JPS60235308A - Method of producing compound superconductive wire - Google Patents

Method of producing compound superconductive wire

Info

Publication number
JPS60235308A
JPS60235308A JP59089513A JP8951384A JPS60235308A JP S60235308 A JPS60235308 A JP S60235308A JP 59089513 A JP59089513 A JP 59089513A JP 8951384 A JP8951384 A JP 8951384A JP S60235308 A JPS60235308 A JP S60235308A
Authority
JP
Japan
Prior art keywords
manufacturing
copper
barrier layer
alloy
bronze
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59089513A
Other languages
Japanese (ja)
Other versions
JPH0464124B2 (en
Inventor
田中 靖三
小西 健二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP59089513A priority Critical patent/JPS60235308A/en
Publication of JPS60235308A publication Critical patent/JPS60235308A/en
Publication of JPH0464124B2 publication Critical patent/JPH0464124B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、A、B型化合物超電導体のA元素を主成分と
するコア部と、B元素を含有するブロンズ部とからなる
複合基材から化合物超電導線を製造する方法の改良に関
するものである。
Detailed Description of the Invention [Technical Field] The present invention relates to compound superconducting material made of a composite base material consisting of a core part mainly composed of the A element of an A and B type compound superconductor and a bronze part containing the B element. This invention relates to improvements in the method of manufacturing wire.

〔従来技術〕[Prior art]

A、B型化合物超電導体としては、N b a S n
、V 3Ga XNb:+Ga 、Nb3Alなどがあ
るが、これらの化合物超電導体は通常、へ元素を主成分
とするコア部とB元素を含有するブロンズ部とからなる
複合基材を、減面加工により最終寸法の線にした後、拡
散熱処理を行うことにより製造されている。−例として
Nb3Sn線の製造工程を説明すると次の止おりである
As A and B type compound superconductors, N b a S n
, V 3Ga It is manufactured by performing a diffusion heat treatment after the wire has been cut to its final dimensions. - As an example, the manufacturing process of Nb3Sn wire is explained as follows.

(al まず、Nbコアを10〜15%Snのブロンズ
中に埋め込み、複合基材をつくる。
(Al First, a Nb core is embedded in 10-15% Sn bronze to create a composite base material.

(bl この複合基材を減面加工する。(bl This composite base material is subjected to surface reduction processing.

FC) id面加工率20〜50%毎に、400〜7o
o℃ノ温度で10分〜1時間の中間焼鈍を繰り返し行う
FC) 400~7o for every 20~50% of id surface processing rate
Intermediate annealing is repeatedly performed at a temperature of 0° C. for 10 minutes to 1 hour.

(dl 最終寸法の線に仕上げる。(dl Finish the line to the final dimensions.

(e) 拡散熱処理によってNbコアとブロンズの界面
にNb3Sn化合物を生成させる。
(e) A Nb3Sn compound is generated at the interface between the Nb core and the bronze by diffusion heat treatment.

〔従来技術の問題点〕[Problems with conventional technology]

上記のような従来の製造方法には次のような問題点があ
る。
The conventional manufacturing method as described above has the following problems.

1 複合基材中ではNbコアとブロンズが直接接触して
いるため、中間焼鈍の際に1回毎に0.(15〜0.1
μmのNb3Snが形成される。
1. Because the Nb core and bronze are in direct contact in the composite base material, 0. (15~0.1
Nb3Sn of μm is formed.

il 中間焼鈍で形成されたNb3Snは、その後の減
面加工で破壊し、Nbコアの断面形状の不整や断線を誘
発する。
il The Nb3Sn formed in the intermediate annealing is destroyed in the subsequent area reduction process, causing irregularities in the cross-sectional shape of the Nb core and disconnection.

iii 最終の拡散熱処理前にNbコア表面に不連続な
Nb3Snが形成されているため、拡散反応に有効なS
n濃度が低下するだけでなく、反応界面の質が低下する
。その結果、拡散熱処理により生成されるNb:+Sn
層の断面積の減少や結晶粒の異常成長などによる超電導
特性の低下が起こる。
iii Because discontinuous Nb3Sn is formed on the Nb core surface before the final diffusion heat treatment, S
Not only the n concentration decreases, but also the quality of the reaction interface decreases. As a result, Nb:+Sn produced by diffusion heat treatment
Deterioration of superconducting properties occurs due to a decrease in the cross-sectional area of the layer and abnormal growth of crystal grains.

