JPS60233816A - Thin film formation and device therefor - Google Patents

Thin film formation and device therefor

Info

Publication number
JPS60233816A
JPS60233816A JP8770584A JP8770584A JPS60233816A JP S60233816 A JPS60233816 A JP S60233816A JP 8770584 A JP8770584 A JP 8770584A JP 8770584 A JP8770584 A JP 8770584A JP S60233816 A JPS60233816 A JP S60233816A
Authority
JP
Japan
Prior art keywords
substrate
thin film
film
bath
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8770584A
Other languages
Japanese (ja)
Inventor
Sukeyoshi Tsunekawa
恒川 助芳
Yoshio Honma
喜夫 本間
Hiroshi Morizaki
浩 森崎
Kiichiro Mukai
向 喜一郎
Sadayuki Okudaira
奥平 定之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8770584A priority Critical patent/JPS60233816A/en
Priority to US06/655,438 priority patent/US4599135A/en
Publication of JPS60233816A publication Critical patent/JPS60233816A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)

Abstract

PURPOSE:To obtain deposit films with flat and homogeneous surfaces even when the surface of a substrate is uneven steeply, by a method wherein substrates are always exposed to plasma and alternately irradiated with particle rays by using a means of particle ray irradiation provided independently of a means of film deposition. CONSTITUTION:The ceiling of a vacuum bath 1 having an exhaust port 2 is provided with a substrate electrode 10 water-cooled inside and surrounded in the top and the side by a shield 11, and the top thereof is connected to a high frequency power source 14 whose one terminal is grounded, via through-hole of the vacuum bath 1. A quartz tube 11 having gas introduction ports 23 and 24 is projected out of the bottom of the bath 1 and surrounded by plasma-generating magnets 21. In such a manner, a plasma is evolved in the bath 1 by feeding SiH4 and O2 through the introduction ports 23 and 24 respectively; accordingly, desired films are deposited on the surfaces of substrates 12 adhered to the bottom of the electrode 10. At this time, the bottom is further provided with a hot filament type ion source 5 having a grid 33, a magnet 32, and an Ar gas introduction port 31, and the deposit films are intermittently irradiated.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は薄膜形成方法および薄膜形成装置に関し、詳し
くは、たとえば5iOI2膜など、絶縁膜の形成にとく
に好適な薄膜形成方法および薄膜形成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a thin film forming method and a thin film forming apparatus, and more particularly to a thin film forming method and a thin film forming apparatus particularly suitable for forming an insulating film such as a 5iOI2 film.

〔発明の背景〕[Background of the invention]

従来、基板上に薄膜を堆積しながら堆積膜表面を平坦化
する方法としては特公昭56−21836に記載のよう
にバイアススパッタ法が知られている。
Conventionally, as a method for flattening the surface of a deposited film while depositing a thin film on a substrate, a bias sputtering method is known as described in Japanese Patent Publication No. 56-21836.

この方法によって薄膜を形成する場合の好適な真−空度
は、カソードに平板型電極を用いた場合10−”Tor
r台、プレーナマグネトロン型電極を用いた場合10−
”Torr台などであった。ところが、基板に急峻な凹
凸がある場合薄膜の源となる粒子の平均自由工程は長い
ほうが好適で、この真空度は高いほど良い。前述の電極
を用いた場合粒子の平均自由工程はそれぞれ数圃と数1
0mnであり、基板上の凹凸のうち深い溝の中に均一な
薄膜を形成するには限界があった。
A suitable degree of vacuum when forming a thin film by this method is 10-" Tor when a flat plate electrode is used as the cathode.
When using a planar magnetron type electrode, 10-
However, if the substrate has steep irregularities, the longer the mean free path of the particles that form the source of the thin film, the better, and the higher the degree of vacuum, the better. The mean free path of is several fields and several 1, respectively.
0 mm, and there was a limit to forming a uniform thin film in deep grooves among the irregularities on the substrate.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、基板上に急峻な凹凸があ名湯合に於て
も、堆積膜表面を平坦にしてかつ均質な薄膜を形成する
ことのできる薄膜形成方法および薄膜形成装置を提供す
ることである。
An object of the present invention is to provide a thin film forming method and a thin film forming apparatus that can flatten the surface of a deposited film and form a homogeneous thin film even when a substrate has steep irregularities. It is.

