JPH07282650A - Compound superconductor - Google Patents

Compound superconductor

Info

Publication number
JPH07282650A
JPH07282650A JP6087673A JP8767394A JPH07282650A JP H07282650 A JPH07282650 A JP H07282650A JP 6087673 A JP6087673 A JP 6087673A JP 8767394 A JP8767394 A JP 8767394A JP H07282650 A JPH07282650 A JP H07282650A
Authority
JP
Japan
Prior art keywords
compound
heat treatment
conductor
diameter
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6087673A
Other languages
Japanese (ja)
Inventor
Genzo Iwaki
源三 岩城
Shuji Sakai
修二 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP6087673A priority Critical patent/JPH07282650A/en
Publication of JPH07282650A publication Critical patent/JPH07282650A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To make continuous fiber very fine and to improve a characteristic of a conductor without decreasing its workability by constituting the continuous fiber of specific compound fiber, in the compound superconductor constituted by burying the many continuous fibers containing Nb in a matrix containing Sn to perform heat treatment or the like. CONSTITUTION:In a compound superconductor constituted by burying many continuous fibers containing Nb in a matrix (example: Cu-Sn compound) containing Sn to apply heat treatment or the like so as to form an Nb3Sn compound layer, the continuous fiber is constituted of a compound fiber coated with a Ta-Nb alloy 6, setting ratio of a mol number to Ta or preferably Ta and Nb to 0.03:1 or less, in the periphery of Nb 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はNb3 Sn系の化合物超
電導導体に関し、特に、導体の加工性を低下させずに連
続繊維の極細化が図れるようにして、臨界電流特性の向
上と履歴損失特性の低減を図った化合物超電導導体に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Nb 3 Sn-based compound superconducting conductor, and more particularly, to improving the critical current characteristics and the history loss by making it possible to make the continuous fiber extremely fine without deteriorating the workability of the conductor. The present invention relates to a compound superconducting conductor with reduced characteristics.

【0002】[0002]

【従来の技術】従来の化合物超電導導体として、例え
ば、Cu−Sn合金を用いてブロンズ法によって形成さ
れたNb3 Sn超電導導体がある。
2. Description of the Related Art As a conventional compound superconducting conductor, for example, there is an Nb 3 Sn superconducting conductor formed by a bronze method using a Cu--Sn alloy.

【0003】この種の化合物超電導導体は、Snを含有
したマトリックス中に多数本のNbの連続繊維を埋設
し、これに所定の加工(例えば、熱処理)を施してNb
3 Sn化合物層を形成して構成されている。
In this type of compound superconducting conductor, a large number of continuous fibers of Nb are embedded in a matrix containing Sn, and a predetermined process (for example, heat treatment) is performed on the continuous fiber to make Nb.
3 Sn compound layer is formed.

【0004】また、化合物超電導導体の製造では、一般
に、Cu−Sn合金マトリックスが冷間による減面加工
で著しく硬化し、導体の加工が困難になることから、工
程中にCu−Sn合金マトリックスの加工性を回復させ
るための中間熱処理として、600℃以上の焼鈍を冷間
加工中に多数回施している。
In the production of compound superconducting conductors, generally, the Cu-Sn alloy matrix is significantly hardened by cold surface-reduction processing, which makes it difficult to process the conductor. As an intermediate heat treatment for recovering workability, annealing at 600 ° C. or higher is performed many times during cold working.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来の化合物
超電導導体によると、上述したCu−Sn合金マトリッ
クスの中間熱処理によってCu−Sn合金マトリックス
とNb連続繊維の界面に微量のNb3 Sn系化合物が生
成される。このNb3 Sn系化合物はNb連続繊維の径
が大きいものでは全く導体の加工性を阻害する要因とは
ならないが、Nb連続繊維の径がミクロンオーダーにな
ると、Nb連続繊維にネッキングや破断が発生し、断線
回数の増大等から加工性を低下させると共に臨界電流特
性を低下させるという不都合をもたらす。このため、N
b連続繊維の径をNb3 Sn系化合物を生成する最終熱
処理前において3μm以下にすることができなかった。
However, according to the conventional compound superconducting conductor, a trace amount of Nb 3 Sn compound is present at the interface between the Cu-Sn alloy matrix and the Nb continuous fiber by the intermediate heat treatment of the Cu-Sn alloy matrix. Is generated. This Nb 3 Sn-based compound does not become a factor that hinders the processability of the conductor when the diameter of the Nb continuous fiber is large, but when the diameter of the Nb continuous fiber becomes in the order of micron, necking or breakage occurs in the Nb continuous fiber. However, there is an inconvenience that the workability is deteriorated due to an increase in the number of wire breakages and the critical current characteristics are deteriorated. Therefore, N
The diameter of the b-continuous fiber could not be reduced to 3 μm or less before the final heat treatment for producing the Nb 3 Sn-based compound.