このような問題点はNb3Sn線を製造する場合に限ら
ず、他のA3B型化合物超電導線を製造する場合にも存
在する。
Such problems exist not only when manufacturing Nb3Sn wires but also when manufacturing other A3B type compound superconducting wires.

〔問題点の解決手段〕[Means for solving problems]

本発明は、上記のような従来技術の問題点を解決するも
ので、A 3B型化合物超電導体のA元素を主成分とす
るコア部よ、B元素を含有するブロンズ部とからなる複
合基材を、中間焼鈍を含む減面加工により、最終寸法の
線にした後、拡散熱処理により内部にA 3B型化合物
超電導体を生成する化合物超電導体の製造方法において
、上記複合基材として、コア部とブロンズ部の間に上記
中間焼鈍時におけるA元素とB元素の反応を阻止するバ
リア層を介在させたものを用いることを特徴とするもの
である。上記のバリア層は中間焼鈍時には化合物超電導
体の生成をなくす働きをし、拡散熱処理時にはブロンズ
部上の拡散反応により消滅する。
The present invention solves the problems of the prior art as described above, and provides a composite base material consisting of a core part mainly composed of element A of an A3B type compound superconductor and a bronze part containing element B. In the method for manufacturing a compound superconductor, in which the A3B type compound superconductor is produced inside by diffusion heat treatment after the wire is made into a line with the final dimension by surface reduction processing including intermediate annealing, the core part and This method is characterized by using a barrier layer interposed between the bronze parts to prevent the reaction between element A and element B during the intermediate annealing. The above-mentioned barrier layer serves to prevent the formation of compound superconductors during intermediate annealing, and disappears due to a diffusion reaction on the bronze portion during diffusion heat treatment.

上記バリア層は銅基希薄合金あるいは銅基希薄合金と純
銅の複合体で構成するとよい。いずれにしてもその厚さ
は0.05〜1μmの範囲にあることが好ましい。厚さ
の下限は複合基材の一部として均一に加工され、最終寸
法まで有効に作用する限界の薄さである。また厚さの上
限は拡散熱処理時のB元素の有効濃度を実用上低下させ
ない程度の値である。B元素の濃度の低下は化合物結晶
の粒径を大きくし、臨界電流密度の低下につながるから
である。
The barrier layer is preferably composed of a copper-based diluted alloy or a composite of a copper-based diluted alloy and pure copper. In any case, the thickness is preferably in the range of 0.05 to 1 μm. The lower limit of the thickness is the thinnest limit that allows it to be uniformly processed as part of the composite substrate and to work effectively to its final dimensions. Further, the upper limit of the thickness is a value that does not practically reduce the effective concentration of B element during diffusion heat treatment. This is because a decrease in the concentration of element B increases the grain size of the compound crystal, leading to a decrease in critical current density.

銅基希薄合金の溶質元素は、Ag 、Ti 、Zr、H
f、V、Ta、Pd、Mg、Al、Si、Ge。
The solute elements of the copper-based dilute alloy are Ag, Ti, Zr, and H.
f, V, Ta, Pd, Mg, Al, Si, Ge.

Inなどのいずれでもよく、また複数元素でもよいが、
溶質元素の合計の濃度は1原子%以下であることが好ま
しい。この範囲内であれば、冷間加工によっても実質的
に加工硬化せず、かつ純銅より高い硬さを有するため均
一に加工できると共に、拡散熱処理時に化合物超電導体
の生成に悪影響を及ぼすこともない。なお、銅基希薄合
金の代わりに銀基希薄合金を使用することも可能である
It may be any element such as In, or it may be a plurality of elements,
The total concentration of solute elements is preferably 1 atomic % or less. Within this range, it will not substantially work harden even during cold working, and since it has higher hardness than pure copper, it can be processed uniformly, and it will not adversely affect the formation of compound superconductors during diffusion heat treatment. . Note that it is also possible to use a silver-based diluted alloy instead of the copper-based diluted alloy.

