JPS60234367A - Mis-type field effect transistor - Google Patents

Mis-type field effect transistor

Info

Publication number
JPS60234367A
JPS60234367A JP59089415A JP8941584A JPS60234367A JP S60234367 A JPS60234367 A JP S60234367A JP 59089415 A JP59089415 A JP 59089415A JP 8941584 A JP8941584 A JP 8941584A JP S60234367 A JPS60234367 A JP S60234367A
Authority
JP
Japan
Prior art keywords
concentration
layer
offset
low
relatively high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59089415A
Other languages
Japanese (ja)
Other versions
JPH0564458B2 (en
Inventor
Kazuhiro Komori
小森 和宏
Kosuke Okuyama
幸祐 奥山
Norio Suzuki
範夫 鈴木
Hisao Katsuto
甲藤 久郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59089415A priority Critical patent/JPS60234367A/en
Publication of JPS60234367A publication Critical patent/JPS60234367A/en
Publication of JPH0564458B2 publication Critical patent/JPH0564458B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7836Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a significant overlap between the lightly doped extension and the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the withstand voltage feature of an LDD structure as a whole and to reduce resistance by using a layer of relatively high concentration by a method wherein the impurity-doped region in the off-set section of an off- set structure MISFET consists of two layers, one relatively high in concentration and shallow in depth and the other low in concentration and less shallow in depth. CONSTITUTION:A gate insulating film 11 is formed on the surface of a p type Si substrate 10, whereupon a gate electrode 12 composed of metal or polycrystalline Si is patterned. First, p ions low in concentration are implanted and, second, As ions relatively high in concentration are implanted. Their activation results in the creation of a two-layer structure of a rather deep low-cencentration (n<->) layer 13 and a shallow high-concentration (n) layer 14. An SiO2 film 15 is formed on the entire surface and is subjected to etching, which results in the formation of side walls 16 on both sides of the gate electrode 12. As ions high in concentration are implanted. Their activation results in the formation of a high- concentration (n<+>) source-drain region 17 of the off-set structure.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は内部抵抗の低減と耐圧の向上を図ったオフセッ
ト構造のMIS型電界効果トランジスタ(MI 5FE
T )K関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a MIS field effect transistor (MI 5FE) with an offset structure that reduces internal resistance and improves breakdown voltage.
T) This is related to K.

〔背景技術〕[Background technology]

MISFETのドレイン耐圧を向上するために、ゲート
電極とドレイン領域との間にオンセット領域を設けたL
 D D (Lighly Doped Drain 
)構造と称するオフセット構造のMI 5FETが提案
されて(・る(IEEE TRANSACTIONON
 ELECTRON DEVICES、VOL。
In order to improve the drain breakdown voltage of MISFET, an onset region is provided between the gate electrode and the drain region.
D D (Lightly Doped Drain
) structure, an offset structure MI 5FET has been proposed (IEEE TRANSACTIONON
ELECTRON DEVICES, VOL.

ED 29.pp 590−595.APRIL198
2)。例えば、第1図に示すように、半導体基板1の主
面上にゲート絶縁膜2を介してゲート電極3をバターニ
ング形成した上で不純物を低濃度てイオン打込みし、そ
の後ゲート電極3の側部忙サイドウオール4を形成して
今度は高濃度に不純物をイオン打込みすることにより、
低濃度のオフセット部5を介して高濃度のソース0ドレ
イン領域6を配置したり、DD構造のMISFET7を
完成できる。
ED 29. pp 590-595. APRIL198
2). For example, as shown in FIG. 1, a gate electrode 3 is patterned on the main surface of a semiconductor substrate 1 through a gate insulating film 2, and then impurity ions are implanted at a low concentration, and then the side of the gate electrode 3 is patterned. By forming the side wall 4 and implanting impurity ions at a high concentration,
A highly doped source 0 drain region 6 can be placed via a lightly doped offset portion 5, and a DD structure MISFET 7 can be completed.