【0006】従って、本発明の目的は導体の加工性を低
下させずに連続繊維の極細化が図れ、臨界電流特性の向
上と履歴損失特性の低減を図ることができる化合物超電
導導体を提供することである。
Therefore, an object of the present invention is to provide a compound superconducting conductor which can make the continuous fibers ultrafine without deteriorating the processability of the conductor and can improve the critical current characteristics and the hysteresis loss characteristics. Is.

【0007】[0007]

【課題を解決するための手段】本発明は上記問題点に鑑
み、導体の加工性を低下させずに連続繊維の極細化が図
れ、臨界電流特性の向上と履歴損失特性の低減を図るた
め、連続繊維をNbの外周にTa,或いはTa−Nb合
金を被覆した複合繊維より構成した化合物超電導導体を
提供するものである。
In view of the above-mentioned problems, the present invention is capable of achieving ultrafine continuous fibers without deteriorating the workability of the conductor, improving the critical current characteristics and reducing the hysteresis loss characteristics. The present invention provides a compound superconducting conductor comprising continuous fibers composed of composite fibers in which the outer circumference of Nb is coated with Ta or Ta-Nb alloy.

【0008】上記複合繊維は、TaのとNbのモル数の
比が0.03:1以下になっていることが好ましい。ま
た、Nbの外周に被覆されるTa−Nb合金としては、
Taが50%以上の組成になっていることが必要であ
る。すなわち、Taがこれ以下であると、中間熱処理に
おける化合物生成を防止できなくなるためである。
The composite fiber preferably has a molar ratio of Ta to Nb of 0.03: 1 or less. Further, as the Ta-Nb alloy coated on the outer periphery of Nb,
It is necessary that Ta has a composition of 50% or more. That is, if Ta is less than this, compound formation in the intermediate heat treatment cannot be prevented.

【0009】また、Nbの外周に被覆可能な材料として
は、本発明のTaの他にNbの固溶限が大きく、且つ、
マトリックス中のCu,Snと中間熱処理条件で金属間
化合物を生成しないHf,V,或いはこれらの元素とT
aの少なくとも1種以上が添加されたNb合金が適用可
能である。
Further, as a material capable of coating the outer periphery of Nb, in addition to Ta of the present invention, the solid solution limit of Nb is large, and
Cu and Sn in the matrix and Hf and V that do not form an intermetallic compound under the intermediate heat treatment conditions, or these elements and T
An Nb alloy to which at least one of a is added can be applied.

【0010】更に、Snを含んだマトリックスは、Cu
−Sn系合金より構成され、Cu−Sn系合金はSnの
他にTi,Ni,Ga,Si,Al,Zn,Ta,Bの
少なくとも1種を合計で5at%以下含んでも良い。
Further, the matrix containing Sn is Cu
The Cu-Sn alloy may include at least one of Ti, Ni, Ga, Si, Al, Zn, Ta, and B in addition to Sn in a total amount of 5 at% or less.

【0011】[0011]

【実施例】以下、本発明の化合物超電導導体について添
付図面を参照しながら詳細に説明する。
The compound superconducting conductor of the present invention will be described in detail below with reference to the accompanying drawings.

【0012】図1には、本発明の化合物超電導導体の最
終熱処理前の断面構造が示されている。この化合物超電
導導体は、複数本(本実施例では、361本)集合され
た断面六角形のサブエレメント線1と、サブエレメント
線1の外周に形成されたTaの拡散バリヤ2と、更に、
その外周に形成されたCuの安定化材3より構成されて
いる。
FIG. 1 shows a sectional structure of the compound superconducting conductor of the present invention before the final heat treatment. This compound superconducting conductor is composed of a plurality of (361 in this embodiment) sub-element wires 1 having a hexagonal cross section, a Ta diffusion barrier 2 formed on the outer periphery of the sub-element wire 1, and further,
It is composed of a Cu stabilizing material 3 formed on the outer periphery thereof.

