JPS6022945A - Hammer mill - Google Patents

Hammer mill

Info

Publication number
JPS6022945A
JPS6022945A JP12893983A JP12893983A JPS6022945A JP S6022945 A JPS6022945 A JP S6022945A JP 12893983 A JP12893983 A JP 12893983A JP 12893983 A JP12893983 A JP 12893983A JP S6022945 A JPS6022945 A JP S6022945A
Authority
JP
Japan
Prior art keywords
coal
particle size
grate
crushed
crusher
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12893983A
Other languages
Japanese (ja)
Inventor
大澤 旭
日比野 吉臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12893983A priority Critical patent/JPS6022945A/en
Publication of JPS6022945A publication Critical patent/JPS6022945A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crushing And Pulverization Processes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 第1図で従来の石炭の粉砕システムを説明すると、原炭
貯槽1に貯槽されている原炭11は、定量払出機2によ
り定量的に切り出されてシュート12を通って破砕機3
に連続供給される。定量連続供給された粒径約60龍以
下の原炭11は、破砕機3で粒径3N以下、80〜99
重量%の粉炭に破砕される。破砕された粉炭13は定量
供給装置4上において流量及び水分が検出され、シュー
ト14を通って湿式微粉砕機5に導入される。
DETAILED DESCRIPTION OF THE INVENTION To explain a conventional coal pulverizing system with reference to FIG. Shredder 3
Continuously supplied. The raw coal 11 with a particle size of about 60 yen or less, which is continuously supplied in a fixed amount, is crushed by the crusher 3 into particles with a particle size of 3 N or less, 80 to 99 yen.
crushed into pulverized coal by weight%. The flow rate and moisture content of the crushed pulverized coal 13 is detected on the quantitative feeder 4, and the crushed coal 13 is introduced into the wet pulverizer 5 through the chute 14.

湿式微粉砕機5において、石炭濃度が所定濃度(約40
〜70重量%)になるように流体15が流量調節弁8に
より流量制御され、さらに破砕された粉炭13が粒径2
00メッシュベス65〜90重量%の微粉炭16に湿式
粉砕される。微粉炭16は石炭・流体スラリー状態とな
り、スラリー貯槽6に貯えられ、ポンプ7により次工程
17に送られる。
In the wet pulverizer 5, the coal concentration reaches a predetermined concentration (approximately 40
The flow rate of the fluid 15 is controlled by the flow rate control valve 8 so that the particle size of the fluid 15 is 70% by weight.
The coal is wet-pulverized to 65-90% by weight of pulverized coal. The pulverized coal 16 becomes a coal/fluid slurry, is stored in a slurry storage tank 6, and is sent to the next step 17 by a pump 7.

第2図は第1図における破砕機3の構造を示し、供給口
21より供給された粒径約60寵以下の原炭11は、回
転ロータ23にハンマピン26を介して取付けられたハ
ンマー22により破砕される。
FIG. 2 shows the structure of the crusher 3 in FIG. Shattered.

ハンマー22により破砕された石炭は、衝突板28にた
たきつけられ、再び破砕作用を受けて更に小さい粒度と
なる。回転ロータ23は駆動装置に連結したロータ軸2
4−により、キー25を介して回転駆動される。回転ロ
ータ23の回転方向はロータ軸24に連結した駆動装置
により、矢印A又はB方向に正転又は逆転できるように
なっている。
The coal crushed by the hammer 22 is struck by the collision plate 28 and subjected to the crushing action again to become smaller in particle size. The rotating rotor 23 has a rotor shaft 2 connected to a drive device.
4-, it is rotationally driven via the key 25. The rotating rotor 23 can be rotated forward or reverse in the direction of arrow A or B by a drive device connected to the rotor shaft 24.

破砕された石炭は隙間Cが設定された格子状のグレート
27を通過して破砕機3下方へ排出される。
The crushed coal passes through a grid-like grate 27 in which gaps C are set, and is discharged downward from the crusher 3.

グレートの隙間Cはグレートへの石炭の付着性、要求ξ
れる粉炭の粒度等により決定される。
The gap C between the grate is the adhesion of coal to the grate, the requirement ξ
It is determined by the particle size of the pulverized coal used.