このLDD構造によれば、低濃度に形成したオフセット
部50作用によりドレイン領域6とゲート電極3との間
の電界を緩和してドレイン耐圧の向上を図る一方で、チ
ャネルをドレイン領域6に接続してMISFETの動作
を保障することになる。
According to this LDD structure, the electric field between the drain region 6 and the gate electrode 3 is relaxed by the effect of the offset portion 50 formed at a low concentration, and the drain breakdown voltage is improved, while the channel is connected to the drain region 6. This ensures the operation of the MISFET.

しかしながら、このLDD構造について本発明者が検討
を加えたところ、オフセy)部5の濃度が高くなると耐
圧が低下されることになり、逆に濃度を低くするとオフ
セント部5の抵抗が増大してM I S F E ’r
の相互コンダクタンス(gm)が低下され、両特性を共
に満足させるためにはオフセット部の濃度の設定が極め
て難かしいものになることが明らか圧なった。
However, when the present inventor investigated this LDD structure, it was found that as the concentration of the offset portion 5 increases, the withstand voltage decreases, and conversely, as the concentration decreases, the resistance of the offset portion 5 increases. M I S F E 'r
It has become clear that the mutual conductance (gm) of the offset portion is reduced, and that it becomes extremely difficult to set the concentration of the offset portion in order to satisfy both characteristics.

一方、LDD構造はオフセント部5を設けるためにMI
 5FETの全長が大きくなり、素子の微細化に不利と
なる。特に、半導体装置(LSI等)において耐圧が問
題となる素子数は全体の一部であるのに拘らず全素子を
LDD構造にすることは高集積化の障害になり、かつ他
の素子のgm向上の支障となる。このようなことから、
一部の素子のみをLDD構造とし、他の素子(耐圧に問
題の生じない素子)は通常のMIS構造にすることも考
えられているが、ソース・ドレイン領域の形成に際して
画素子を別個の工程で形成するのでは工程数を(・たず
らに増大して製造工率が低下する一方、画素子を同時に
形成するのでは不純物濃度が両者間で調整し難く、所望
の特性を得ることが難かしく・。
On the other hand, in the LDD structure, in order to provide the offset portion 5,
The total length of the 5FET increases, which is disadvantageous to miniaturization of the element. In particular, in semiconductor devices (such as LSIs), even though the number of elements for which breakdown voltage is a problem is only a small part of the total, making all the elements have an LDD structure becomes an obstacle to high integration, and the gm of other elements It becomes a hindrance to improvement. From such a thing,
It is considered that only some elements have an LDD structure and other elements (elements that do not cause problems with withstand voltage) have a normal MIS structure. On the other hand, forming pixel elements at the same time makes it difficult to adjust the impurity concentration between them, making it difficult to obtain the desired characteristics. That's funny.

〔発明の目的〕[Purpose of the invention]

本発明の目的はドレイン耐圧を向上する一方で内部抵抗
を低減して相互コンダクタンスの向上を図り、かつLD
D構造以外のM I S F E Tとの製造マツチン
グを可能にしく半導体装置の微細化および高集積化を達
成することのできるMIS型電界効果トランジスタを提
供することにある。
The purpose of the present invention is to improve mutual conductance by reducing internal resistance while improving drain breakdown voltage.
It is an object of the present invention to provide an MIS type field effect transistor that can be manufactured and matched with MISFETs other than the D structure, and can achieve miniaturization and high integration of semiconductor devices.

本発明の前記ならび九そのほかの目的と新規な特徴は、
本明細書の記述および添付図面からあきらかになるであ
ろう。
The above and nine other objects and novel features of the present invention are:
It will become clear from the description of this specification and the accompanying drawings.