【0013】図2には、上記サブエレメント線1を製造
するための単心線用押出ビレットの断面構造が示されて
いる。すなわち、この押出ビレットは、Nb丸棒7の外
周にTaシート6を被覆し、更にその外周にCu−Sn
合金管5を配置して構成されている。このように構成さ
れた単心線用押出ビレットは、静水圧押出し,冷間引抜
き,及び中間熱処理を繰り返し行って六角断面の単心線
とし、これを定寸に切断した後、これを85本集合させ
てサブエレメント用押出ビレット(図示せず)を組立て
て、単心線と同様に静水圧押出した後,冷間引抜き,及
び中間熱処理を繰り返して行ってサブエレメント線1と
なる。
FIG. 2 shows a sectional structure of an extrusion billet for a single core wire for manufacturing the sub-element wire 1. That is, in this extruded billet, the outer periphery of the Nb round bar 7 is covered with the Ta sheet 6, and further the outer periphery thereof is Cu-Sn.
The alloy pipe 5 is arranged and configured. The extruded billet for single-core wire configured in this way is subjected to hydrostatic extrusion, cold drawing, and intermediate heat treatment repeatedly to form a single-core wire with a hexagonal cross section, which is cut to size, and then 85 After being assembled, an extruding billet for sub-elements (not shown) is assembled and hydrostatically extruded in the same manner as the single core wire, and then cold drawing and intermediate heat treatment are repeated to form the sub-element wire 1.

【0014】以下、本発明の実施例を詳細に説明する。
まず、上記構成を有する実施例1の化合物超電導導体
と、Nbの外周にTaが被覆されていない比較例の化合
物超電導導体を表1の条件に基づいて作成した。すなわ
ち、マトリックスの組成がCu−8.3at%Sn−
0.4at%Tiの三元合金,マトリックスと連続繊維
の体積比が2.0:1,安定化銅と非安定化銅の体積比
が1.6:1,導体径が0.8mm,最終熱処理前の連
続繊維径が約1.5μmのものを作成した。
The embodiments of the present invention will be described in detail below.
First, the compound superconducting conductor of Example 1 having the above structure and the compound superconducting conductor of Comparative Example in which the outer periphery of Nb was not coated with Ta were prepared based on the conditions of Table 1. That is, the composition of the matrix is Cu-8.3 at% Sn-
0.4 at% Ti ternary alloy, volume ratio of matrix to continuous fiber is 2.0: 1, volume ratio of stabilized copper to non-stabilized copper is 1.6: 1, conductor diameter is 0.8 mm, final The continuous fiber diameter before heat treatment was about 1.5 μm.

【表1】 [Table 1]

【0015】これは、まず、実施例の単心線用押出ビレ
ットを、直径19.9mmの工業用純Nb丸棒を厚さ
0.05mm,幅65mmのTaシートで包み、これら
を内径20.1mm,外径28.4mmの表1に示した
組成のCu−Sn−Ti合金管に挿入して、また、比較
例の単心線用押出ビレットを、直径20mmのNb丸棒
を実施例と同一寸法のCu−Sn−Ti合金管に挿入し
てそれぞれ製造する。
First, an extruded billet for a single core wire of the example is wrapped with a Ta sheet having a diameter of 19.9 mm and a pure Nb rod for industrial use with a thickness of 0.05 mm and a width of 65 mm. The extruded billet for a single core wire of Comparative Example was inserted into a Cu-Sn-Ti alloy tube having a composition shown in Table 1 having an outer diameter of 1 mm and an outer diameter of 28.4 mm. They are manufactured by inserting them into Cu-Sn-Ti alloy tubes having the same dimensions.

