JPS60228616A - Manufacture of hot rolled steel strip of ferrite stainless steel - Google Patents

Manufacture of hot rolled steel strip of ferrite stainless steel

Info

Publication number
JPS60228616A
JPS60228616A JP59083302A JP8330284A JPS60228616A JP S60228616 A JPS60228616 A JP S60228616A JP 59083302 A JP59083302 A JP 59083302A JP 8330284 A JP8330284 A JP 8330284A JP S60228616 A JPS60228616 A JP S60228616A
Authority
JP
Japan
Prior art keywords
hot
stainless steel
steel
less
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59083302A
Other languages
Japanese (ja)
Other versions
JPH0617516B2 (en
Inventor
Masao Koike
小池 正夫
Toshiaki Mase
間瀬 俊朗
Kazutoshi Kunishige
国重 和俊
Shoichi Tsunematsu
章一 恒松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP59083302A priority Critical patent/JPH0617516B2/en
Publication of JPS60228616A publication Critical patent/JPS60228616A/en
Publication of JPH0617516B2 publication Critical patent/JPH0617516B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To mnufacture a hot rolled steel plate of high toughness ferrite stainless steel by hot rolling a high purity ferrite stainless steel, then, immediately cooling rapidly and winding said plate at <= a specified temp. CONSTITUTION:The high purity ferrite stainless steel contg. by weight <2% Mn, 9-35% Cr, if necessary >= one kind among 0.5-5% Mo, 1-5% Si, 1-5% Al, or furthermore if necessary, <=1% of >= one kind among Ti, Nb, Zr and impurities decreased to <0.03% C, <0.04% P, <0.01% S, <0.03% N respectively is melted. The ingot is hot rolled to a steel strip, said strip is immediately cooled rapidly by water spray, etc. by >=10 deg.C/sec cooling rate, and wound to coil at <=450 deg.C temp. The ferrite stainless steel strip having superior toughness as the hot rolled state is obtained.

Description

【発明の詳細な説明】 この発明は、靭性の優れた高純度フェライト系ステンレ
ス鋼熱延銅帯の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a high purity ferritic stainless steel hot rolled copper strip having excellent toughness.

〈産業上の利用分野〉 近年、鋼の真空溶解法や電子ビーム溶解精製法の技術的
進歩にともない、高耐食性フェライト系ステンレス鋼或
いは高耐熱性フェライト系ステンレス鋼として、9〜3
5%(以下、成分割合を表わす係は重量係とする)のC
rを含むとともに、開会性を高めるためにはMoを5%
以下、そして面1熱性を高めるためにはS+及びAlの
1種以上を5%以下含み、かつC含有量を002%以下
に、N含有量を002係以下にそれぞれ抑えた高純度フ
ェライト系ステンレス鋼が注目されるようになってきた
<Industrial Application Fields> In recent years, with the technological advances in vacuum melting and electron beam melting and refining methods of steel, 9 to 3
C of 5% (hereinafter, the component ratio is expressed as weight)
In addition to containing r, 5% Mo is added to improve openness.
Below, and in order to improve surface 1 thermal properties, high-purity ferritic stainless steel containing 5% or less of one or more of S+ and Al, and suppressing the C content to 002% or less and the N content to 002% or less. Steel has started to attract attention.

なぜなら、これらの高純度フェライト系ステンレス鋼は
、耐食部材用のものではSUS 304や5US3]6
等のオーステナイト系ステンレス鋼で問題とされる応力
腐食割れに対して強い抵抗性を示し、一方耐熱部材用の
ものではオーステナイト系ステンレス鋼よりもはるかに
優れた耐酸化性を有することが明らかとなってきたから
であり、このため、最近では化学工業用各種プラント、
家庭用品、ストーブ部品、自動車部品等、広範囲な用途
に使われ始めるようになっている。
This is because these high-purity ferritic stainless steels are used for corrosion-resistant parts such as SUS 304 and 5US3]6
It has been shown that it has strong resistance to stress corrosion cracking, which is a problem with austenitic stainless steels such as stainless steels, and that it has much better oxidation resistance than austenitic stainless steels for heat-resistant parts. For this reason, recently various plants for the chemical industry,
It has begun to be used in a wide range of applications, including household goods, stove parts, and automobile parts.