〔発明の漿果〕[Fruits of invention]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、オフセット構造のMISF:ETのオフセッ
ト部に形成する不純物領域を比較的に濃度が高くかつ浅
く形成した層と、低濃度でかつ若干深(形成した層の2
層構造として構成することにより、全体としてLDD構
造による耐圧の向上を図ると共に比較的に高濃度の層に
より抵抗の低減を図ってgmの低下を防止し、かつ両層
の不純物濃度の自由度が増大できることから他の素子と
のマツチングを容易に行なうことができ、実質的に高集
積の半導体装置の製造を可能にするものである。
In other words, the impurity region formed in the offset part of MISF:ET with an offset structure is a layer with a relatively high concentration and shallowly formed, and a layer with a low concentration and slightly deeper (two layers of the formed layer).
By configuring it as a layered structure, the LDD structure as a whole improves the breakdown voltage, and the relatively high concentration layer reduces the resistance to prevent a decrease in gm, and the degree of freedom in the impurity concentration of both layers is increased. Since it can be increased in number, it can be easily matched with other elements, making it possible to manufacture substantially highly integrated semiconductor devices.

〔実施例〕〔Example〕

第2図は本発明のMISFETの基本構成図であり、第
3図囚〜IcIはその製造工程図である。即ち、第3図
人のように、例えばP型シリコン基板10の表面にゲー
ト絶縁膜11を形成し、その上にメタル又はポリシリコ
ンのゲート電極12をパターニング形成する。そして、
先ずP(りん)をセルフつライン法により低濃度にイオ
ン打込みし、次いでAs(ひ素)を同様な方法により比
較的高い濃度にイオン打込みする。そして、これを活性
化すれば、PとAsの拡散速度の違いにより同図B)の
ように若干深い低濃度(N−)層13と、浅(て比較的
高濃度(N)140層とからなる2層構造が形成できる
。次いで、全面にCVD法等によりS、 i 0.膜1
5を形成しかつこれをRIEエツチング処理することに
より同図[C1のようにゲート電極の両側にサイドウオ
ニル16を形成する。その上で、Asを今度は高濃度に
イオン打込みしかつこれを活性化すること匠より、第2
図に示すようにオフセット構造の高濃度(N+)のソー
ス・ドレイン領域17を形成でき、先のオフセット領域
の2層13.14とでLDD構造を構成する。因みに、
低濃度層13のPのドーズ量は5×10〜I X l 
O”7cm”、比較的高濃度層14のAsのドーズ量は
5×10″〜2×10Is/CrrIICrrf&。
FIG. 2 is a basic configuration diagram of the MISFET of the present invention, and FIG. 3 is a diagram of its manufacturing process. That is, as shown in FIG. 3, a gate insulating film 11 is formed on the surface of, for example, a P-type silicon substrate 10, and a gate electrode 12 of metal or polysilicon is patterned thereon. and,
First, P (phosphorus) is ion-implanted to a low concentration by a self-line method, and then As (arsenic) is ion-implanted to a relatively high concentration by a similar method. If this is activated, due to the difference in the diffusion rate of P and As, a slightly deeper low concentration (N-) layer 13 and a shallower (relatively high concentration (N) 140 layer) are formed as shown in Figure B. A two-layer structure consisting of S, i0.
By forming a gate electrode 5 and subjecting it to RIE etching, side walls 16 are formed on both sides of the gate electrode as shown in C1 in the same figure. On top of that, Takumi instructed us to ion implant As at a high concentration and activate it.
As shown in the figure, a high concentration (N+) source/drain region 17 having an offset structure can be formed, and an LDD structure is formed with the two layers 13 and 14 of the offset region. By the way,
The dose of P in the low concentration layer 13 is 5×10 to I×l
O"7 cm", and the As dose amount of the relatively high concentration layer 14 is 5 x 10" to 2 x 10 Is/CrrIICrrf&.

ソース・ドレイン領域17のAsのドーズ量は1Xl 
0”7cmとしている。また、各層13゜14および領
域17の深さく第2図Dt 、D、。
The dose of As in the source/drain region 17 is 1Xl
The depth of each layer 13° 14 and region 17 is 0"7cm.