〔発明の概要〕[Summary of the invention]

基板上に急峻な凹凸がある場合に於ても堆積膜表面を平
坦にしてかつ均質な薄膜を形成するためには、薄膜の源
となる粒子の平均自由工程が長いほうが好ましく、薄膜
を形成する雰囲気である真空度は高いほうが良い。
In order to flatten the surface of the deposited film and form a homogeneous thin film even when there are steep irregularities on the substrate, it is preferable that the mean free path of the particles that form the thin film is long. The higher the degree of vacuum, which is the atmosphere, the better.

本発明においては薄膜の供給源および堆積膜表面の平坦
化手段としてマイクロ波放電やグロー放電などを用い、
これらを基板から離れて局在させ基板表面の真空度を高
める。また堆積する薄膜が特に絶縁膜である場合基板に
入射する粒子の電荷による基板のチャージアップ、また
基板の材質が場所によって異なる場合の場所によるチャ
ージアップの違いなどを抑制し、これらの電荷を中和、
あるいは一定電位に保つ手段を備えている。
In the present invention, microwave discharge, glow discharge, etc. are used as a thin film supply source and as a means for flattening the surface of the deposited film.
These are localized away from the substrate to increase the degree of vacuum on the substrate surface. In addition, when the thin film to be deposited is an insulating film, it suppresses the charge-up of the substrate due to the charge of particles incident on the substrate, and when the material of the substrate differs depending on the location, it suppresses the difference in charge-up depending on the location, and neutralizes these charges. sum,
Alternatively, it is equipped with means for maintaining a constant potential.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図により説明する。 Embodiments of the present invention will be described below with reference to FIG.

反応容器となる真空槽1は、ガス導入口23゜24.3
1.排気口2を備え、さらに基板12に膜を堆積するた
めのマイクロ波イオン源4および基板上に堆積した膜の
一部をエツチングしその表面を平坦化するためのホット
フィラメント型イオン源5を独立して有している。また
基板の表面電荷を中和し基板を一定電位に保つために基
板には基板電極10を介して高周波電源14によって高
周波電圧を印加する。
The vacuum chamber 1 serving as the reaction vessel has a gas inlet port of 23°24.3.
1. It is equipped with an exhaust port 2, and is further equipped with an independent microwave ion source 4 for depositing a film on the substrate 12 and a hot filament type ion source 5 for etching a part of the film deposited on the substrate and flattening its surface. I have it. Further, a high frequency voltage is applied to the substrate by a high frequency power source 14 via the substrate electrode 10 in order to neutralize the surface charge of the substrate and maintain the substrate at a constant potential.

以下Sin、Jl膜を基板12に形成する場合を例に用
いて説明する。まず排出口2を介して真空槽2内をlX
l0−’Torr程度にまで排気する。
The following will explain the case where a Sin, Jl film is formed on the substrate 12 as an example. First, the inside of the vacuum chamber 2 is
Evacuate to about 10-'Torr.

次に上記マイクロ波イオン源4に周波数2.45GHz
のマイクロ波電力を印加し、さらに上記ガス導入口23
.24からモノシラン(SiH4)と酸素(OQ)を導
入するとともに、マイクロ波放電を発生してSiH4と
OsIを反応させ、CVD(Chemical Vap
or Deposition)によって基板12上に5
inI2膜を堆積した。一方上記ガス導入口31からは
アル、ボン(Ar)を導入し、ホットフィラメント型イ
オン源5に電力を印加してArイオンを発生させ、グリ
ッド13によって加速して得られたArイオンビームを
、基板12に照射して、基板12に堆積したS i O
12膜の一部をエツチングして表面の平坦化を行なった
。なお基板12は内部を水冷した基板電極1oに取り付
け、高周波電源14によって基板電極10を介して周波
数13.56 M Hzの高周波電圧を印加するととも
に回転させた。
Next, a frequency of 2.45 GHz is applied to the microwave ion source 4.
microwave power is applied, and the gas inlet 23 is
.. Monosilane (SiH4) and oxygen (OQ) are introduced from No. 24, and a microwave discharge is generated to react SiH4 and OsI, resulting in CVD (Chemical Vapor Vaping).
or Deposition) on the substrate 12.
An inI2 film was deposited. On the other hand, Al and Bon (Ar) are introduced from the gas inlet 31, power is applied to the hot filament type ion source 5 to generate Ar ions, and the resulting Ar ion beam is accelerated by the grid 13. S i O deposited on the substrate 12 by irradiating the substrate 12
A part of the No. 12 film was etched to flatten the surface. The substrate 12 was attached to a substrate electrode 1o whose interior was water-cooled, and was rotated while applying a high frequency voltage of 13.56 MHz through the substrate electrode 10 by a high frequency power source 14.