ここで第3図及び第4図に、第2図に示す破砕機3を用
いた運転データ例を示す。
Here, FIGS. 3 and 4 show examples of operation data using the crusher 3 shown in FIG. 2.

この時の運転条件は次の通りであった。The operating conditions at this time were as follows.

(原炭) 炭種 ワークワース炭 粒度 約608以下 (破砕機)ハンマー周速 60m/秒 グレート隙間C12,7m又は19鶴 すなわち、第3図及び第4図は原炭11全水分く固有水
分と表面水分の合計)と、各グレートの隙間Cにおける
破砕された粉炭13の粒度(3w以下重量%)及び破砕
動力原単位(原炭1トン当りの正味消費動力)の関係を
示す。これによると、同一運転条件にもかかわらず原炭
11全水分が増加するにつれて、破砕された粉炭13の
粒度は細かく、変動中も狭くなるが、破砕動力原単位は
大きくなるのが分かる。またグレートの隙間Cが粗くな
ると、全般的に破砕された粉炭13の粒度は粗く変動r
lJも広くなるが、破砕動力原単位は小さくなることも
分かる。
(Raw coal) Coal type Warkworth coal particle size Approximately 608 or less (Crusher) Hammer circumferential speed 60 m/sec Grate gap C12, 7 m or 19 Tsuru In other words, Figures 3 and 4 show raw coal 11 total moisture and inherent moisture. The relationship between the total surface moisture), the particle size of the crushed pulverized coal 13 in the gap C of each grate (3w or less weight %), and the crushing power unit (net power consumption per ton of raw coal) is shown. According to this, it can be seen that as the total water content of the raw coal 11 increases despite the same operating conditions, the particle size of the crushed powdered coal 13 becomes finer and narrower even during fluctuation, but the crushing power consumption rate increases. Furthermore, as the gap C between the grate becomes coarser, the particle size of the crushed coal 13 generally becomes coarser and fluctuates r.
It can also be seen that although lJ also becomes wider, the crushing power consumption unit becomes smaller.

これは破砕された石炭が、原炭全水分の増加に伴ってグ
レート27に付着し易く之り、グレートの隙間Cを閉塞
させ、破砕された石炭が排出されずに破砕機3内部に滞
留し、ハンマー22に衝突する頻度が増えるためと考え
られる。またグレートの隙間Cが粗くなると、破砕され
た石炭がグレートの隙間Cを閉塞させる点が高水分側に
ずれるためと考えられる。
This is because the crushed coal tends to adhere to the grate 27 as the total moisture content of the raw coal increases, blocking the gap C between the grate and causing the crushed coal to remain inside the crusher 3 without being discharged. This is thought to be due to an increase in the frequency of collisions with the hammer 22. It is also considered that when the gap C between the grate becomes coarser, the point at which the crushed coal closes the gap C between the grate shifts to the high moisture side.

このようなグレートの隙間Cが一定の破砕機3を使用す
る従来の粉砕システム(第1図)では、原炭11の全水
分が年間を通して5〜6重量%から15〜16重量%ま
で変動する為、高水分側におけるグレートへの石炭の付
着性等からグレートの隙間Cはかなり天きな隙間のもの
が選定されるので、破砕された粉炭13の粒度は粗く、
湿式微粉砕機5における粉砕動力原単位は大となり、ま
た破砕された粉炭13の粒度が大きく変動し、ひいては
湿式微粉砕機5出口での微粉炭16の粒度にも変動を生
じることとなり、不都合であった。
In a conventional crushing system (Fig. 1) using a crusher 3 with a constant grate gap C, the total moisture content of the raw coal 11 varies from 5 to 6% by weight to 15 to 16% by weight throughout the year. Therefore, in view of the adhesion of coal to the grate on the high-moisture side, the gap C between the grate is selected to be fairly wide, so the particle size of the crushed powdered coal 13 is coarse.
The unit of power for crushing in the wet pulverizer 5 becomes large, and the particle size of the crushed pulverized coal 13 varies greatly, which in turn causes fluctuations in the particle size of the pulverized coal 16 at the outlet of the wet pulverizer 5, which is inconvenient. Met.