Da)は夫々0.1 μm 、 0.15〜0.2 μ
m、0.3 μm程度である。
Da) is 0.1 μm and 0.15 to 0.2 μm, respectively.
m, approximately 0.3 μm.

したがって、この基本構成のLDD構造のMISFET
によれば、ゲート電極12I/c対してソース−ドレイ
ン領域17はオフセットされており、かつそのオフセン
ト領域の基板下側に向けて低濃度層13が形成されてい
るので、ゲート、ドレイン間の電界の緩和を図り耐圧の
向上が達成できる。
Therefore, the MISFET of LDD structure with this basic configuration
According to the above, the source-drain region 17 is offset with respect to the gate electrode 12I/c, and the low concentration layer 13 is formed toward the lower side of the substrate in the offset region, so that the electric field between the gate and the drain is reduced. It is possible to improve the withstand voltage by reducing the

一方、オフセット領域の基板表面側には比較的圧高い濃
度層14が形成されているのでこの領域における抵抗の
増大を抑止し、相互コンダクタンス(gm)の低下を防
止することができる。これにより、相反する耐圧とgm
の問題を一挙て解消することができる。
On the other hand, since the relatively high concentration layer 14 is formed on the substrate surface side of the offset region, it is possible to suppress an increase in resistance in this region and prevent a decrease in mutual conductance (gm). As a result, conflicting pressure resistance and gm
problems can be solved all at once.

第4図および第5図は本発明をEP−ROMに適用した
実施例であり、例えばEPROMのメモリセル21にX
又はY選択用の低耐圧MO8FET22.22・・・と
高耐圧MO8FET23を接続した回路構成とし、これ
を同一プロセスで製造する例である。即ち、メモリセル
21としてフローティングゲート型MO8構造を、低耐
圧用22には一般的なMO8構造を、高耐圧用23には
LDD構造を夫々採用し、特に数の多いメモリセル21
や低耐圧MO8FET22の微細化による高集積化を図
っている。
4 and 5 show embodiments in which the present invention is applied to an EP-ROM. For example, the memory cell 21 of the EPROM is
Alternatively, this is an example in which a circuit configuration in which low voltage MO8FETs 22, 22, . . . for Y selection and high voltage MO8FETs 23 are connected is manufactured in the same process. That is, a floating gate MO8 structure is adopted as the memory cell 21, a general MO8 structure is adopted as the low breakdown voltage 22, and an LDD structure is adopted as the high breakdown voltage 23.
High integration is being achieved by miniaturizing the MO8FET 22 and the low breakdown voltage MO8FET 22.