バリア層として純銅の如き極めて軟質なものを使用する
と、コア部とブロンズ部の加工性に整合できず、バリア
層の厚さが著しく変動したり、コア部とブロンズ部が直
接接触する部分ができたりする。
If an extremely soft material such as pure copper is used as a barrier layer, the workability of the core and bronze parts cannot be matched, and the thickness of the barrier layer may vary significantly, or there may be areas where the core and bronze parts are in direct contact. or

なお、バリア層として銅基希薄合金と純銅の複合体を使
用するときは、銅基希薄合金が80%以上を占めるよう
にすることが望ましい。これは、バリア層の強度を向上
させ、コア部の断面形状の不整を防止するためである。
Note that when using a composite of a copper-based diluted alloy and pure copper as the barrier layer, it is desirable that the copper-based diluted alloy accounts for 80% or more. This is to improve the strength of the barrier layer and prevent irregularities in the cross-sectional shape of the core portion.

第1図は本発明の製造方法に用いられる複合基材の一例
を示す。符号1はNbコア、2はブロンズ、3は銅基希
薄合金のバリア層、4は拡散障壁、5は安定化銅である
FIG. 1 shows an example of a composite base material used in the manufacturing method of the present invention. 1 is a Nb core, 2 is bronze, 3 is a barrier layer of a copper-based dilute alloy, 4 is a diffusion barrier, and 5 is stabilized copper.

第2図は上記複合基材から製造された化合物超電導線を
示す。Nbコア1とブロンズ2の間に、Nb、、Sn化
合物6が形成されている。
FIG. 2 shows a compound superconducting wire manufactured from the above composite base material. A Nb, Sn compound 6 is formed between the Nb core 1 and the bronze 2.

第3図ないし第5図はそれぞれ本発明の製造方法に用い
られる複合基材の他の例を示す。第3図の複合基材は、
Nbコア1とブロンズ2の間に銅基希薄合金7と純銅8
とを周方向に交互に配置してなるバリア層9を設けたも
のである。第4図の複合基材は、同様なバリア層9を有
するが、銅基希薄合金7と純銅8の厚さを異ならせであ
る。第5図の複合基材は、銅基希薄合金7と純銅8を同
軸状に複合してなるバリア層9を設けたものである。
FIGS. 3 to 5 each show other examples of composite substrates used in the manufacturing method of the present invention. The composite base material in Figure 3 is
Copper-based dilute alloy 7 and pure copper 8 between Nb core 1 and bronze 2
A barrier layer 9 is provided in which these are alternately arranged in the circumferential direction. The composite substrate of FIG. 4 has a similar barrier layer 9, but with different thicknesses of copper-based dilute alloy 7 and pure copper 8. The composite base material shown in FIG. 5 is provided with a barrier layer 9 made of a coaxial composite of a copper-based diluted alloy 7 and pure copper 8.

ここにおけるNbコア1は主成分がNbであればよく、
Ti 、Hf 、Zr 、Sn 、、Cuが含まれてい
ても総量として15原子%以下ならばかまわない。また
、ブロンズ2中のSnの濃度は2〜9原子%の範囲が望
ましいが、そのほかにMg 、 Gaなどの添加元素を
加えた三元あるいは四元合金ブロンズでもよい。
The Nb core 1 here only needs to have a main component of Nb,
Even if Ti, Hf, Zr, Sn, and Cu are contained, there is no problem as long as the total amount is 15 at % or less. Further, the concentration of Sn in the bronze 2 is preferably in the range of 2 to 9 atomic %, but a ternary or quaternary alloy bronze containing additional elements such as Mg and Ga may also be used.