この様にした結果、従来のバイアススパッタ法より高真
空度で薄膜を形成でき、薄膜として堆積する粒子の平均
自由工程が長くなることにより基板上にある凹凸の深い
溝の中にも均質な膜を表面を平坦にして形成できた。
As a result, thin films can be formed in a higher vacuum than conventional bias sputtering methods, and the mean free path of the particles deposited as a thin film becomes longer, allowing a homogeneous film to be formed even in deep grooves on the substrate. could be formed with a flat surface.

上記装置に於て、真空槽内のガス圧力5×10−’ T
orr 、基板12の中心とマイクロ波イオン源4およ
びホットフィラメント型イオン源の間隙を、いずれも1
5C11とし膜形成中における薄膜の堆積量に対するエ
ツチング量の割合を30%とし堆積速度300A/分で
パターンを切ったシリコンウェハにS i 0,2膜を
1μm形成した。
In the above device, the gas pressure in the vacuum chamber is 5×10-'T
orr, the gap between the center of the substrate 12 and the microwave ion source 4 and hot filament type ion source is 1
A Si 0,2 film of 1 μm thickness was formed on a patterned silicon wafer using 5C11 at a deposition rate of 300 A/min, with the ratio of the amount of etching to the amount of thin film deposited during film formation being 30%.

このS i O12膜の膜質をNH4F(40%)二H
F(50%)=7:1の25℃のエツチング液によって
調べた。その結果1幅1μm、深さ2μmの溝内におい
てもSin、のエツチング速度は平坦部とほぼ同じで1
200A/分であった。
The film quality of this SiO12 film is NH4F (40%) diH.
It was investigated using an etching solution of F (50%) = 7:1 at 25°C. As a result, even in a groove with a width of 1 μm and a depth of 2 μm, the etching rate of Sin is almost the same as that of a flat part.
It was 200A/min.

ただし、基板番;高周波電圧を印加しない場合において
は上記と同一の溝内に於て一部エッチング速度が大きい
領域が見られた。この原因としては、ホットフィラメン
ト型イオン源による堆積膜表面のエツチングがチャージ
アップの影響のため均一にされなかったためと考えられ
る。
However, in the case where no high-frequency voltage was applied to the substrate, some regions where the etching rate was high were observed in the same grooves as above. The reason for this is thought to be that the etching of the surface of the deposited film by the hot filament ion source was not uniform due to the influence of charge-up.

【発明の効果〕【Effect of the invention〕

本発明による装置及び薄膜の堆積方法は基板上の凹凸が
ある場合基板上に均質な薄膜を形成できる効果がある。
The apparatus and thin film deposition method according to the present invention are effective in forming a homogeneous thin film on a substrate even if the substrate has irregularities.

また基板に薄膜形成中に高周波電圧を印加し、基板電位
を一定に保つことは、ゲート耐圧劣化、しきい値電圧変
動など電界効果トランジスタへのダメージ低減にも効果
があった。
Furthermore, applying a high-frequency voltage to the substrate while forming a thin film and keeping the substrate potential constant was effective in reducing damage to the field-effect transistor, such as gate breakdown voltage deterioration and threshold voltage fluctuation.

以上5inI2膜の形成を中心に説明してきたが本発明
はこれに限定されることなく、Sin、膜以外の他の絶
縁膜、金属膜、合金膜についても適用できる。またガス
にはA r 、 S i H4t O12を用いたが他
の不活性ガスや反応ガスを用いることなど同業者であれ
ば特許請求の範囲を逸脱することなくいろいろな変形が
可能であることは明らかである。
Although the explanation has been given above mainly on the formation of a 5inI2 film, the present invention is not limited thereto, and can also be applied to insulating films other than Sin and films, metal films, and alloy films. Furthermore, although A r and S i H4t O12 are used as the gases, it is understood that various modifications can be made without departing from the scope of the claims by those skilled in the art, such as using other inert gases or reactive gases. it is obvious.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の装置及び膜形成方法を説明するための
図である。 l・・・真空槽、2・・・排気口、3・・・サセプタ、
4・・・マイクロ波イオン源、5・・・ホットフィラメ
ント型イオン源、11・・・シールド、12・・・基板
、13・・・石英、14・・・高周波電源、21・−・
マグネット、22・・・石英管、23,24,31・・
・ガス導入口、32・・・マグネット、33・・・グリ
ッド。 第1図 第1頁の続き @発明者奥平 定之 国分寺市東恋ケ窪1丁目28幡地 株式会社日立製作所
中央研究所内
FIG. 1 is a diagram for explaining the apparatus and film forming method of the present invention. l...Vacuum chamber, 2...Exhaust port, 3...Susceptor,
4... Microwave ion source, 5... Hot filament type ion source, 11... Shield, 12... Substrate, 13... Quartz, 14... High frequency power supply, 21...
Magnet, 22...Quartz tube, 23, 24, 31...
・Gas inlet, 32...Magnet, 33...Grid. Figure 1 Continued from page 1 @ Inventor Sadano Okuhira 1-28 Higashi Koigakubo, Kokubunji City Hitachi, Ltd. Central Research Laboratory

