JPS60229748A - Manufacture of metallic laminate - Google Patents

Manufacture of metallic laminate

Info

Publication number
JPS60229748A
JPS60229748A JP59086742A JP8674284A JPS60229748A JP S60229748 A JPS60229748 A JP S60229748A JP 59086742 A JP59086742 A JP 59086742A JP 8674284 A JP8674284 A JP 8674284A JP S60229748 A JPS60229748 A JP S60229748A
Authority
JP
Japan
Prior art keywords
base material
metal
temperature
sintered layer
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59086742A
Other languages
Japanese (ja)
Inventor
浩 佐々木
金子 敏機
茂雄 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP59086742A priority Critical patent/JPS60229748A/en
Publication of JPS60229748A publication Critical patent/JPS60229748A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Powder Metallurgy (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 A0発明の目的 (1) 産業上の利用分野 本発明は、ベース材に金属焼結層を積層してプレス用金
型等の金属積層体を得る、金属積層体の製造方法に関す
る。
Detailed Description of the Invention A0 Objective of the Invention (1) Industrial Field of Application The present invention relates to a metal laminate, which is obtained by laminating a metal sintered layer on a base material to obtain a metal laminate such as a press mold. Regarding the manufacturing method.

(2) 従来の技術 本出願人は、先にベース材に焼結性金属粉末と合成樹脂
バインダとを混練した可塑性物を貼着し、次いでその可
塑性物中の合成樹脂バインダを熱分解すると共に金属粉
末を焼結して前記ベース材と一体化された金属焼結層を
得る方法を提案している。
(2) Prior art The applicant first attached a plastic material made by kneading sinterable metal powder and a synthetic resin binder to a base material, and then thermally decomposed the synthetic resin binder in the plastic material. A method of obtaining a metal sintered layer integrated with the base material by sintering metal powder is proposed.

(3)発明が解決しようとする問題点 上記方法について種々検討を加えた結果、金属焼結層の
寸法変化は極めて少ないが、ベース材はその材質によっ
てそれが金属粉末の焼結工程で加熱および冷却されるこ
とにより寸法変化を起こすことがあり、精密な金属積層
体を得る場合には支障を来すことがあるということを究
明した。
(3) Problems to be solved by the invention As a result of various studies on the above-mentioned method, the dimensional change of the sintered metal layer is extremely small, but depending on the material of the base material, it may be heated and heated during the sintering process of the metal powder. It was discovered that dimensional changes may occur when cooled, which may pose a problem in obtaining precise metal laminates.

例えば、ベース材を鋳鉄より構成すると、鋳鉄特有の生
長現象によってその長さが伸びるものである。
For example, if the base material is made of cast iron, its length will increase due to the growth phenomenon peculiar to cast iron.

本発明は上記に鑑み、特定な材質のベース材を用いて精
密で眉間剥離のない金属積層体を得ることのできる前記
製造方法を従供することを目的とする。
In view of the above, an object of the present invention is to provide the above-mentioned manufacturing method capable of obtaining a precise metal laminate without peeling between the eyebrows using a base material made of a specific material.

B1発明の構成 (1)問題点を解決するための手段 本発明は、鋼糸ベース材に、焼結性金属粉末と合成樹脂
バインダとを混練した可塑性物を貼着する工程と、前記
可塑性物中の前記合成樹脂バインダを熱分解する共に前
記金属粉末を焼結して前記ベース材と一体化された金属
焼結層を得る工程とを用いることを特徴とする。
B1 Structure of the Invention (1) Means for Solving Problems The present invention comprises a step of adhering a plastic material obtained by kneading sinterable metal powder and a synthetic resin binder to a steel thread base material, and The method is characterized by using a step of thermally decomposing the synthetic resin binder therein and sintering the metal powder to obtain a metal sintered layer integrated with the base material.

(2)作 用 銅系ベース材は、金属粉末の焼結工程で加熱および冷却
されても寸法変化を起こすことがなく、また鋼糸ベース
材に対する金属焼結層の密着度が良好である。
(2) Effects The copper base material does not undergo dimensional changes even when heated and cooled during the sintering process of metal powder, and the adhesion of the metal sintered layer to the steel thread base material is good.