〔実施例〕〔Example〕

実施例1 (第1図相当) Sn濃度14重量%、Ti濃度0.5重量%、残部Cu
のブロンズに、予め0.1mm厚のCu−0,2重量%
Ti希薄合金を被覆したNb−2重量%Hf合金棒を複
合し、さらにその外側に拡散障壁としてTaを、安定化
金属として純銅を順次設けて複合基材を形成した。次に
この複合基材を減面加工した。途中、減面加工率40%
毎に550℃の温度で30分間の中間焼鈍を行った。拡
散熱処理前の銅基希薄合金の厚さは0.5 μm、Nb
合金フィラメント径は7μmであった。これを拡散熱処
理して化合物超電導線を得た結果は第1表のとおりであ
る。
Example 1 (corresponding to Figure 1) Sn concentration 14% by weight, Ti concentration 0.5% by weight, balance Cu
0.1 mm thick Cu-0.2% by weight on the bronze.
A Nb-2% by weight Hf alloy rod coated with a Ti dilute alloy was composited, and Ta was sequentially provided on the outside as a diffusion barrier and pure copper as a stabilizing metal to form a composite base material. Next, this composite base material was subjected to surface reduction processing. During the process, surface reduction processing rate is 40%
Intermediate annealing was performed at a temperature of 550° C. for 30 minutes each time. The thickness of the copper-based dilute alloy before diffusion heat treatment is 0.5 μm, Nb
The alloy filament diameter was 7 μm. This was subjected to diffusion heat treatment to obtain a compound superconducting wire. The results are shown in Table 1.

実施例2(第3図相当) 実施例1と同じブロンズに、厚さ0.1mmのCu−0
,2重量%T1希薄合金および純銅を被覆したNb−2
重量%Hf合金棒を複合し、さらに実施例1と同様にし
て複合基材を形成した。その後の工程は実施例1と同じ
とした。結果は第1表のとおりである。
Example 2 (corresponding to Figure 3) The same bronze as in Example 1 was coated with Cu-0 with a thickness of 0.1 mm.
, 2 wt% T1 dilute alloy and pure copper coated Nb-2
Weight % Hf alloy rods were composited, and a composite base material was further formed in the same manner as in Example 1. The subsequent steps were the same as in Example 1. The results are shown in Table 1.

比較例 実施例1と同じブロンズとNb合金コアの界面に高純度
無酸素銅層を有するもの1と有しないもの2を用意し、
同様の減面加工および拡散熱処理を経て、化合物超電導
線を製造した。結果は第1表のとおりである。
Comparative Example Samples 1 and 2 without a high-purity oxygen-free copper layer were prepared at the interface between the bronze and Nb alloy cores as in Example 1.
A compound superconducting wire was manufactured through similar area reduction processing and diffusion heat treatment. The results are shown in Table 1.

第1表から明らかなように、実施例ではNbフィラメン
トが均一な径に加工され、すぐれた超電導特性を示すが
、比較例ではフィラメント径の不揃いが大きい。比較例
1では軟質のCuが、2では中間焼鈍で出来るNb、S
n層が大きく影響してフィラメント径を大きく変動させ
ている。また比較例ではNb3Sn層の厚さの変動も大
きく、超電導特性を悪くしている。
As is clear from Table 1, in the Examples, the Nb filaments were processed to have a uniform diameter and exhibited excellent superconducting properties, but in the Comparative Examples, the filament diameters were largely uneven. In Comparative Example 1, soft Cu was used, and in Comparative Example 2, Nb and S produced by intermediate annealing were used.
The n-layer has a large influence and causes the filament diameter to vary greatly. Furthermore, in the comparative example, the variation in the thickness of the Nb3Sn layer was large, which worsened the superconducting properties.