【0016】そして、これらの押出ビレットを400℃
で加熱した後、直径12mmに静水圧押出し、それらに
減面率35〜40%の冷間引抜きと600℃×30mi
nの中間熱処理を繰り返し行って、それぞれ対辺長2.
3mmの正六角断面の単心線とする。次に、これらの単
心線を定尺切断した後、これを85本集合させた状態で
内径24mm,外径28.7mmの表1に示す組成のC
u−Sn−Ti合金管にそれぞれ挿入してサブエレメン
ト用押出ビレットとし、これらの押出ビレットを400
℃で加熱後、直径12mmに静水圧押出し、それらに減
面率35〜40%の冷間引抜きと600℃×30min
の中間熱処理を繰り返し行って、それぞれ対辺長0.8
05mmのサブエレメント線とした。
Then, these extruded billets were heated to 400 ° C.
After being heated at 80 ° C., it is hydrostatically extruded to have a diameter of 12 mm, subjected to cold drawing with a surface reduction rate of 35 to 40%, and 600 ° C. × 30 mi.
n intermediate heat treatment is repeated to obtain opposite side lengths of 2.
A single core wire with a regular hexagonal cross section of 3 mm is used. Next, after cutting these single-filamentary wires to a fixed length, in the state where 85 of them were assembled, the C of the composition shown in Table 1 having an inner diameter of 24 mm and an outer diameter of 28.7 mm was obtained.
The extruded billets for sub-elements were inserted into the u-Sn-Ti alloy tubes, and these extruded billets were 400
After heating at ℃, it is hydrostatically extruded to a diameter of 12 mm, and cold drawing with a surface reduction rate of 35 to 40% and 600 ℃ × 30 min.
Repeated the intermediate heat treatment of, opposite side length 0.8
It was a sub-element line of 05 mm.

【0017】この後、これらのサブエレメント線を定尺
に切断した後、これを361本集合させた状態で内径1
7mm,外径18mmのTa管(拡散バリヤ)に挿入
し、その外側に内径18.2mm,外径28.3mmの
安定化銅管に配置してビレットとした。
After that, after cutting these sub-element wires to a fixed length, 361 pieces of these sub-element wires are gathered to form an inner diameter of 1
It was inserted into a Ta tube (diffusion barrier) having a diameter of 7 mm and an outer diameter of 18 mm, and a billet was formed by arranging a stabilized copper tube having an inner diameter of 18.2 mm and an outer diameter of 28.3 mm on the outside thereof.

【0018】最後に、このようにして製造されたビレッ
トを400℃で加熱後、直径12mmに押出し、単心線
やサブエレメント線と同様な条件で冷間引抜きと中間熱
処理を繰り返し行い、外径0.8mmの導体に加工し
た。
Finally, the billet produced in this manner is heated at 400 ° C. and extruded to a diameter of 12 mm, and cold drawing and intermediate heat treatment are repeated under the same conditions as for the single core wire and the sub-element wire to obtain the outer diameter. It was processed into a 0.8 mm conductor.

【0019】次に、これらの実施例1と比較例の化合物
超電導導体で形成された導体に対して650℃×200
hrで化合物生成熱処理を施した後、両者の臨界電流特
性を比較した。図3は、その考察結果を示すもので、実
施例1の化合物超電導導体は外部磁場12Tにおいて1
55Aと良好な特性を示しているのに対し、比較例の化
合物超電導導体は77Aと大幅に低下している。この場
合の臨界電流の定義は導体の非銅部断面積基準で10
-13 Ω・mである(以下の実施例も同定義)。
Next, the conductors formed of the compound superconducting conductors of Example 1 and Comparative Example are 650 ° C. × 200.
After performing the compound formation heat treatment at hr, the critical current characteristics of both were compared. FIG. 3 shows the result of the consideration, and the compound superconducting conductor of Example 1 has an external magnetic field of 12T.
The compound superconducting conductor of the comparative example shows a significant decrease of 77 A while the excellent characteristic of 55 A is exhibited. The definition of the critical current in this case is 10 based on the cross-sectional area of the non-copper part of the conductor.
-13 Ω · m (same definition in the following examples).

【0020】次に、表1の実施例1の導体で導体径を変
えた場合、すなわち、連続繊維の径を変えた例について
説明する。表2に、そのときの実施例2から実施例5の
導体径,Ta/Nb複合連続繊維径,及び最終の化合物
生成熱処理によって得られた外部磁場12Tにおける非
銅部の臨界電流特性を示す。
Next, a case where the conductor diameter of the conductor of Example 1 in Table 1 is changed, that is, the diameter of the continuous fiber is changed will be described. Table 2 shows the conductor diameter, the Ta / Nb composite continuous fiber diameter, and the critical current characteristics of the non-copper portion in the external magnetic field 12T obtained by the final compound formation heat treatment in Examples 2 to 5 at that time.