(3)実施例 第1図は本発明により得られた金属積層体1を示し、そ
の積層体lは鋼糸ベース材2と、その表面に一体的に積
層された金属焼結層3とよりなる。
(3) Example FIG. 1 shows a metal laminate 1 obtained by the present invention, which is made up of a steel thread base material 2 and a metal sintered layer 3 integrally laminated on its surface. Become.

この金属積層体1は以下に述べる手法により製造される
This metal laminate 1 is manufactured by the method described below.

〔実施例■〕[Example ■]

i、可塑性物の製造 Ni自溶性合金粉 80部と、MO粉砕粉 20部とを
■−ブレンダにより十分に混合して混合粉を得る。
i. Production of plastic material 80 parts of Ni self-fusing alloy powder and 20 parts of MO pulverized powder are sufficiently mixed in a ■-blender to obtain a mixed powder.

四フッ化エチレン樹脂エマルジョンとアクリル樹脂エマ
ルジョンを1=1に混合して合成樹脂バインダを得る。
A synthetic resin binder is obtained by mixing a tetrafluoroethylene resin emulsion and an acrylic resin emulsion in a ratio of 1=1.

上記混合粉 100部に対し合成樹脂バインダ3部を添
加して卓上ニーダにより十分に混練し、この混練物を1
00〜150℃に加熱して合成樹脂バインダ中の水分を
蒸発させる。得られた混練物の性状は、合成樹脂バイン
ダにより粘結されて無数の団塊状を呈する。
Add 3 parts of synthetic resin binder to 100 parts of the above mixed powder and thoroughly knead with a table kneader.
The water in the synthetic resin binder is evaporated by heating to 00 to 150°C. The obtained kneaded product has a shape of numerous nodules due to being caked by the synthetic resin binder.

上記混練物を80〜100℃に加熱してロール機に複数
回通しシート状可塑性物を得る。この場合ロール機のロ
ールを混線物と同程度に加熱するとシート成形作業が容
易に行われる。その後シート状可塑生物を80°Cで6
0分間加熱し、成形時化じた歪を除去する。得られたシ
ート状可塑性物は常温において適度な可撓性と引裂き強
度を有する。
The kneaded product is heated to 80 to 100°C and passed through a roll machine multiple times to obtain a sheet-like plastic material. In this case, if the roll of the roll machine is heated to the same degree as the mixed material, the sheet forming operation can be easily performed. After that, the sheet-like plastic material was heated to 80°C for 6
Heat for 0 minutes to remove distortion caused during molding. The obtained sheet-like plastic material has appropriate flexibility and tear strength at room temperature.

ii、金属積層体の製造 第2図(a)に示すように、ベース材2は炭素鋼鋳鋼(
JIS 5C46材)より構成されたもので、その原寸
法は長さ300fl、幅100mm、厚さ30mmであ
る。このベース材2に第3図に示す歪取り焼鈍を施す。
ii. Manufacture of metal laminate As shown in FIG. 2(a), the base material 2 is made of carbon steel cast steel (
The original dimensions are 300 fl in length, 100 mm in width, and 30 mm in thickness. This base material 2 is subjected to strain relief annealing as shown in FIG.

即ち、加熱ゾーン八でベース材2を1100℃まで加熱
し、加熱ゾーンBでベース材2を1100℃に60分間
保持し、冷却ヅーンCでベース材2を冷却する。冷却ゾ
ーンCにおいて、1100〜400℃の1次冷却ゾーン
CIではベース材2を5℃/分の速度で冷却し、400
℃〜常温の2次冷却ゾーンC2では空冷を行う。ベース
材2は鋳放しのまま使用されるもので、その黒皮を持つ
表面にはサンドブラスト処理を施した後アクリル樹脂接
着剤を塗布する。
That is, the base material 2 is heated to 1100° C. in heating zone 8, the base material 2 is held at 1100° C. in heating zone B for 60 minutes, and the base material 2 is cooled in cooling zone C. In the cooling zone C, the base material 2 is cooled at a rate of 5°C/min in the primary cooling zone CI of 1100 to 400°C, and the temperature is 400°C.
Air cooling is performed in the secondary cooling zone C2 ranging from °C to room temperature. The base material 2 is used as-cast, and its surface with a black crust is sandblasted and then an acrylic resin adhesive is applied.