ところが、一般にフェライト系ステンレス鋼はオーステ
ナイト系ステンレス鋼又は二相ステンレス鋼に比べて靭
性が劣るものであるけれども、特にCr、 Mo、 S
i、 A1等を多く含有した前記フェライト系ステンレ
ス鋼では、熱延後のホットコイルに著しい脆化が生じ、
これがコイルの展開や冷間圧延等のような常温における
コイル処理工程でのトラブル発生の原因となって、その
後の製品製造コストの上昇や、甚だしいときにはコイル
処理の不能と言った事態を招く恐れがあるとの問題を抱
えていたのである。
However, although ferritic stainless steels generally have inferior toughness compared to austenitic stainless steels or duplex stainless steels, they especially contain Cr, Mo, and S.
In the ferritic stainless steel containing a large amount of i, A1, etc., significant embrittlement occurs in the hot coil after hot rolling.
This can cause problems in coil processing processes at room temperature, such as coil unfolding and cold rolling, which can lead to subsequent increases in product manufacturing costs, and in extreme cases, the coil processing may become impossible. I had a problem with that.

〈従来技術〉 もちろん、上述のような高純度フェライト系ステンレス
鋼熱延鋼帯にみられる脆化現象を阻止しようとして従来
から様々な研究がなされており、例えば、 ″熱間圧延の際の終了温度を900℃以上にするととも
に、高温巻取りを行った銅帯を直ちに水槽中に入れて水
冷すると、顕著な靭性改善効果が現われる。゛ 等の報告も見受けられるようになってきた(「鉄と鋼」
、第65年第14号、第120頁)。
<Prior art> Of course, various studies have been conducted in the past in an attempt to prevent the embrittlement phenomenon observed in high-purity ferritic stainless steel hot-rolled steel strips as described above. If the temperature is raised to 900°C or higher and the copper strip that has been coiled at high temperature is immediately placed in a water bath and cooled, a remarkable effect of improving toughness will appear. and steel”
, No. 65, No. 14, p. 120).

しかしながら、巻取りの直後に熱延鋼帯を水槽に入れて
水冷するためにはそれ相応の特別仕様の設備を必要とす
る上、このような方法によって得られた熱延銅帯の靭性
値にはバラツキが多く、従って、前記提案になる方法は
、靭性の優れた高純度フェライト系ステンレス鋼熱延銅
帯を工業的規模で安定して量産する手段とはほど遠いも
のであるとの結論を出さざるを得ないものであった。
However, placing the hot-rolled steel strip in a water tank immediately after winding and cooling it with water requires equipment with corresponding special specifications, and the toughness value of the hot-rolled copper strip obtained by this method is Therefore, it was concluded that the proposed method is far from being a means to stably mass-produce high-purity ferritic stainless steel hot-rolled copper strips with excellent toughness on an industrial scale. It was inevitable.

〈発明の目的〉 本発明者等は、上述のような観点から、熱延コイルの冷
間展開、冷間圧延及び各種ハンドリング時に発生しがち
な割れ等のトラブルを生じることのない、靭性の優れた
高純度フェライトステンレス鋼熱延銅帯を、各別な設備
等を要するととなく安定して量産し得る方法を見出すべ
く、試行錯誤を繰り返しながら研究を行った結果、以下
に示す如き知見を得るに至ったのである。
<Purpose of the Invention> From the above-mentioned viewpoint, the present inventors have devised a method for producing a hot-rolled coil with excellent toughness that does not cause troubles such as cracking that tend to occur during cold rolling, cold rolling, and various types of handling. In order to find a method to stably mass-produce high-purity ferritic stainless steel hot-rolled copper strips without requiring separate equipment, we conducted research through repeated trial and error, and as a result, we have made the following findings. I ended up getting it.