【表2】 [Table 2]

【0021】これから判るように、複合連続繊維の径が
3μmを越えると、最終熱処理において複合連続繊維中
のTa層が化合物生成を阻害するために化合物生成が進
行しなくなって臨界電流が低下するが、3μm以下では
Ta層の厚さが充分に薄くなるためにマトリックス中の
Sn,Tiが容易にTa層を透過でき、且つ、最終熱処
理中にTa自体がNb中に拡散して複合連続繊維がNb
−Ta合金化するために化合物生成が阻害されなくな
り、臨界電流が高くなる。
As can be seen from the above, when the diameter of the composite continuous fiber exceeds 3 μm, the Ta layer in the composite continuous fiber inhibits the compound formation in the final heat treatment, so that the compound formation does not proceed and the critical current decreases. If the thickness is 3 μm or less, the thickness of the Ta layer becomes sufficiently thin so that Sn and Ti in the matrix can easily pass through the Ta layer, and Ta itself diffuses into Nb during the final heat treatment to form a continuous composite fiber. Nb
The compound formation is not hindered by the Ta-alloying, and the critical current increases.

【0022】次に、表1の実施例1の単心線用押出ビレ
ットで複合連続繊維のTaシートの被覆率を変えた実施
例について説明する。表3に、そのときの実施例6から
実施例9のTaシートの厚さ,幅,Nb丸棒の径,及び
Ta被覆率と、導体としたときの導体径,繊維径,及び
最終熱処理によって得られた外部磁場12Tにおける非
銅部の臨界電流特性を示す。
Next, an example in which the coverage of the Ta sheet of the composite continuous fiber is changed with the single-strand wire extrusion billet of Example 1 in Table 1 will be described. Table 3 shows the thickness, width, Nb round bar diameter, and Ta coverage of the Ta sheet of Example 6 to Example 9 at that time, the conductor diameter when the conductor was used, the fiber diameter, and the final heat treatment. The critical current characteristic of the non-copper part in the obtained external magnetic field 12T is shown.

【表3】 [Table 3]

【0023】これから判るように、複合連続繊維中のT
aシートの被覆率が約4%以上になると、臨界電流が大
幅に低下するのに対し、3%の被覆率では充分に高い特
性が得られている。これらの導体は連続繊維の最終熱処
理によってほぼ完全にNb−Ta合金されており、複合
連続繊維中のTaシートの被覆率が3%の実施例8のT
aとNbのモル比は約0.03:1となる。
As can be seen, the T in the composite continuous fiber
When the coverage of the a-sheet is about 4% or more, the critical current is significantly reduced, whereas at the coverage of 3%, sufficiently high characteristics are obtained. These conductors were almost completely Nb-Ta alloyed by the final heat treatment of the continuous fiber, and the T sheet of Example 8 in which the coverage of the Ta sheet in the composite continuous fiber was 3%.
The molar ratio of a to Nb is about 0.03: 1.

【0024】[0024]

【発明の効果】以上説明したように、本発明の化合物超
電導導体によると、臨界電流特性の向上と履歴損失特性
の低減を図るため、連続繊維をNbの外周にTa,或い
はTa−Nb合金を被覆した複合繊維より構成したた
め、導体の加工性を低下させずに連続繊維の極細化が図
ることができ、これにより臨界電流特性の向上と履歴損
失特性の低減を図ることができる。
As described above, according to the compound superconducting conductor of the present invention, in order to improve the critical current characteristics and reduce the hysteresis loss characteristics, continuous fibers are provided with Ta or Ta-Nb alloy on the outer periphery of Nb. Since it is composed of the coated composite fiber, it is possible to make the continuous fiber extremely fine without deteriorating the workability of the conductor, thereby improving the critical current characteristic and reducing the hysteresis loss characteristic.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す断面図。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】本発明の一実施例を示す断面図。FIG. 2 is a sectional view showing an embodiment of the present invention.

【図3】一実施例における臨界電流特性を示すグラフ。FIG. 3 is a graph showing a critical current characteristic in one example.