先ず、第5装置のようにメモリセル21、低耐圧MO8
FET22.高耐圧MO8FET23いずれもP型シリ
コン基板24上にゲート絶縁膜25を形成し、その上に
ポリシリコン膜をパターニングしてゲート電極26.2
7と70−ティングゲート28を形成する。表面を酸化
してSiOx膜29を形成後、セルファライン法により
PとAsを続いてイオン打込みする。Pのドーズ量は5
X10 7cm”、Asのドーズ量は5 X 10”〜
I X 10” / cm”である。次にこれを活性化
して低濃度層31と比較的高濃度層32を形成した後に
、同図[F])のように全面にポリシリコン膜を形成し
かつパターニングすることによりメモリセル21の70
−ティングゲート28上にのみコントロールゲート30
を形成する。そして、表面酸化後に同図tcIのように
7オトレジスト膜をパターニングして高耐圧MO8FE
T23のゲート電極26のドレイン側の部分にのるフォ
トレジストマスク33を形成し、しかる上で全面にAs
を高濃度にイオン打込みする。Asのドーズ量は1×1
0” / crn’である。そして、これを活性化すれ
ば、同図CDIのように、夫々ソース・ドレイン領域3
4.35.36が形成できる。この場合、高耐圧MO8
FET23のドレイン領域34aとゲート電極26とは
オフセントされ、オフセット領域に形成された低濃度層
31と比較的高濃度層32とで2層のLDD構造とされ
ている。また、メモリセル21と低耐圧MO8FET2
2のソース・ドレイン領域36.35は前述の比較的高
濃度層32を吸収した非オフセント構造であるが、Pと
Asの拡散の相違により夫々2層、As層31゜36と
31.35の2層構造とされる。このため、必要なチャ
ネル長Leffを得るため九は△L(2層の長さ)だけ
ゲート長Lgを太きくしなければならないが、Pのドー
ズ量を例えば前述のように設定すれば△Lを最小限に抑
えた状態で高耐圧MO8FET23に必要なソース・ド
レイン領域(特にドレイン領域34aとオフセント領域
の各層31.32)の不純物濃度を得ることができ、全
てのMOSFETのマツチングをとることができる。
First, like the fifth device, the memory cell 21, low breakdown voltage MO8
FET22. In both high-voltage MO8FETs 23, a gate insulating film 25 is formed on a P-type silicon substrate 24, and a polysilicon film is patterned on it to form a gate electrode 26.2.
7 and 70-ting gates 28 are formed. After the surface is oxidized to form the SiOx film 29, P and As ions are successively implanted by the self-line method. The dose of P is 5
x10 7cm", As dose is 5 x 10"~
I x 10"/cm". Next, after activating this and forming a low concentration layer 31 and a relatively high concentration layer 32, a polysilicon film is formed on the entire surface and patterned as shown in FIG.
- control gate 30 only on the controlling gate 28;
form. After the surface oxidation, the 7 photoresist film is patterned as shown in the figure tcI to form a high voltage MO8FE.
A photoresist mask 33 is formed on the drain side portion of the gate electrode 26 of T23, and then As is applied to the entire surface.
ion implantation to a high concentration. The dose of As is 1×1
0''/crn'.If this is activated, the source and drain regions 3 are activated, as shown in CDI in the same figure.
4.35.36 can be formed. In this case, high voltage MO8
The drain region 34a of the FET 23 and the gate electrode 26 are offset, and a two-layer LDD structure is formed with a low concentration layer 31 and a relatively high concentration layer 32 formed in the offset region. In addition, the memory cell 21 and the low voltage MO8FET2
The source/drain regions 36.35 of No. 2 have a non-offcent structure absorbing the relatively high concentration layer 32 described above, but due to the difference in diffusion of P and As, two layers, As layers 31.degree. 36 and 31.35, respectively. It has a two-layer structure. Therefore, in order to obtain the necessary channel length Leff, the gate length Lg must be increased by △L (the length of the second layer), but if the P dose is set as described above, △L can be increased. It is possible to obtain the impurity concentration of the source/drain region (especially the drain region 34a and each layer 31, 32 of the offset region) necessary for the high voltage MO8FET 23 while minimizing it, and it is possible to match all MOSFETs. .

本実施例によれば、メモリセル21.低耐圧MO8FE
T22 、高耐圧MO8FET23を夫々同一の不純物
イオン打込み、拡散工程で形成でき、しかも高耐圧MO
8FET23はオフセット領域を2層構造のLDD構造
とする一方、メモリセル21、低耐圧MO822におい
ては非オフセント構造で各素子の長さを必要最小限の長
さに形成でき、かつ全ての素子において所要の不純物濃
度を確保することができる。勿論、高耐圧MO8FET
23にあっては、前例と同様に耐圧の向上を図る一方で
相互コンダクタンスの低下を防止することができるので
ある。
According to this embodiment, memory cell 21. Low voltage MO8FE
T22 and high voltage MO8FET23 can be formed by the same impurity ion implantation and diffusion process, and high voltage MO8FET23 can be formed by the same impurity ion implantation and diffusion process.
The 8FET 23 has an offset region with a two-layer LDD structure, while the memory cell 21 and low voltage MO 822 have a non-offset structure, which allows each element to be formed to the minimum required length, and all elements have the required length. It is possible to ensure an impurity concentration of . Of course, high voltage MO8FET
In the case of No. 23, it is possible to improve the withstand voltage and prevent a decrease in mutual conductance, as in the previous example.