第1表 〔発明の効果〕 以上説明したように本発明によれば、複合基材として、
コア部とブロンズ部の間にバリア層を介在させたものを
用いたので、減面加工中の中間焼鈍でコア部とブロンズ
部の間に化合物超電導体が生成されることがなくなり、
最終寸法に加工した状態でのへ元素を主成分とするフィ
ラメントの径を高度に均一化できる。このため拡散熱処
理で形成される化合物超電導体の結晶粒径や層厚さも均
一になり、臨界電流密度のみならず、許容曲げ歪率など
機械的特性も改善することができる。
Table 1 [Effects of the Invention] As explained above, according to the present invention, as a composite base material,
Since a barrier layer was used between the core part and the bronze part, compound superconductors were not generated between the core part and the bronze part during intermediate annealing during surface reduction processing.
It is possible to make the diameter of the filament whose main component is helium element highly uniform after it has been processed to its final size. Therefore, the crystal grain size and layer thickness of the compound superconductor formed by diffusion heat treatment become uniform, and not only the critical current density but also mechanical properties such as allowable bending strain rate can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法に使用される複合基材の一例
を示す断面図、第2図は同複合基材から製造した化合物
超電導線を示す拡大断面図、第3図ないし第5図はそれ
ぞれ本発明の製造方法に使用される複合基材の他の例を
示す要部断面図である。 1〜ココア、2〜ブロンズ部、3〜バリア層、6〜化合
物超電導体、7〜銅基希薄合金、8〜純第1図 第2図
FIG. 1 is a sectional view showing an example of a composite base material used in the manufacturing method of the present invention, FIG. 2 is an enlarged sectional view showing a compound superconducting wire manufactured from the same composite base material, and FIGS. 3 to 5 2A and 2B are cross-sectional views of main parts showing other examples of composite base materials used in the manufacturing method of the present invention. 1 - Cocoa, 2 - Bronze part, 3 - Barrier layer, 6 - Compound superconductor, 7 - Copper-based dilute alloy, 8 - Pure Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 (1) A3B型化合物超電導体のA元素を主成分とす
るコア部と、B元素を含有するブロンズ部とからなる複
合基材を、中間焼鈍を含む減面加工により、最終寸法の
線にした後、拡散熱処理により内部にA3B型化合物超
電導体を生成する方法において、上記複合基材として、
コア部とブロンズ部の間に上記中間焼鈍時におけるA元
素とB元素の反応を阻止するバリア層を介在させたもの
を用いることを特徴とする化合物超電導線の製造方法。 (2、特許請求の範囲第1項記載の製造方法であって、
上記バリア層は銅基希薄合金からなるもの。 (3)特許請求の範囲第2項記載の製造方法であって、
上記バリア層の厚さは0.05〜1μmであるもの。 (4) 特許請求の範囲第2項または第3項記載の製造
方法であって、上記銅基希薄合金は、溶質元素の濃度が
1原子%以下であるもの。 (5)特許請求の範囲第1項記載の製造方法であって、
上記バリア層は、銅基希薄合金と純銅との複合体からな
るもの。 (6)特許請求の範囲第5項記載の製造方法であって、
上記バリア層の厚さは0.05〜1μmであるもの。 (7)特許請求の範囲第5項または第6項記載の製造方
法であって、上記銅基希薄合金は、溶質元素の濃度が1
原子%以下であるもの。 (8)特許請求の範囲第5項ないし第7項のいずれかに
記載の製造方法であって、上記複合体は銅基希薄合金が
80%以上を占めるもの。
[Scope of Claims] (1) A composite base material consisting of a core part mainly composed of element A of an A3B type compound superconductor and a bronze part containing element B is subjected to surface reduction processing including intermediate annealing, In the method of producing an A3B type compound superconductor inside by diffusion heat treatment after forming the wire into the final dimension, as the composite base material,
A method for manufacturing a compound superconducting wire, characterized in that a barrier layer is interposed between the core part and the bronze part to prevent the reaction of elements A and B during the intermediate annealing. (2. The manufacturing method according to claim 1,
The barrier layer is made of a copper-based diluted alloy. (3) The manufacturing method according to claim 2, comprising:
The thickness of the barrier layer is 0.05 to 1 μm. (4) The manufacturing method according to claim 2 or 3, wherein the copper-based dilute alloy has a solute element concentration of 1 atomic % or less. (5) The manufacturing method according to claim 1, comprising:
The barrier layer is made of a composite of a copper-based diluted alloy and pure copper. (6) The manufacturing method according to claim 5, comprising:
The thickness of the barrier layer is 0.05 to 1 μm. (7) The manufacturing method according to claim 5 or 6, wherein the copper-based dilute alloy has a solute element concentration of 1.
Atomic % or less. (8) The manufacturing method according to any one of claims 5 to 7, wherein the composite comprises 80% or more of the copper-based dilute alloy.
JP59089513A 1984-05-07 1984-05-07 Method of producing compound superconductive wire Granted JPS60235308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59089513A JPS60235308A (en) 1984-05-07 1984-05-07 Method of producing compound superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59089513A JPS60235308A (en) 1984-05-07 1984-05-07 Method of producing compound superconductive wire

