH8II’!Iを得た。
5P-containing acetonitrile was added to the obtained organic* to precipitate the silyl-terminated PDH8, and the gradient washing with acetonitrile was repeated three times to obtain a white powder of dimethylsilyl-terminated PDH8II'! I got I.

このシリル末@PDH8の重量平均分子量d、次のよう
に測定した。
The weight average molecular weight d of this silyl powder @PDH8 was measured as follows.

ジメチルシリル末端PDH8の0.1.9を10g(7
)テトラヒドロフランに治解し1wt%テトラヒドロフ
ラン溶液とした。この溶液を用いてGPC法(4″ルノ
平−ミニ−ジョンクロマトグラフィー)によし分子11
測定した。この結果、1[数平均分子14 My=15
8.000、数平均分子計MN=30.200、分散度
MW/MN = 5.27であることがわかった。
10 g (7
) It was dissolved in tetrahydrofuran to make a 1 wt % tetrahydrofuran solution. Using this solution, the molecules 11
It was measured. As a result, 1[number average molecule 14 My=15
8.000, number average molecular meter MN = 30.200, and degree of dispersion MW/MN = 5.27.

PDH8自身の平均分子量はシリル化PDH3と同一と
考えられる。なおこのPDH8け室温(25℃)におい
てベンゼン、トルエン、メチルインブチルケトン、メチ
ルエチルケトン、テトラヒドロフラン、メチルアルコー
ル、エチルアルコールニ少すくとも重量比1:1まで溶
解した。捷たジメチルシリル末端P DH8け宰温(2
5℃)においてベンゼン、トルエン、メチルイソブチル
ケトン、メチルエチルケトン、テトラヒドロフランに少
なくとも重量比1:1まで溶解した。
The average molecular weight of PDH8 itself is considered to be the same as that of silylated PDH3. Note that benzene, toluene, methyl imbutyl ketone, methyl ethyl ketone, tetrahydrofuran, methyl alcohol, and ethyl alcohol were dissolved at room temperature (25° C.) in this PDH8 to a weight ratio of at least 1:1. Dimethylsilyl-terminated P DH8 Kezai On (2
5° C.) in benzene, toluene, methyl isobutyl ketone, methyl ethyl ketone, and tetrahydrofuran to a weight ratio of at least 1:1.

例2 精製ジメチルシリル末端PD)(85,9ヲトルエン2
.0 &に溶解した20軍11%溶液を、シリコンウェ
ハ上に3000 rpmでスピンコードして塗膜を形成
し、これをloo”cで30分間、次いで450℃で1
時間熱処理して5IO2膜とした。この熱処理の前後の
膜厚の変化は、硬イし前の9.75 廊が硬化後の0.
70℃mとなった程度であり、さらに空気中で500℃
で2時間放置したが、膜に異常は認められなかった。こ
のように酸化ケイ素膜はクラ9.Iりも発生せず、また
微少なピンホールも視覚できないばかりでなく、電気抵
抗が5X10”Ω1であり、絶縁性は良好であった。
Example 2 Purified dimethylsilyl-terminated PD) (85,9wo toluene 2
.. A coating film was formed by spin-coating a 11% solution of 20% dissolved in 0.0 & 3.0% on a silicon wafer at 3000 rpm, which was then coated at 450°C for 30 minutes.
A 5IO2 film was obtained by heat treatment for a period of time. The change in film thickness before and after this heat treatment is 9.75 mm before hardening and 0.75 mm after hardening.
The temperature was only 70℃m, and it was further heated to 500℃ in air.
Although the film was left for 2 hours, no abnormality was observed in the film. In this way, the silicon oxide film is classified as Class 9. Not only did no leakage occur and minute pinholes were not visible, but the electrical resistance was 5×10”Ω1, and the insulation was good.

またこの硬化膜は下地基板との密着性が良好であって、
ケイ素、酸化ケイ素、通常のガラス、リンケイ酸ガラス
、アルミナおよびアルミニウムなど、多様な基板と対し
てすぐれた密着性を示した。
In addition, this cured film has good adhesion to the underlying substrate,
It showed excellent adhesion to a variety of substrates, including silicon, silicon oxide, ordinary glass, phosphosilicate glass, alumina, and aluminum.