第2図(b)に示すように、ベース材2の表面にシート
状可塑性物Pを貼着する。この場合所定厚さを得るため
にはシート状可塑性物を積層する。
As shown in FIG. 2(b), a sheet-like plastic material P is attached to the surface of the base material 2. In this case, in order to obtain a predetermined thickness, sheet-like plastic materials are laminated.

またベース材2を80〜100℃に加熱しておくと、前
記シート状可塑性物Pの貼着作業が容易に行われる。
Further, if the base material 2 is heated to 80 to 100° C., the work of attaching the sheet-like plastic material P can be easily performed.

第2図(c)に示すように、ベース材2を真空焼結炉4
に設置して第4図に示す加熱−冷却条件で有機物質の分
解と金属粉末の焼結を行う。キャリヤガスは窒素ガスま
たは還元性の強い水素ガスが用いられる。
As shown in FIG. 2(c), the base material 2 is placed in a vacuum sintering furnace 4.
The organic substance is decomposed and the metal powder is sintered under the heating-cooling conditions shown in FIG. As the carrier gas, nitrogen gas or highly reducing hydrogen gas is used.

■ 第1加熱ゾーン(第3図D) この加熱ゾーンDは常温から650℃までであり、昇温
速度は10〜b 熱ゾーンDでは先ず水分が蒸発し、次いで合成樹脂バイ
ンダ中の四フフ化エチレン樹脂およびアクリル樹脂が分
解してガス化する。これら合成樹脂は300〜400℃
でガス化するが、熱伝導を考慮して600〜650℃に
30分間均熱保持して殆どの有機物質を除去し、Ni自
溶性合金−MO粉末層を残置する。この有機物質のガス
化を真空焼結炉4内の真空度の変化により説明すると、
常温ではl Torrであるが、650℃で30分間均
熱保持したときは最高2 TOrrに真空度が低下する
。これは主として有機物質の分解ガスの生成による。そ
して20分を経過した後は真空度は再びl Torrに
上昇するもので、これは真空焼結炉4内より分解ガスが
除去されたことを意味する。
■ First heating zone (Fig. 3 D) This heating zone D ranges from room temperature to 650°C, and the temperature increase rate is 10~b In the heating zone D, water first evaporates, and then the tetrafufu in the synthetic resin binder is evaporated. Ethylene resin and acrylic resin decompose and gasify. These synthetic resins have a temperature of 300 to 400℃
However, in consideration of heat conduction, most of the organic substances are removed by soaking at 600 to 650° C. for 30 minutes, leaving a Ni self-fusing alloy-MO powder layer. The gasification of this organic substance can be explained by the change in the degree of vacuum inside the vacuum sintering furnace 4.
At room temperature, the vacuum level is 1 Torr, but when soaked at 650°C for 30 minutes, the degree of vacuum decreases to a maximum of 2 Torr. This is mainly due to the production of decomposition gases from organic substances. After 20 minutes have elapsed, the degree of vacuum rises again to 1 Torr, which means that the cracked gas has been removed from the vacuum sintering furnace 4.

■ 第2加熱ゾーンく第3図E) この加熱ゾーンEは900〜1000℃の範囲であり、
Ni自溶性合金−MO粉末層をN1自溶性合金の固相線
(1010〜1020℃)以下の温度、例えば950℃
に30分間均熱保持して固相焼結処理を施し、これを仮
焼結する。第1加熱ゾーンDからの昇温速度は10〜b る。
■ Second heating zone (Fig. 3 E) This heating zone E is in the range of 900 to 1000°C,
The Ni self-fusing alloy-MO powder layer is heated at a temperature below the solidus line (1010 to 1020°C) of the N1 self-fusing alloy, for example 950°C.
A solid phase sintering process is performed by soaking and holding for 30 minutes, and this is pre-sintered. The temperature increase rate from the first heating zone D is 10~b.