〔効 果〕〔effect〕

(1)オフセント構造のMISFETのオフセット領域
を比較的に深い低濃度層と、浅くかつ比較的に高濃度の
層とで2層構造に構成しているので、低濃度層の作用に
よって耐圧の向上を図る一方で、比較的高濃度層の作用
によって低抵抗化を図り相互コンダクタンスの低下を防
止でき、相反する問題を一挙に解決することができる。
(1) The offset region of the MISFET with an offset structure has a two-layer structure consisting of a relatively deep low-concentration layer and a shallow relatively high-concentration layer, so the breakdown voltage is improved by the effect of the low-concentration layer. On the other hand, the relatively high concentration layer can lower the resistance and prevent a decrease in mutual conductance, thereby solving the contradictory problems at once.

+21 オフセット領域を2層構造としているので、不
純物濃度、特に低濃度層の濃度に自由度が生じ、通常の
MISFETとのマツチングがとれて同一工程での製造
が可能となり、製造効率の向上が達成できる。
+21 Since the offset region has a two-layer structure, there is a degree of freedom in the impurity concentration, especially the concentration in the low concentration layer, and it can be matched with normal MISFETs and can be manufactured in the same process, achieving improved manufacturing efficiency. can.

(31オフセット構造と非オフセット構造の各MO8F
ETを同一工程でかつ良好なマツチングで形成できるの
で、耐圧を必要としないMOSFETを全て非オフセッ
ト構造にして素子の微細化を図り、高集積化を達成でき
る。
(Each MO8F of 31 offset structure and non-offset structure
Since the ETs can be formed in the same process and with good matching, all MOSFETs that do not require breakdown voltage can have a non-offset structure, allowing for miniaturization of elements and achieving high integration.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが、本発明は上記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で種々変更可
能であることはいうまでもない。たとえば、不純物のド
ーズ量や各層の深さ寸法等は要求される特性に応じて適
宜変更できる。
Although the invention made by the present inventor has been specifically explained above based on Examples, it goes without saying that the present invention is not limited to the above Examples and can be modified in various ways without departing from the gist thereof. Nor. For example, the dose of impurities, the depth of each layer, etc. can be changed as appropriate depending on the required characteristics.

また、オフセット構造の製造プロセスも従来利用されて
いる方法をそのまま利用することができる。
Furthermore, the manufacturing process for the offset structure can be performed using conventional methods as is.

〔利用分野〕[Application field]