また破砕された粉炭13の粒度が一番粗くなると思われ
る低水分側で、要求される粉炭の粒度が得られるグレー
トの隙間Cを選定した場合、高水分側においては過粉砕
により破砕動力原単位が非常に大きくなり不具合であっ
た。
In addition, if the grate gap C that provides the required particle size of the pulverized coal is selected on the low moisture side, where the particle size of the crushed pulverized coal 13 is expected to be the coarsest, on the high moisture side, the crushing power consumption is due to over-pulverization. became very large, which was a problem.

前述の如〈従来装置では、原炭11の全水分の変動によ
り、破砕された粉炭13の粒度及び微粉炭16の粒度に
変動を生じ、ひいては石炭・流体混合燃料のスラリー性
状、燃焼特性等に変動が生じ、不具合となる。またそれ
らの不具合を吸収する為には、非常に大きなモータ動力
が必要となる。
As mentioned above, in the conventional device, variations in the total water content of the raw coal 11 cause variations in the particle size of the crushed pulverized coal 13 and the particle size of the pulverized coal 16, which in turn affects the slurry properties, combustion characteristics, etc. of the coal/fluid mixed fuel. Fluctuations occur and problems occur. Also, in order to absorb these defects, a very large motor power is required.

本発明ではこれら従来の不具合を解決し、しかも粉砕動
力原単位の低減化(省エネルギー化)を図ることを目的
とするもので、供給原料を粉砕するハンマーと破砕粉の
粒度を媚整するグレートとを具えたハンマーミルにおい
て、同グレートを前記ハンマーの駆動軸中心を通る垂直
線で区分し、同区分される左右のグレート隙間を夫々異
ならせて形成すると共に、前記ハンマーを正逆回転可能
に構成してなるハンマーミルを提供せんとするものであ
る。
The purpose of the present invention is to solve these conventional problems and also to reduce the unit power consumption (energy saving). In a hammer mill equipped with a hammer mill, the grates are divided by a vertical line passing through the center of the drive shaft of the hammer, gaps between the left and right grates are formed to be different from each other, and the hammer is configured to be able to rotate in forward and reverse directions. The aim is to provide a hammer mill made of

以下本発明の実施例を図面について説明すると、第5図
〜第7図は本発明の実施例牽示すが、この実施例におい
て従来と異なる点は破砕機の構造であり、他は同一であ
る。図において粒径約60醇以下の原炭11を破砕機3
a及び湿式微粉砕機5により最終的に粒径200メツシ
ュパス65〜90重量%の微粉炭16に粉砕する場合、
原炭11を粒径約60tl以下から破砕機3aによりあ
る所定粒度まで破砕する破砕動力原単位をHl (KW
−HlT)、ある所定粒度から湿式微粉砕機5により最
終粒径200メツシュバス65〜90重量%まで湿式粉
砕する粉砕動力原単位をH2(KW−)1/T)、その
合計粉砕動力原単位をH(KW−HlT)(七H1(’
RW−H/T)+H2(KW−HlT)) とすると、
各粉砕動力原単位の関係は第5図の通りである。
An embodiment of the present invention will be described below with reference to the drawings. Figs. 5 to 7 show an embodiment of the present invention. In this embodiment, the difference from the conventional one is the structure of the crusher, and the others are the same. . In the figure, raw coal 11 with a particle size of about 60 or less is crushed by crusher 3.
When finally pulverized into pulverized coal 16 with a particle size of 200 mesh pass 65 to 90% by weight by a and wet pulverizer 5,
Hl (KW
-HlT), the grinding power consumption rate for wet grinding from a certain particle size to a final particle size of 200 mesh bath 65 to 90% by weight using the wet pulverizer 5 is H2(KW-)1/T), and the total grinding power consumption rate is H2(KW-)1/T). H(KW-HIT)(7H1('
RW-H/T)+H2(KW-HIT)), then
The relationship between each grinding power unit is shown in Figure 5.