は、その表面から加熱されて昇温するので、層全体が均
一温度に達するまでは所定の加熱時間が必要である。若
し焼結温度である1000〜1200℃にいきなり加熱
するとNi自溶性合金−M。
Since the layer is heated from its surface and its temperature rises, a predetermined heating time is required until the entire layer reaches a uniform temperature. If suddenly heated to the sintering temperature of 1000 to 1200°C, Ni self-fusing alloy-M.

粉末層の表面部分とベース材2に接する部分との間に温
度差ができて、気孔率のばらつきが多くなり均一な焼結
層が得られないだけでなく、焼結後クランク等の欠陥を
生じ易くなる。
There is a temperature difference between the surface part of the powder layer and the part in contact with the base material 2, which increases the variation in porosity and not only makes it impossible to obtain a uniform sintered layer, but also causes defects such as cranks after sintering. It becomes more likely to occur.

第2加熱ゾーンEでは未分解の有機物質が完全にガス化
して除去される。このガス化等により真空焼結炉4内の
真空度は一時的に4Torrに低下するが20分経過後
にはl ’l’orrに復帰する。
In the second heating zone E, undecomposed organic substances are completely gasified and removed. Due to this gasification, etc., the degree of vacuum in the vacuum sintering furnace 4 temporarily decreases to 4 Torr, but returns to l'l'orr after 20 minutes.

■ 第3加熱ゾーン(第3図F) この加熱ゾーンFは、Ni自溶性合金の固相線(101
0〜1020℃)直下から液相線(1075〜1085
℃)を越える温度、即ち1000〜1200℃の範囲で
あり、Ni自溶性合金−Mo仮焼結層を、例えば液相線
を越える温度である1100〜1180℃、好ましくは
1160℃に60分間恒温保持してNi自溶性合金の溶
融により液相焼結処理を施し焼結層3を形成する。この
場合Ni自溶性合金の流動はMOの存在により妨げられ
、したがって形状維持性が良い。
■ Third heating zone (Fig. 3 F) This heating zone F is located at the solidus line (101
0~1020℃) to just below the liquidus line (1075~1085℃)
℃), i.e. in the range of 1000 to 1200℃, and the Ni self-fusing alloy-Mo pre-sintered layer is kept at a constant temperature of 1100 to 1180℃, preferably 1160℃, which is a temperature exceeding the liquidus line, for 60 minutes. The sintered layer 3 is formed by holding and performing a liquid phase sintering process by melting the Ni self-fusing alloy. In this case, the flow of the Ni self-fusing alloy is hindered by the presence of MO, and therefore shape retention is good.

第2加熱ゾーンEからの昇温速度は15〜b第2加熱ゾ
ーンEで既に高温加熱されているので、第3加熱ゾーン
Cまでの昇温時間は僅かである。
The temperature increase rate from the second heating zone E is 15-b. Since the second heating zone E has already been heated to a high temperature, the temperature increase time to the third heating zone C is short.

この第3加熱ゾーンFの保持時間が不充分であると焼結
が完全に行われず、焼結層3に欠陥を生ずる。
If the holding time in the third heating zone F is insufficient, sintering will not be completed completely and defects will occur in the sintered layer 3.

上記のように焼結温度を選定する理由は、焼結温度が1
200℃程度となると、焼結層3の寸法変化が大きくな
り、また炉温制御が容易でなく、その上炉内温度がばら
つくといった不具合があり、これらの不具合を除去する
ための作業温度としては1160℃が適当であるからで
ある。
The reason for selecting the sintering temperature as above is that the sintering temperature is 1
When the temperature reaches about 200°C, there are problems such as large dimensional changes in the sintered layer 3, difficulty in controlling the furnace temperature, and fluctuations in the temperature inside the furnace.The working temperature to eliminate these problems is This is because 1160°C is appropriate.

■ 冷却ゾーン(第3図G) この冷却ゾーンGは、前記焼結温度から略80θ℃まで
の1次冷却ゾーンGlと、略8oo℃がら略400℃ま
での2次冷却ゾーンG2と、略400℃から常温までの
3次冷却ゾーンG3とに分けられる。
■ Cooling zone (Fig. 3 G) This cooling zone G consists of a primary cooling zone Gl from the sintering temperature to approximately 80θ°C, a secondary cooling zone G2 from approximately 80°C to approximately 400°C, and a cooling zone G2 from approximately 80°C to approximately 400°C. It is divided into a tertiary cooling zone G3 from °C to room temperature.