く知見事項〉 (ai 高純度フェライト系ステンレス鋼、中でも特に
高耐食性を有する高Cr−高MO鋼、或いは高配5− 熱性を有する高81.高にを含む高Cr鋼等の熱延鋼帯
にみられる脆化原因は、熱延時或いは熱延巻取り時の熱
ザイクルにあり、これによって、MOを多く含有するも
のでは熱間圧延中、特に熱間圧延終了後から巻取り・冷
却の工程において非常に脆い金属間化合物を析出するこ
ととなり、一方、Moを含有せずにCr、 Si及びA
114を多く含有するものであっても、その原因につい
ては不明な点が多く、従来より知られている475℃脆
性も影響しているようではあるものの、やはり巻取り時
の熱サイクルが脆化の大きな原因になっているようであ
ること。
(Ai) High-purity ferritic stainless steels, especially high-Cr-high-MO steels with high corrosion resistance, or hot-rolled steel strips such as high-Cr steels with high-temperature properties of 81. The cause of the embrittlement observed is the thermal cycle during hot rolling or hot rolling coiling.As a result, in the case of materials containing a large amount of MO, embrittlement occurs during hot rolling, especially during the coiling and cooling process after hot rolling. Very brittle intermetallic compounds will precipitate, while Cr, Si and A without Mo contain
Even if the product contains a large amount of 114, there are still many unknowns as to the cause of this, and although the previously known 475°C embrittlement seems to be a factor, the thermal cycle during winding is also responsible for the embrittlement. seems to be a major cause of

(bl ところが、高純度フェライト系ステンレス鋼を
熱間圧延した後、直ちに従来では考えられないような著
しく低い温度域にまで急冷を行い、該低温域で巻取りを
実施すると、熱延後の冷却過程或いは巻取り後の冷却途
中で生じがちな475℃脆性も有効に抑制されるなど脆
化原因がスムーズに回避され、熱延のままでも常温での
コイル展開が可能な高靭性熱延銅帯を安定して製造でき
るこ6− と。
(bl) However, after hot-rolling high-purity ferritic stainless steel, it is immediately quenched to an extremely low temperature range that is unthinkable in the past, and if coiling is performed in this low-temperature range, the cooling after hot rolling High-toughness hot-rolled copper strip that smoothly avoids the causes of embrittlement, such as effectively suppressing 475°C embrittlement that tends to occur during the cooling process or during cooling after coiling, and can be rolled into coils at room temperature even when hot-rolled. It is possible to stably manufacture 6-.

(cl 即ち、高純度フェライト系ステンレス鋼を熱間
圧延した後1〜b 却し、巻取り温度: 800〜700℃で巻取ると言う
従来の処理条件では、得られる熱延鋼帯の衝撃破面遷移
温度が0℃以上と靭性に劣ることとなり、コイル展開時
に割れを発生しやすくなったのに対して、上記(bi項
に示したように、熱間圧延後直ちに急冷を行い、低温巻
取りを実施した熱延銅帯では、衝撃破面遷移温度が一2
0℃以下となって、冬期であってもコイル展開時等にお
けろ割れの発生を生じなくなること。
(cl) In other words, under the conventional processing conditions of hot rolling high-purity ferritic stainless steel, cooling it, and then winding it at a coiling temperature of 800 to 700°C, the resultant hot-rolled steel strip would not undergo impact fracture. If the surface transition temperature is 0°C or higher, the toughness is poor and cracks are likely to occur during coil development. The impact fracture transition temperature of the hot-rolled copper strip tested was 12
The temperature should be below 0°C, so that cracks will not occur when the coil is expanded, even in the winter.