これによると粒径約60鶴以下の原炭11を破砕機3a
及び湿式微粉砕機5により、最終的に粒径200メツシ
ユバス65〜9’ 01ii量%の微粉炭13に粉砕す
る場合、合計粉砕動力原単位H(KW−H/T)を最小
とするためには、破砕機3aにより粒径約60m以下の
原炭11を粒径3鶴以下95重量%程度の粉炭に破砕す
るこ詰が重要である。
According to this, the raw coal 11 with a particle size of about 60 Tsuru or less is crushed by the crusher 3a.
In order to minimize the total pulverization power unit H (KW-H/T) when the wet pulverizer 5 finally pulverizes into pulverized coal 13 with a particle size of 200 mesh 65~9'01ii mass%. It is important to use the crusher 3a to crush the raw coal 11 with a particle size of about 60 m or less into powdered coal with a particle size of about 3 cranes or less and about 95% by weight.

またグレート27の隙間Cが一定な破砕機における原炭
11の全水分の変動に伴う破砕された粉炭13の粒度の
変動、及び高水分時の過粉砕による破砕動力原単位の極
端な増加を防止するための破砕機3aの構造を第6図に
示す。
In addition, in a crusher where the gap C between the grate 27 is constant, fluctuations in the particle size of the crushed powdered coal 13 due to fluctuations in the total moisture content of the raw coal 11 are prevented, and extreme increases in the crushing power unit due to excessive crushing when moisture content is high are prevented. The structure of the crusher 3a for this purpose is shown in FIG.

これはグレート取付部に2種類のグレート(X部には隙
間C1のグレー1−27a、Y部には隙間C2のグレー
ト27b) (<CI)を設置したものであり、第7図
はこの破砕機3aを組込んだ粉砕システムである。さて
第7図では定量払出機2上で原炭11の水分が検出され
、回転ロータ23が中低水分時には矢印Bの方向に回転
することによって、Y部に取付けられたグレート27b
 (グレートの隙間C2)により粒径3 mmm以下9
笛方向に回転することによって、X部に取付けられたグ
レート27−a(グレートの隙間CI)により同様に粒
径3鰭以下、95重量%程度の粒度に破砕され、原炭1
1の全水分が変動しても破砕された粉炭1゛3の粒度、
ひいては微粉炭16の粒度を一定に保つことができ、し
かも高水分時の過粉砕による破砕動力原単位の極端な増
加が防止できる。
This is a grate installation with two types of grates (Gray 1-27a with gap C1 in the This is a crushing system incorporating a machine 3a. Now, in FIG. 7, when the moisture content of the raw coal 11 is detected on the quantitative dispensing machine 2, the rotating rotor 23 rotates in the direction of arrow B when the moisture content is medium or low.
(Grade gap C2) grain size 3 mm or less9
By rotating in the flute direction, the grate 27-a (grate gap CI) attached to the
The particle size of crushed pulverized coal 1゛3 even if the total moisture content of 1 fluctuates,
As a result, the particle size of the pulverized coal 16 can be kept constant, and furthermore, it is possible to prevent an extreme increase in the crushing power consumption rate due to excessive crushing when the moisture content is high.

次に第6図及び第7図の実施例で本発明の粉砕システム
を説明する。すなわち原炭貯槽lに貯槽されている原炭
11は、定量払出機2により定量的に切り出され、シュ
ート12を通って破砕機3aに連続供給される。定量連
続供給された粒径約60額以下の原炭11は、定量払出
機2で全水分が検出され、駆動装置に連結したロータ軸
24によりキー25を介して自転ロータ23は高水分時
には第6図の矢印A、中低水分時には矢印B方向に回転
駆動される。
Next, the crushing system of the present invention will be explained with reference to the embodiments shown in FIGS. 6 and 7. That is, the raw coal 11 stored in the raw coal storage tank 1 is quantitatively cut out by the quantitative dispenser 2, and is continuously supplied to the crusher 3a through the chute 12. The raw coal 11 with a grain size of about 60 yen or less, which is continuously supplied in a fixed quantity, has a fixed quantity dispensing machine 2 that detects the total water content, and a rotor shaft 24 connected to a drive device controls a rotating rotor 23 via a key 25 to turn off the rotor 23 when the moisture content is high. It is rotated in the direction of arrow A in Figure 6 and arrow B when the moisture content is medium to low.