1次冷却ゾーンG1は、焼結層3の高温下における安定
域であり、この冷却ゾーンG1では、できるだけ熱的な
刺激を避け、同時に冷却効率を考慮して最高2℃/分程
度のゆっくりした速度で冷却する。この冷却ゾーンG、
で急冷が行われると焼結層3にクランクが多発する。
The primary cooling zone G1 is a stable region of the sintered layer 3 under high temperatures.In this cooling zone G1, the temperature is cooled at a maximum speed of about 2°C/min in order to avoid thermal stimulation as much as possible, and at the same time take cooling efficiency into consideration. cooling at speed. This cooling zone G,
When rapid cooling is performed in the sintered layer 3, cranks occur frequently.

2次冷却ゾーンG2では、ベース材2の線膨張(12,
5x 1 (I’/℃)とAr+変態における寸法変化
を吸収するために最高3℃/分程度のゆっくりした速度
で冷却する。この場合焼結層3の線収縮は14.6 X
 10−’/’Cであるが、多孔質であルタメヘース材
2の収縮に追随する。この冷却ゾーンG!で急冷が行わ
れると焼結層3にクランクが多発する。
In the secondary cooling zone G2, linear expansion (12,
5x 1 (I'/°C) and cooled at a slow rate of about 3°C/min maximum to accommodate the dimensional change in the Ar+ transformation. In this case, the linear shrinkage of the sintered layer 3 is 14.6
10-'/'C, but it is porous and follows the shrinkage of the rutamehashi material 2. This cooling zone G! When rapid cooling is performed in the sintered layer 3, cranks occur frequently.

3次冷却ゾーンG3では、水、油等の液冷以外のガス冷
却(空冷を含む)により焼結層3およびベース材2の温
度を常温まで冷却する。
In the tertiary cooling zone G3, the temperature of the sintered layer 3 and the base material 2 is cooled to room temperature by gas cooling (including air cooling) other than liquid cooling such as water or oil.

上記焼結層3にはクラック等の欠陥の発生がスく、また
寸法変化も±0〜+21i以内と精度がfい。
The sintered layer 3 is free from defects such as cracks, and has a high accuracy of dimensional change within ±0 to +21i.

〔実施例■〕[Example ■]

前記実施例Iと同一寸法のベース材を炭素鋼JIS 5
50C材)より構成して焼鈍処理後項の表面に前記実施
例Iと同様の手法によりNi1I溶性合金−MOよりな
る焼結層を形成し、金属も屠体を得る。
The base material having the same dimensions as the above Example I was made of carbon steel JIS 5.
After annealing, a sintered layer made of Ni1I soluble alloy-MO was formed on the surface of the material (50C material) in the same manner as in Example I to obtain a metal carcass.

比較例1として、ベース材をねずみ鋳鉄(JISFC2
5材)より構成した金属積層体と、比較B2としてベー
ス材を球状黒鉛鋳鉄(JIS F CI55材)より構
成した金属積層体とを前記と同)1の手法によりそれぞ
れ製造する。両ベース材のτ法は前記実施例Iと同一で
ある。
As Comparative Example 1, the base material was gray cast iron (JISFC2
A metal laminate made of material 5) and a metal laminate made of spheroidal graphite cast iron (JIS F CI55 material) as a base material as comparison B2 are manufactured by the same method as described in 1). The τ method for both base materials is the same as in Example I above.

そして各金属積層体におけるベース材の長さもついて寸
法変化を調べたところ下表の結果が得Cれた。
When the length of the base material in each metal laminate was also examined for dimensional changes, the results shown in the table below were obtained.

( 上記表より明らかなように、実施例■および■1 おけ
る鋼糸ベース材の場合は金属粉末焼結工程で1 寸法変
化を起こすことがなく、寸法精度が極めて良好である。
(As is clear from the table above, in the case of the steel thread base materials in Examples (1) and (1), no dimensional change occurred during the metal powder sintering process, and the dimensional accuracy was extremely good.