以上の説明では主として本発明者によってなされた発明
をその背景となった利用分野であるEFROMに適用し
た場合について説明したが、それに限定されるものでは
なく、高耐圧MI 5FETと低耐圧MISFETが存
在して(・る半導体装置の全てに適用することができる
The above explanation has mainly been about the case where the invention made by the present inventor is applied to EFROM, which is the field of application that formed the background of the invention, but it is not limited to this, and there are high voltage MI 5FETs and low voltage MISFETs. It can be applied to all semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はLDD構造を説明する断面図、第2図は本発明
の基本構造の断面図、 第3図囚〜telはその製造方法を示す断面工程図、第
4図は一実施例の回路の一部を示す図、第5図囚〜ID
Iはその製造工程および完成状態を示すための断面工程
図である。 10・・・シリコン基板、11・・ゲート絶縁膜、12
・・・ゲート電極、13・・低濃度層、14・・比較的
高濃度層、16・・サイドウオール、17・・ソース・
ドレインflL21・・・メモリセル(FAMO8)、
22・・・低耐圧MO8FET、23・・・高耐圧MO
3FET、24・・・P型シリコン基板、25・・・ゲ
ート絶縁膜、26.27・・・ゲート電極、28・・・
フローティングゲート、29・・・Sin、膜、30・
・コントロールゲート、31・・・低濃度層、32・・
・比較的高濃度層、33・・フォトレジスト膜、34゜
35.36・・ソース・ドレイン領域、34a・・・ド
代坤へ 升岬士 尚 橘 門 大 箱 1 図 ? 第 2 図 2
Fig. 1 is a sectional view explaining the LDD structure, Fig. 2 is a sectional view of the basic structure of the present invention, Fig. 3 is a sectional process diagram showing its manufacturing method, and Fig. 4 is a circuit of one embodiment. Diagram showing a part of Figure 5 Prisoner ~ ID
I is a sectional process diagram showing the manufacturing process and completed state. 10... Silicon substrate, 11... Gate insulating film, 12
...Gate electrode, 13..Low concentration layer, 14..Relatively high concentration layer, 16..Side wall, 17..Source.
Drain flL21...memory cell (FAMO8),
22...Low voltage MO8FET, 23...High voltage MO
3FET, 24... P-type silicon substrate, 25... Gate insulating film, 26.27... Gate electrode, 28...
floating gate, 29...Sin, film, 30.
・Control gate, 31...Low concentration layer, 32...
・Relatively high concentration layer, 33... Photoresist film, 34° 35. 36... Source/drain region, 34a... To Shirokon Masu Misaki Nao Tachibana Mon Large box 1 Figure? Figure 2 2

Claims (1)

【特許請求の範囲】 1、 ゲート電極に対してソース・ドレイン領域のうち
少なくともいずれか一方の領域をオフセット配置すると
共に、オフセット領域を比較的深い低濃度層と、浅(か
つ比較的高濃度の層とで2層構造に構成したことを特徴
とするMIS型電界効果トランジスタ。 2 ドレイン領域のみをオフセットに構成し、このオフ
セント領域を2層構造にしてなる特許請求の範囲第1項
記載のMIS型電界効果トランジスタ。 8 りん等の拡散速度の大きい不純物を低濃度層として
用い、これよりも拡散速度の小さなひ素等の不純物を比
較的に高濃度な層およびソース・ドレイン傾城圧用いて
なる特許請求の範囲第1項又は第2項記載のMIS型電
界効果トランジスタ。
[Claims] 1. At least one of the source and drain regions is offset from the gate electrode, and the offset region is formed by forming a relatively deep low concentration layer and a shallow (and relatively high concentration layer). 2. The MIS type field effect transistor according to claim 1, wherein only the drain region is configured in an offset manner, and this offset region has a two-layer structure. 8. A patent in which an impurity with a high diffusion rate, such as phosphorus, is used as a low concentration layer, and an impurity with a low diffusion rate, such as arsenic, is used in a relatively high concentration layer and source/drain slope pressure. MIS type field effect transistor according to claim 1 or 2.
JP59089415A 1984-05-07 1984-05-07 Mis-type field effect transistor Granted JPS60234367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59089415A JPS60234367A (en) 1984-05-07 1984-05-07 Mis-type field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59089415A JPS60234367A (en) 1984-05-07 1984-05-07 Mis-type field effect transistor

Publications (2)

Publication Number Publication Date
JPS60234367A true JPS60234367A (en) 1985-11-21
JPH0564458B2 JPH0564458B2 (en) 1993-09-14

Family

ID=13970015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59089415A Granted JPS60234367A (en) 1984-05-07 1984-05-07 Mis-type field effect transistor

Country Status (1)