供給口21より供給された粒径約60龍以下の原炭11
は、回転ロータ23に取付けられたハンマー22により
破砕され、衝突板28にたたきつ。
Raw coal 11 with a particle size of approximately 60 dragons or less supplied from the supply port 21
is crushed by the hammer 22 attached to the rotating rotor 23 and hits the collision plate 28.

けられ、再び破砕作用を受けて更に小さい粒度となる。The particles are crushed and subjected to crushing action again to become smaller particles.

破砕された石炭は、破砕された粉炭13の粒度が粒径3
fi以下、95重量%程度となるように設定されたグレ
ートの隙間(高水分時はC1、中低水分時はC2)を通
過して破砕機3下方へ排出される。
The crushed coal has a particle size of 3.
fi or less, and is discharged to the lower part of the crusher 3 through a gap in the grate (C1 when the moisture content is high, C2 when the moisture content is medium-low), which is set to be about 95% by weight.

破砕された粉炭13は定量供給装置4上において流量及
び水分が検出され、シュート14を通って湿式微粉砕機
5に導入される。湿式微粉砕機5において石炭濃度が所
定の濃度(約40〜70重量%)になるように流体15
が流量調節弁8により流量制御され、更に粒度(粒径3
fi以下95重量%程度)が一定に破砕された粉炭13
が最終粒nzooメンシェパス65〜90重量%の微粉
炭16に湿式粉砕される。微粉炭16は石炭・流体スラ
リー状態となってスラリー貯槽6に貯えられ、ポンプ7
により次工程17に送られる。
The flow rate and moisture content of the crushed coal 13 is detected on the quantitative feeder 4, and the crushed coal 13 is introduced into the wet pulverizer 5 through the chute 14. In the wet pulverizer 5, the fluid 15 is heated so that the coal concentration becomes a predetermined concentration (approximately 40 to 70% by weight).
The flow rate is controlled by the flow rate control valve 8, and the particle size (particle size 3
Pulverized coal 13 in which approximately 95% by weight of less than fi) has been crushed to a certain degree
is wet-milled into final grains of 65-90% by weight pulverized coal 16. The pulverized coal 16 becomes a coal/fluid slurry state and is stored in the slurry storage tank 6, and the pump 7
It is then sent to the next step 17.

以上詳細に説明した如く本発明は構成されているので、
粒径約60n以下の原料を、破砕機及び湿式微粉砕機に
より最終的に粒径200メ・ノシュパス65〜90重量
%の微粉に粉砕する場合の合計粉砕動力原単位を最小と
しく粉砕動力の低減、省エネルギー化)、また原料の全
本分が変動しても破砕された破砕粉の粒度、ひいては微
粉の粒度を一定に保つことが可能となる(石炭・流体ス
ラリーの性状の均一安定化)。
Since the present invention is configured as explained in detail above,
When pulverizing raw materials with a particle size of approximately 60 nm or less into a fine powder with a final particle size of 200 m/s 65 to 90% by weight using a crusher and a wet pulverizer, the total pulverizing power unit should be minimized. In addition, it is possible to keep the particle size of the crushed powder and even the particle size of the fine powder constant even if the total amount of raw materials changes (uniform stabilization of the properties of the coal/fluid slurry). .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の石炭の粉砕システム図、第2図は第1図
における破砕機の断面図、第3図及び第4図は第2図の
破砕機を用いた運転データ例を示す説明図、第5図は本
発明の実施例を示すハンマーミルによる各粉砕動力原単
位の関係を示す説明図、第6図は本発明の実施例を示す
破砕機の断面図、第7図は第6図の破砕機を用いた石炭
の粉砕システム図である。 図の主要部分の説明 3a−・・破砕機 11・−原炭 13、16 − 微粉炭 22−ハンマー2、t−−・
ロータ軸 27a ・−=−隙間C1のグレート27 
b −隙間C2のグレート
Figure 1 is a diagram of a conventional coal crushing system, Figure 2 is a sectional view of the crusher in Figure 1, and Figures 3 and 4 are explanatory diagrams showing examples of operation data using the crusher in Figure 2. , FIG. 5 is an explanatory diagram showing the relationship between each crushing power unit by a hammer mill showing an embodiment of the present invention, FIG. 6 is a cross-sectional view of a crusher showing an embodiment of the present invention, and FIG. It is a diagram of a coal crushing system using the crusher shown in the figure. Explanation of main parts of the figure 3a--Crushing machine 11--Raw coal 13, 16-Pulverized coal 22-Hammer 2, t--
Rotor shaft 27a ・-=- Grate 27 of gap C1
b - Grate of gap C2