実施例Iの場合、焼鈍工程で収縮するが、その収縮量は
極微量であるから同等問題に1 ならない。。れ、対し
、比較例1および、I、ユおけゝ る鋳鉄系ベースの場
合は焼鈍および金属粉末焼結工程で発生する鋳鉄特有の
生長現象により寸法変I 化が大きい。
In the case of Example I, although shrinkage occurs during the annealing process, the amount of shrinkage is extremely small and does not pose the same problem. . On the other hand, in the case of the cast iron base in Comparative Example 1 and I, the dimensional change I is large due to the growth phenomenon peculiar to cast iron that occurs during the annealing and metal powder sintering steps.

〔実施例■〕[Example ■]

縦、横20鶴、厚さ5鶴のベース材を炭素鋼鋳#(JI
S 5C46材)より構成し、その表面にサンドブラス
ト処理を施した後前記シート状可塑性物をアクリル樹脂
接着剤により貼着し、次いで前記実施例■と同様の手法
により、Ni自溶性合金−Moよりなる焼結層を形成し
て金属積層体を得る。
The base material is made of carbon steel (JI
After applying sandblasting to the surface, the sheet-like plastic material was attached using an acrylic resin adhesive, and then, using the same method as in Example 2, Ni self-fusing alloy-Mo was used. A sintered layer is formed to obtain a metal laminate.

比較例■として、前記同一寸法のベース材をねずみ鋳鉄
(JIS Fe12材)より構成し、前記と同様の手法
により金属積層体を製造する。
As Comparative Example (2), the base material having the same dimensions as described above is made of gray cast iron (JIS Fe12 material), and a metal laminate is manufactured by the same method as described above.

そして両金属積層体における焼結層のベース材に対する
密着度を調べたところ下表の結果が得られた。密着度試
験は焼結層を引張ることにより行われる。
The degree of adhesion of the sintered layer to the base material in both metal laminates was investigated, and the results shown in the table below were obtained. The adhesion test is performed by pulling the sintered layer.

上記表から明らがなように、鋳鋼ベース材と焼結層の密
着度は、鋳鉄ベース材を用いた場合に比べ極めて良好で
ある。
As is clear from the above table, the degree of adhesion between the cast steel base material and the sintered layer is extremely good compared to when a cast iron base material is used.

〔実施例■〕[Example ■]

プレス用金型の製造 第5図は金属積層体としての金型1.を示し、それはベ
ース材2Iと、そのベース面5に一体的に積層された金
属焼結層3.よりなるワーク成形部6とを備える。
Manufacture of press mold Figure 5 shows the mold 1 as a metal laminate. , which includes a base material 2I and a metal sintered layer 3 integrally laminated on the base surface 5. A workpiece forming section 6 is provided.

第6図(a)に示すように、ベース材2.は炭素轡鋳鋼
(JIS SC6材)より構成されもので、そのワーク
成形部6を形成するベース面5は完成された金型1.に
おけるワーク成形部6外面(鎖線示)よりも5〜2(l
n低くなるように成形されている。ベース材2.は鋳放
しのまま使用されるもので、実施例Iと同様に第3図に
示す歪とり焼鈍を施した後その黒皮を持つベース面5に
は清掃後アクリル樹脂接着剤を塗布する。
As shown in FIG. 6(a), the base material 2. is made of carbon cast steel (JIS SC6 material), and the base surface 5 forming the work forming part 6 is the completed mold 1. 5 to 2 (l
It is shaped so that n is low. Base material 2. is used as-cast, and after being subjected to strain relief annealing as shown in FIG. 3 in the same manner as in Example I, the base surface 5 having black scale is cleaned and then an acrylic resin adhesive is applied.

第6図(b)に示すように、ベース面5に前記シート状
可塑性物Pを貼着する。この場合所定厚さを得るために
はシート状可塑性物Pを積層する。
As shown in FIG. 6(b), the sheet-like plastic material P is adhered to the base surface 5. In this case, in order to obtain a predetermined thickness, sheet-like plastic materials P are laminated.