例3 MWジメチルシリル末端PDH85gヲ)ルエン45g
K溶解した10重量係溶液を、寸法50゜×50閾、厚
さ1.2 mのソーダガラス某板上に3000rpm、
30秒の条件でスピンコードして塗膜を形成し、これを
空気中120℃で30分間、次いで450℃で1時間熱
処理して硬化させ、5IO2膜とした。同様の操作をガ
ラス基板の裏側にも行なった。また、ガラス基板の側面
については(真で塗布してやはり5102膜を形成した
Example 3 MW dimethylsilyl-terminated PDH 85g) Luene 45g
A 10 weight solution containing dissolved K was heated at 3000 rpm on a soda glass plate with dimensions of 50° x 50 mm and thickness of 1.2 m.
A coating film was formed by spin coding for 30 seconds, and this was heat treated in air at 120°C for 30 minutes and then at 450°C for 1 hour to form a 5IO2 film. Similar operations were performed on the back side of the glass substrate. Further, on the side surface of the glass substrate, a 5102 film was also formed by applying the same.

得られた5102膜の膜厚をアルファステップで測犀し
たところ0.2 Fl ltmであった。この5i02
Fを形成したガラスは長期間(3年間)大気中に放tI
!j してもガラスやけは起こらなかった。また、純水
で2時間煮沸試験した後、水中のアルカリイオンをイオ
ンクロマトグラフィーにより測定したが、アルカリイオ
ンは全く検出されなかった。
The thickness of the obtained 5102 film was measured by alpha step and was found to be 0.2 Fl ltm. This 5i02
The glass that formed F was exposed to the atmosphere for a long period of time (3 years).
! j However, no glass burn occurred. Further, after a 2-hour boiling test with pure water, alkali ions in the water were measured by ion chromatography, but no alkali ions were detected at all.

さらに、このガラス基板を使用した液晶セルは長期間使
用しても、ガラスやけやアルカリイオンの溶出はなく、
これらの拐料が原因と考えられる異常は全く起こらなか
った。
Furthermore, even after long-term use of liquid crystal cells using this glass substrate, there is no glass burn or alkaline ion elution.
No abnormalities that could be considered to be caused by these particles occurred.

発明の効果 本発明により、シリコーン樹脂を用いた高純度s+o2
mの形成方法が提供され、凸凹のある学導体基板上に平
坦化された優れた絶縁模を提供したり、安価なソーダガ
ラス等のガラスやけやアルカリイオンの溶出を防止する
ことができる。
Effects of the invention According to the present invention, high purity s+o2 using silicone resin
The present invention provides a method for forming m, which can provide an excellent flattened insulation pattern on an uneven conductor substrate, and can prevent the burning of inexpensive soda glass and other glass and the elution of alkali ions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は半導体装置の断面図である。 1・・・半導体基板、2・・・金属配線層、3・・・5
IO2腿。
FIG. 1 is a sectional view of a semiconductor device. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Metal wiring layer, 3...5
IO2 thighs.

Claims (1)

【特許請求の範囲】 1 下記一般式: (式中、R,、R2,R3,R4,R5,R6Vi同一
でも異なっていてもよく、水素片子またけ低級アルキル
族である。) を有するポリジハイドロジエンシロキサンからなるシリ
コーン樹脂を基体表面に塗布し、酸素界囲気中で熱処理
することKよって酸化珪素膜を形成する方法。 2 前記基体が半導体基板である特許請求の範囲第1項
記載の方法。 3、前記基体がガラス基板である特許請求の範囲第1項
記載の方法。 4 前記基イ本がガラス瓶である特許請求の範囲第1項
記個の方法。
[Scope of Claims] 1 Polydihydro having the following general formula: A method of forming a silicon oxide film by coating a silicone resin made of diene siloxane on the surface of a substrate and heat-treating it in an oxygen atmosphere. 2. The method according to claim 1, wherein the substrate is a semiconductor substrate. 3. The method according to claim 1, wherein the substrate is a glass substrate. 4. The method according to claim 1, wherein the base is a glass bottle.
JP8936184A 1984-05-07 1984-05-07 Formation of sio2 film Pending JPS60235711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8936184A JPS60235711A (en) 1984-05-07 1984-05-07 Formation of sio2 film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8936184A JPS60235711A (en) 1984-05-07 1984-05-07 Formation of sio2 film

Publications (1)

Publication Number Publication Date
JPS60235711A true JPS60235711A (en) 1985-11-22

Family

ID=13968565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8936184A Pending JPS60235711A (en) 1984-05-07 1984-05-07 Formation of sio2 film