Publications (2)

Publication Number Publication Date
JPS60235308A true JPS60235308A (en) 1985-11-22
JPH0464124B2 JPH0464124B2 (en) 1992-10-14

Family

ID=13972862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59089513A Granted JPS60235308A (en) 1984-05-07 1984-05-07 Method of producing compound superconductive wire

Country Status (1)

Country Link
JP (1) JPS60235308A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177809A (en) * 1986-01-31 1987-08-04 古河電気工業株式会社 Compound superconductor wire
JPH0317247A (en) * 1989-03-31 1991-01-25 General Electric Co <Ge> Niobium-tin wire stable in length and annealing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734607A (en) * 1980-08-11 1982-02-25 Yazaki Corp Composition for semiconductor layer for power cable
JPS609012A (en) * 1983-06-27 1985-01-18 日立電線株式会社 Method of producing extrafine multicore compound superconductive conductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734607A (en) * 1980-08-11 1982-02-25 Yazaki Corp Composition for semiconductor layer for power cable
JPS609012A (en) * 1983-06-27 1985-01-18 日立電線株式会社 Method of producing extrafine multicore compound superconductive conductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177809A (en) * 1986-01-31 1987-08-04 古河電気工業株式会社 Compound superconductor wire
JPH0317247A (en) * 1989-03-31 1991-01-25 General Electric Co <Ge> Niobium-tin wire stable in length and annealing method

Also Published As

Publication number Publication date
JPH0464124B2 (en) 1992-10-14

Similar Documents

Publication Publication Date Title
US4665611A (en) Method of fabricating superconductive electrical conductor
US4435228A (en) Process for producing NB3 SN superconducting wires
JPS6215967B2 (en)
JPS5823110A (en) Method of producing nb3sn superconductive wire material
JPS60235308A (en) Method of producing compound superconductive wire
US6845254B2 (en) Nb3Ga multifilamentary superconducting wire and process for preparing the same
JPH0636331B2 (en) Nb (bottom 3) A1 compound superconducting wire manufacturing method
Pyon et al. Some effects of matrix additions to internal tin processed multifilamentary Nb/sub 3/Sn superconductors
JP2861545B2 (en) Method for producing Nb-based compound superconducting coil
JPS602728B2 (en) Method for manufacturing compound composite superconductor
JP2001052547A (en) Nb3 COMPOUND-BASED SUPERCONDUCTIVE CABLE AND ITS MANUFACTURING METHOD
JPH0259572B2 (en)
JPH0554741A (en) Manufacture of compound superconducting wire
JP2519035B2 (en) Nb (bottom 3) Method for manufacturing Sn superconducting wire
JP3070969B2 (en) Superconducting wire manufacturing method
JPH0381247B2 (en)
JP3046828B2 (en) Nb Lower 3 Method for Manufacturing Sn Composite Superconductor
JPS60241611A (en) Method of producing nb3sn superconductive wire
JPS60170113A (en) Method of producing nb3sn superconductive lead
JPH041446B2 (en)
JPS62211358A (en) Manufacture of nb3sn superconductor wire
JPS5933653B2 (en) Method for producing stabilized superconductor
JP2000106042A (en) High-temperature superconductive wire material and its manufacture
JPH07282650A (en) Compound superconductor
JPH06101001A (en) Compound superconductor