またベース材2Iを80〜100℃に加熱しておくと、
前記シート状可塑性物Pの貼着作業が容易に行われる。
Also, if base material 2I is heated to 80-100℃,
The work of pasting the sheet-like plastic material P is easily performed.

第2図(C)に示すように、可塑性物Pを模型Mにより
押圧してワーク成形部6を成形する。
As shown in FIG. 2(C), the plastic material P is pressed by the model M to form the workpiece forming part 6.

第6図(d)に示すように、ベース材2Iに囲い7を取
りつけて可塑性物Pの周りを囲み、可塑性物Pの表面を
セラミック粉末で覆い、その上に直径0.75 mlの
鋼球8を載せてバンクアップを行う。このバックアップ
は鋼球8の重さにより後述するNi自溶性合金−Mo粉
末の焼結時焼結層310寸法変化、即ち膨張を抑制する
ものである。
As shown in FIG. 6(d), an enclosure 7 is attached to the base material 2I to surround the plastic material P, the surface of the plastic material P is covered with ceramic powder, and a steel ball with a diameter of 0.75 ml is placed on top of it. Place 8 and bank up. This backup is to suppress the dimensional change, that is, expansion, of the sintered layer 310 during sintering of the Ni self-fusing alloy-Mo powder, which will be described later, due to the weight of the steel ball 8.

次いで、上記ベース材2.を真空焼結炉9に設置して実
施例■と同様に第3図に示す加熱−冷却条件で有機物質
の分解と金属粉末の焼結を行い、第5図の金型、を得る
Next, the base material 2. is placed in a vacuum sintering furnace 9, and the organic substance is decomposed and the metal powder is sintered under the heating-cooling conditions shown in FIG. 3 in the same manner as in Example 2, thereby obtaining the mold shown in FIG.

上記金型1、のベース材21は鋳鋼より構成されるので
、そのベース材2Iの金属粉焼結工程における寸法変化
が防止され、また焼結層31のベース材2.に対する密
着度が良好で優れた耐久性を有する。
Since the base material 21 of the mold 1 is made of cast steel, dimensional changes in the base material 2I during the metal powder sintering process are prevented, and the base material 2I of the sintered layer 31 is prevented from changing in size during the metal powder sintering process. It has good adhesion and excellent durability.

C9発明の効果 本発明によれば、ベース材に鋼糸のものを用いることに
より、金属粉末焼結工程におけるベース材の寸法変化を
防止すると共に金属焼結層のベース材に対する密着度を
良好にすることができ、したがって精密で眉間剥離のな
い金属積層体を得ることができる。
C9 Effects of the Invention According to the present invention, by using steel thread as the base material, dimensional changes of the base material in the metal powder sintering process are prevented, and the degree of adhesion of the metal sintered layer to the base material is improved. Therefore, a metal laminate with precision and no peeling between the eyebrows can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

、第1乃至第4図は本発明の第1実施例を示し、第1図
は金属積層体の断面図、第2図fat乃至1cIは金属
積層体の製造工程説明図、第3図は焼鈍工程における温
度と時間の関係を示すグラフ、第4図は焼結工程におけ
る温度と時間の関係を示すグラフ、第5および第6図は
本発明の第2実施例を示し、第5図はプレス用金型の断
面図、第6図(81乃至<diはプレス用金型の製造工
程説明図である。 P・・・可塑性物、 1・・・金属積層体、2・・・ベース材、3・・・金属
焼結層
, FIGS. 1 to 4 show a first embodiment of the present invention, FIG. 1 is a cross-sectional view of a metal laminate, FIGS. A graph showing the relationship between temperature and time in the process, FIG. 4 is a graph showing the relationship between temperature and time in the sintering process, FIGS. 5 and 6 show the second embodiment of the present invention, and FIG. Cross-sectional view of the press mold, FIG. 6 (81 to <di are explanatory diagrams of the manufacturing process of the press mold. P...Plastic material, 1...Metal laminate, 2...Base material, 3...metal sintered layer

Claims (1)