Claims (1)

【特許請求の範囲】 1、基板上に膜を堆積する手段を用いた該基板上への膜
の堆積と、鼓膜を堆積する手段とは独立して設けられた
上記膜を粒子線によって照射する手段による鼓膜への粒
子線の照射を交互に行なうことにより、該基板上に所望
の薄膜を形成する方法に於て、該基板が常にプラズマの
照射を受ける様にして薄膜を形成することを特徴とする
薄膜形成方法。 2、真空槽内に置かれた基板上へ膜を堆積する手段と、
鼓膜を堆積する手段とは独立して設けられた鼓膜へ粒子
を照射して鼓膜をエツチングする手段と、該基板を設置
するサセプタに高周波電力あるいは直流電圧を印加する
手段を少なくとも備えたことを特徴とする薄膜形成装置
[Claims] 1. Deposition of a film on the substrate using a means for depositing a film on the substrate, and irradiation of the film provided independently of the means for depositing the eardrum with a particle beam. A method for forming a desired thin film on the substrate by alternately irradiating the eardrum with a particle beam using means, characterized in that the thin film is formed so that the substrate is constantly irradiated with plasma. A method for forming a thin film. 2. means for depositing a film onto a substrate placed in a vacuum chamber;
It is characterized by comprising at least a means for etching the eardrum by irradiating particles onto the eardrum, which is provided independently of the means for depositing the eardrum, and a means for applying high frequency power or DC voltage to a susceptor on which the substrate is installed. Thin film forming equipment.
JP8770584A 1983-09-30 1984-05-02 Thin film formation and device therefor Pending JPS60233816A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8770584A JPS60233816A (en) 1984-05-02 1984-05-02 Thin film formation and device therefor
US06/655,438 US4599135A (en) 1983-09-30 1984-09-28 Thin film deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8770584A JPS60233816A (en) 1984-05-02 1984-05-02 Thin film formation and device therefor

Publications (1)

Publication Number Publication Date
JPS60233816A true JPS60233816A (en) 1985-11-20

Family

ID=13922328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8770584A Pending JPS60233816A (en) 1983-09-30 1984-05-02 Thin film formation and device therefor

Country Status (1)

Country Link
JP (1) JPS60233816A (en)

Similar Documents

Publication Publication Date Title
US10312055B2 (en) Method of depositing film by PEALD using negative bias
US4599135A (en) Thin film deposition
KR100416308B1 (en) Plasma process device
JP3076367B2 (en) Plasma processing equipment
JPH0633453B2 (en) Equipment for depositing thin layers on substrates by cathodic sputtering
JPH0635323B2 (en) Surface treatment method
JP3499104B2 (en) Plasma processing apparatus and plasma processing method
JP3319285B2 (en) Plasma processing apparatus and plasma processing method
JPH02281734A (en) Treating method of surface by plasma
JPS6136589B2 (en)
JP3520577B2 (en) Plasma processing equipment
JP2003077904A (en) Apparatus and method for plasma processing
JP2626339B2 (en) Thin film forming equipment
JPS60233816A (en) Thin film formation and device therefor
JPH06330305A (en) Film forming method by sputtering
JPH09263948A (en) Formation of thin film by using plasma, thin film producing apparatus, etching method and etching device
US3484358A (en) Method and apparatus for reactive sputtering wherein the sputtering target is contacted by an inert gas
JP3327618B2 (en) Plasma processing equipment
JP3368743B2 (en) Plasma processing apparatus and plasma processing method
KR102691272B1 (en) Method of depositing film by peald using negative bias
JP2004349717A (en) Plasma-etching trearment apparatus
JPH09223672A (en) Method and device for plasma treatment
JPH0340422A (en) Film formation device
JPH01149958A (en) Sputtering device
JPH07273089A (en) Apparatus and method for plasma treatment