Country Status (1)

Country Link
JP (1) JPS60235711A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262844A (en) * 1987-04-10 1988-10-31 エアー.プロダクツ.アンド.ケミカルス.インコーポレーテツド Method of forming silicon dioxide glass film
DE19630342A1 (en) * 1995-08-23 1997-02-27 Mitsubishi Electric Corp Manufacturing method for semiconductor device
DE19861329B4 (en) * 1997-06-26 2006-02-02 Mitsubishi Denki K.K. Semiconductor device with interlayer insulating film - based on silicon atoms, each bonded to oxygen and carbon atoms
JP2009191331A (en) * 2008-02-15 2009-08-27 Kobe Steel Ltd Method for producing silicon oxide film
WO2010067850A1 (en) * 2008-12-12 2010-06-17 旭硝子株式会社 Method for producing glass substrate having silicon oxide film attached thereto

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262844A (en) * 1987-04-10 1988-10-31 エアー.プロダクツ.アンド.ケミカルス.インコーポレーテツド Method of forming silicon dioxide glass film
DE19630342A1 (en) * 1995-08-23 1997-02-27 Mitsubishi Electric Corp Manufacturing method for semiconductor device
US5976626A (en) * 1995-08-23 1999-11-02 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing thereof
DE19630342C2 (en) * 1995-08-23 2003-06-18 Mitsubishi Electric Corp Manufacturing method of an insulating intermediate layer on a semiconductor substrate
DE19861329B4 (en) * 1997-06-26 2006-02-02 Mitsubishi Denki K.K. Semiconductor device with interlayer insulating film - based on silicon atoms, each bonded to oxygen and carbon atoms
JP2009191331A (en) * 2008-02-15 2009-08-27 Kobe Steel Ltd Method for producing silicon oxide film
WO2010067850A1 (en) * 2008-12-12 2010-06-17 旭硝子株式会社 Method for producing glass substrate having silicon oxide film attached thereto
JP5545221B2 (en) * 2008-12-12 2014-07-09 旭硝子株式会社 Method for producing glass substrate with silicon oxide film

Similar Documents

Publication Publication Date Title
KR101303852B1 (en) Cyclic dihydrogenpolysiloxanes, hydrogenpolysiloxanes, processes for their production, silica type glass moldings and a process for their production, optical elements and a process for their production
JP3543669B2 (en) Coating liquid for forming insulating film and method for forming insulating film
JP2002363285A (en) Siloxane-based resin and method for forming semiconductor interlayer insulating film by using the same
JP2007111645A5 (en)
TW419493B (en) Stable inorganic polymers
CN101292060A (en) Inorganic substrate with a thin silica type glass layer, method of manufacturing the aforementioned substrate, coating agent, and a semiconductor device
JPS62230828A (en) Insulating film for semiconductor, formation thereof and coating solution
KR100570246B1 (en) Film Forming Composition, Porous Film and Their Preparation
JP4406340B2 (en) Multi-reactive cyclic silicate compound, siloxane-based polymer produced from this compound, and insulating film production method using this polymer
WO2003087228A1 (en) Composition of silicon-containing copolymer, solvent-soluble crosslinked silicon-containing copolymer, and cured articles obtained therefrom
JP5586227B2 (en) Porous silica precursor composition and production method thereof, porous silica film and formation method thereof, semiconductor element, image display device, and liquid crystal display device
US20060127587A1 (en) Organic silicate polymer and insulation film comprising the same
JP2000012536A (en) Formation of silica film
JPH05105486A (en) Smooth glass base plate and its production
JPH0832855B2 (en) Ceramic paint and method for forming coating film thereof
JP2009091545A (en) Application liquid for forming silica-based coating film, preparation method for application liquid, and silica-based insulation film obtained from application liquid
JPS60235711A (en) Formation of sio2 film
JP4996832B2 (en) Silica-based coating agent, silica-based thin film and structure using the same
JP3681582B2 (en) Epoxy group-containing silicone resin
JP2001287910A (en) Method for producing porous silicon oxide coating film
JPH03221577A (en) Coating solution for insulating film formation
JPS6086018A (en) Silicone resin
JP2000319530A (en) Composition for semiconductor element
US7091287B2 (en) Nanopore forming material for forming insulating film for semiconductors and low dielectric insulating film comprising the same
JP3889615B2 (en) Method for producing silica-based thin film and organic-inorganic composite gradient material