【符号の説明】[Explanation of symbols]

1 サブエレメント線 2 拡散
バリヤ 3 安定化材 5 Cu
−Sn合金管 6 Taシート 7 Nb
丸棒
1 Sub-element line 2 Diffusion barrier 3 Stabilizer 5 Cu
-Sn alloy tube 6 Ta sheet 7 Nb
Round bar

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Snを含有したマトリックス中にNbを
含有した多数本の連続繊維を埋設し、熱処理等を施して
Nb3 Sn系化合物層を形成してなる化合物超電導導体
において、 前記連続繊維は、Nbの外周にTa,或いはTa−Nb
合金を被覆した複合繊維より構成されていることを特徴
とする化合物超電導導体。
1. A compound superconducting conductor obtained by embedding a large number of continuous fibers containing Nb in a matrix containing Sn and performing a heat treatment or the like to form an Nb 3 Sn compound layer. , Nb on the outer periphery of Ta, or Ta-Nb
A compound superconducting conductor comprising a composite fiber coated with an alloy.
【請求項2】 前記複合繊維は、TaのとNbのモル数
の比が0.03:1以下になっている構成の請求項1の
化合物超電導導体。
2. The compound superconducting conductor according to claim 1, wherein the composite fiber has a molar ratio of Ta to Nb of 0.03: 1 or less.
【請求項3】 前記複合繊維は、前記Nb3 Sn系化合
物を生成する最終熱処理前の径が3μm以下になってい
る構成の請求項1の化合物超電導導体。
3. The compound superconducting conductor according to claim 1, wherein the composite fiber has a diameter of 3 μm or less before the final heat treatment for producing the Nb 3 Sn-based compound.
JP6087673A 1994-04-01 1994-04-01 Compound superconductor Pending JPH07282650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6087673A JPH07282650A (en) 1994-04-01 1994-04-01 Compound superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6087673A JPH07282650A (en) 1994-04-01 1994-04-01 Compound superconductor

Publications (1)

Publication Number Publication Date
JPH07282650A true JPH07282650A (en) 1995-10-27

Family

ID=13921471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6087673A Pending JPH07282650A (en) 1994-04-01 1994-04-01 Compound superconductor

Country Status (1)

Country Link
JP (1) JPH07282650A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251180A (en) * 2012-06-01 2013-12-12 Sh Copper Products Corp Precursor wiring material of triniobium-tin superconducting multi-core wiring material, and triniobium-tin superconducting multi-core wiring material arranged using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251180A (en) * 2012-06-01 2013-12-12 Sh Copper Products Corp Precursor wiring material of triniobium-tin superconducting multi-core wiring material, and triniobium-tin superconducting multi-core wiring material arranged using the same

Similar Documents

Publication Publication Date Title
US4990411A (en) Compound superconducting wire and method of manufacturing the same
JPH0377608B2 (en)
JP2003217370A (en) Magnesium diboride superconductive wire
US4489219A (en) A-15 Superconducting composite wires and a method for making
JP3063025B2 (en) Nb3Sn superconducting wire and method of manufacturing the same
JPH07282650A (en) Compound superconductor
JP3510351B2 (en) A3 Method for producing B-type compound superconducting wire
RU2076363C1 (en) Method for manufacturing of multiple-conductor superconducting wire using nb*003sn compound
JP3124448B2 (en) Method for manufacturing Nb (3) Sn superconducting wire
JP3061630B2 (en) Method for producing superconducting wire made of Nb (3) Sn compound
JP4687438B2 (en) Core wire for Nb3Sn superconducting wire, Nb3Sn superconducting wire, and manufacturing method thereof
JP3701349B2 (en) Superconducting wire manufacturing method and superconducting wire
JP3736425B2 (en) Manufacturing method of oxide superconducting multi-core wire
JPH11111081A (en) Oxide superconducting wire
JP2931020B2 (en) Cu or Al stabilized superconducting wire and method for producing the same
JP3353217B2 (en) Method for producing Nb-3 Sn-based superconducting wire
JP3212596B2 (en) Cu or Al stabilized superconducting wire and method for producing the same
JPH063691B2 (en) Copper-coated ΝbTi superconducting wire
JPH10255563A (en) Nb3sn superconducting wire
JPH11238418A (en) Compound superconductive wire
JP3428771B2 (en) Nb3Sn compound superconducting wire
JPH06101001A (en) Compound superconductor
JPH06150738A (en) Compound superconducting cable
JPH06139841A (en) Nb3sn superconducting wire rod
JPH0636331B2 (en) Nb (bottom 3) A1 compound superconducting wire manufacturing method