Claims (1)

【特許請求の範囲】[Claims] 供給原料を粉砕するハンマーと破砕粉の粒度を調整する
グレートとを具えたハンマーミルにおいて、同グレート
を前記ハンマーの駆動軸中心を通る垂直線で区分し、同
区分される左右のグレート隙間を夫々異ならせて形成す
ると共に、前記ハンマーを正逆回転可能に構成してなる
ことを特徴とするハンマーミル。
In a hammer mill equipped with a hammer for crushing feed materials and a grate for adjusting the particle size of the crushed powder, the grate is divided by a vertical line passing through the center of the drive shaft of the hammer, and the gap between the left and right grate is defined respectively. A hammer mill characterized in that the hammers are formed in different shapes and configured to be rotatable in forward and reverse directions.
JP12893983A 1983-07-15 1983-07-15 Hammer mill Pending JPS6022945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12893983A JPS6022945A (en) 1983-07-15 1983-07-15 Hammer mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12893983A JPS6022945A (en) 1983-07-15 1983-07-15 Hammer mill

Publications (1)

Publication Number Publication Date
JPS6022945A true JPS6022945A (en) 1985-02-05

Family

ID=14997140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12893983A Pending JPS6022945A (en) 1983-07-15 1983-07-15 Hammer mill

Country Status (1)

Country Link
JP (1) JPS6022945A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124668A (en) * 1988-11-02 1990-05-11 Matsushita Electric Ind Co Ltd Automatic answering telephone system
JP2006326479A (en) * 2005-05-25 2006-12-07 Kawakubo Kensuke Pelletizer and can material processing system equipped with the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124668A (en) * 1988-11-02 1990-05-11 Matsushita Electric Ind Co Ltd Automatic answering telephone system
JP2006326479A (en) * 2005-05-25 2006-12-07 Kawakubo Kensuke Pelletizer and can material processing system equipped with the same

Similar Documents

Publication Publication Date Title
JPH089016B2 (en) Grinding device and grinding method by vertical roller mill
JPS5927789B2 (en) Coal/water suspension for coal gasification and its production method
JPS6022945A (en) Hammer mill
JPS59162961A (en) Coal crusher
JP2928567B2 (en) Vertical mill
KR970005189Y1 (en) The crusher for grain
JP3276292B2 (en) Horizontal ultra-fine grain mill
JPH074543B2 (en) Vertical crusher
CN216359053U (en) Multifunctional grain crusher
US3189287A (en) Feed grinder
US3498548A (en) Fluff mill
JP2695733B2 (en) Operating method of horizontal dry mill
JPH05111643A (en) Pulverizing device by vertical mill
CN2331432Y (en) Grain and forage multifunction grinder without sieve and dust
US1828143A (en) Feed grinder
JPH03217251A (en) Vertical type grinder
JP2961041B2 (en) Vertical crusher
JPH02158688A (en) Production of concentrated coal-water slurry
JPH09143519A (en) Method for operating blast furnace by blowing pulverized coal
JP4004143B2 (en) Method for producing carbonaceous solid-water slurry
JPS60187353A (en) Control of discharge amount of foreign matter
US2097910A (en) Pulverizer
JPH0639799Y2 (en) Medium stirring type crusher
NZ523667A (en) Crusher
JPS63116750A (en) Production unit for coal-water slurry