Country Link
JP (1) JPS60234367A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0195607A2 (en) * 1985-03-20 1986-09-24 Fujitsu Limited Semiconductor device
JPS62134974A (en) * 1985-12-04 1987-06-18 アドバンスト・マイクロ・デイバイシズ・インコ−ポレ−テツド Field effect device
JPS634668A (en) * 1986-06-25 1988-01-09 Toshiba Corp Mos type semiconductor device
US5424234A (en) * 1991-06-13 1995-06-13 Goldstar Electron Co., Ltd. Method of making oxide semiconductor field effect transistor
WO1997036331A1 (en) * 1996-03-25 1997-10-02 Advanced Micro Devices, Inc. REDUCING REVERSE SHORT-CHANNEL EFFECT WITH LIGHT DOSE OF P WITH HIGH DOSE OF As IN N-CHANNEL LDD
WO2003105235A1 (en) * 2002-06-10 2003-12-18 日本電気株式会社 Semiconductor device including insulated-gate field-effect transistor and its manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0195607A2 (en) * 1985-03-20 1986-09-24 Fujitsu Limited Semiconductor device
US4928163A (en) * 1985-03-20 1990-05-22 Fujitsu Limited Semiconductor device
JPS62134974A (en) * 1985-12-04 1987-06-18 アドバンスト・マイクロ・デイバイシズ・インコ−ポレ−テツド Field effect device
JPS634668A (en) * 1986-06-25 1988-01-09 Toshiba Corp Mos type semiconductor device
JPH084112B2 (en) * 1986-06-25 1996-01-17 株式会社東芝 MOS semiconductor device
US5424234A (en) * 1991-06-13 1995-06-13 Goldstar Electron Co., Ltd. Method of making oxide semiconductor field effect transistor
WO1997036331A1 (en) * 1996-03-25 1997-10-02 Advanced Micro Devices, Inc. REDUCING REVERSE SHORT-CHANNEL EFFECT WITH LIGHT DOSE OF P WITH HIGH DOSE OF As IN N-CHANNEL LDD
US5920104A (en) * 1996-03-25 1999-07-06 Advanced Micro Devices, Inc. Reducing reverse short-channel effect with light dose of P with high dose of as in n-channel LDD
WO2003105235A1 (en) * 2002-06-10 2003-12-18 日本電気株式会社 Semiconductor device including insulated-gate field-effect transistor and its manufacturing method

Also Published As

Publication number Publication date
JPH0564458B2 (en) 1993-09-14

Similar Documents

Publication Publication Date Title
JP3226650B2 (en) Lateral double diffusion insulated gate field effect transistor and method of manufacturing the same
US5296401A (en) MIS device having p channel MOS device and n channel MOS device with LDD structure and manufacturing method thereof
JP3489871B2 (en) MOS transistor and manufacturing method thereof
US5436483A (en) Semiconductor integrated circuit device having a first MISFET of an output buffer circuit and a second MISFET of an internal circuit
JPH04212465A (en) Manufacture of high breakdown strength mis transistor and complementary transistor with the mis transistor
US7022574B2 (en) Multi-voltage level semiconductor device and its manufacture
KR100270420B1 (en) Method for manufacturing semiconductor device and semiconductor device manufactured by same method
JP2001156290A (en) Semiconductor device
US5973370A (en) Preventing boron penetration through thin gate oxide of P-channel devices in advanced CMOS technology
JP2007027622A (en) Semiconductor device and its manufacturing method
JPS60234367A (en) Mis-type field effect transistor
US6525380B2 (en) CMOS with a fixed charge in the gate dielectric
JP2790050B2 (en) Method for manufacturing semiconductor device
JPH10135349A (en) Cmos type semiconductor device and its manufacturing method
JPH07263693A (en) Preparation of fet and integration structure
JP2796047B2 (en) Method for manufacturing CMOS transistor
US5850360A (en) High-voltage N-channel MOS transistor and associated manufacturing process
JPS638623B2 (en)
JPH09223793A (en) Semiconductor device and its manufacture
JPS62262462A (en) Semiconductor device
JP2605757B2 (en) Method for manufacturing semiconductor device
JP3403117B2 (en) Method for manufacturing semiconductor device
JPS63283155A (en) Semiconductor device and manufacture thereof
JPH06252397A (en) Semiconductor device including high voltage resistant transistor
JP2001060686A (en) Ldmos type semiconductor device and manufacture thereof