【特許請求の範囲】[Claims] 銅系ベース材に、焼結性金属粉末と合成樹脂バインダと
を混練した可塑性物を貼着する工程と、前記可塑性物中
の前記合成樹脂バインダを熱分解する共に前記金属粉末
を焼結して前記ベース材と一体化された金属焼結層を得
る工程と、よりなる金属積層体の製造方法。
A step of attaching a plastic material obtained by kneading sinterable metal powder and a synthetic resin binder to a copper-based base material, and pyrolyzing the synthetic resin binder in the plastic material and sintering the metal powder. A method for manufacturing a metal laminate, comprising: obtaining a sintered metal layer integrated with the base material.
JP59086742A 1984-04-28 1984-04-28 Manufacture of metallic laminate Pending JPS60229748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59086742A JPS60229748A (en) 1984-04-28 1984-04-28 Manufacture of metallic laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59086742A JPS60229748A (en) 1984-04-28 1984-04-28 Manufacture of metallic laminate

Publications (1)

Publication Number Publication Date
JPS60229748A true JPS60229748A (en) 1985-11-15

Family

ID=13895250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59086742A Pending JPS60229748A (en) 1984-04-28 1984-04-28 Manufacture of metallic laminate

Country Status (1)

Country Link
JP (1) JPS60229748A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498505A (en) * 1972-05-16 1974-01-25
JPS5183834A (en) * 1975-01-21 1976-07-22 Fukuda Metal Foil Powder JOSEIGOKINNYORUHYOMENKOKAHO
JPS5265111A (en) * 1975-11-25 1977-05-30 Inoue Japax Res Inc Production process of wear-resisting material
JPS5550406A (en) * 1978-10-04 1980-04-12 Seiko Instr & Electronics Ltd Production of portable watch case
JPS5983704A (en) * 1982-11-01 1984-05-15 Mazda Motor Corp Alloy powder sheet and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498505A (en) * 1972-05-16 1974-01-25
JPS5183834A (en) * 1975-01-21 1976-07-22 Fukuda Metal Foil Powder JOSEIGOKINNYORUHYOMENKOKAHO
JPS5265111A (en) * 1975-11-25 1977-05-30 Inoue Japax Res Inc Production process of wear-resisting material
JPS5550406A (en) * 1978-10-04 1980-04-12 Seiko Instr & Electronics Ltd Production of portable watch case
JPS5983704A (en) * 1982-11-01 1984-05-15 Mazda Motor Corp Alloy powder sheet and use thereof

Similar Documents

Publication Publication Date Title
Ichikawa Functionally graded materials in the 21st century: a workshop on trends and forecasts
Queheillalt et al. Synthesis of stochastic open cell Ni-based foams
SE448071B (en) PROCEDURE FOR THE PREPARATION OF TETA, STORED SINTERED ARTICLES ON IRON BASIS WITH SELECTED CHURCHED AREAS AND THEIR MEASURES
JP2010111943A (en) Method for producing sputtering target material
CN113981389A (en) Composite target material and manufacturing method thereof
GB2092619A (en) Porous sintered body and procedure for producing porous sintered bodies
CN114164425A (en) Preparation method of low-density refractory high-entropy alloy cladding layer for laser cladding
JPS60229748A (en) Manufacture of metallic laminate
JPS60221506A (en) Formation of sliding surface in machine tool
JPS613805A (en) Raw material sheet for sintered metallic body and its production
JPS613804A (en) Raw material sheet for sintered metallic body and its production
JPS60245703A (en) Production of metallic laminated body
JPS60221503A (en) Production of metallic mold
JPS55154551A (en) Manufacture of high chromium alloy material
JPS613806A (en) Raw material sheet for sintered metallic body and its production
CN110918976A (en) Forming method of NiAl-based alloy component
JPS60221501A (en) Production of sintered metallic body
JPS60221502A (en) Production of metallic mold
JPS60230906A (en) Production of die
JP2813159B2 (en) Manufacturing method of aluminum sintered material
JPS613807A (en) Raw material sheet for sintered metallic body and its manufacture
JP3922481B2 (en) Thermoelectric semiconductor sintered element manufacturing method and extrusion mold for thermoelectric semiconductor sintered body
JPH0147277B2 (en)
JPH11141316A (en) Valve seat body having two layer structure and its manufacture
JP2912761B2 (en) Manufacturing method of ferritic stainless steel