〈発明の構成〉 この発明は、上記知見に基づいてなされたも力であり、 Mn:2%以下、Cr:9−35%。<Structure of the invention> This invention was made based on the above knowledge, and Mn: 2% or less, Cr: 9-35%.

を含有するとともに、必要((より、 M’o : 0.5〜5% Sl:1〜5係。In addition to containing the necessary ((more, M’o: 0.5-5% Sl: Sections 1 to 5.

Al:1〜5% のうちの1種以」二を含み、更に必要によりTI、Nb
 及びZrのうちの1種以上:1%以下。
Al: 1 to 5% Contains one or more of the following, and further contains TI and Nb as necessary.
and one or more of Zr: 1% or less.

をも含有し、 残部:Fe及び不純物 から成る成分組成を有しており、かつ不純物元素である
c、p、s及びNの含有量を、それぞれ、C:0.03
%以下。
, and the remainder: Fe and impurities, and the content of impurity elements c, p, s, and N is C: 0.03, respectively.
%below.

P:004%以下。P: 004% or less.

S:OO]係以下。S:OO] section and below.

N:0.03%以下 に抑えた高純度フェライト系ステンレス鋼の熱延鋼帯を
製造するに際し、前記成分組成の鋼を熱間圧延した後、
直ち[1,0℃/sec以上の冷却速度にて急冷を行い
、450℃以下の温度で巻取ることにより、靭性の優れ
た高純度フェライト系ステンレス鋼熱延銅帯を安定して
量産できるようにした点、 に特徴を有1−るものである。
When producing a hot-rolled steel strip of high-purity ferritic stainless steel with N: 0.03% or less, after hot-rolling the steel with the above-mentioned composition,
By performing rapid cooling at a cooling rate of 1.0°C/sec or more and winding at a temperature of 450°C or less, it is possible to stably mass-produce high-purity ferritic stainless steel hot-rolled copper strips with excellent toughness. It has the following characteristics:

次に、この発明の方法において、鋼の組成成分量、及び
熱延・巻取り条件を前記の如くに数値限定した理由を説
明する。
Next, in the method of the present invention, the reason why the amounts of the steel composition and the hot rolling/coiling conditions are numerically limited as described above will be explained.

A1組成成分 (a) Mn Mn成分は、鋼の脱酸に有効な働きをする元素であるが
、その含有量が2係を越えると鋼材コストの上昇を来た
すことがら、Mn含有量を2係以下と定めた。
A1 Composition component (a) Mn The Mn component is an element that effectively deoxidizes steel, but if its content exceeds the 2nd factor, the cost of steel material will increase, so the Mn content should be reduced to the 2nd factor. It was determined as follows.

(t+) Cr Cr成分は、鋼の面]食性、耐高温酸化性のいずれの特
性を高めるにも有益な元素であり、これらの特性を所望
値以上に高めるためには9係以」二の含有量を確保する
必要がある。一方、35%を越えて含有させると調料コ
ストの上昇を来たすことがら、Cr含有量を9〜35%
と定めた。
(t+) Cr The Cr component is an element that is useful for improving both the surface corrosion resistance and high-temperature oxidation resistance of steel. It is necessary to ensure the content. On the other hand, if the Cr content exceeds 35%, the preparation cost will increase, so the Cr content should be set at 9 to 35%.
It was determined that

(c) Mo 、 Si 、及びAA これらの成分は、高純度フェライト系ステンレス鋼の耐
食性や耐高温酸化性を向上させる元素であるので、必要
により1種又は2種以上を積極的に含有させるものであ
るが、以下、個々の成分についてその含有割合の限定理
由を詳述する。
(c) Mo, Si, and AA These components are elements that improve the corrosion resistance and high-temperature oxidation resistance of high-purity ferritic stainless steel, so one or more of them may be actively included if necessary. However, the reason for limiting the content ratio of each component will be explained in detail below.

9− ■ MO MO酸成分は、Crと同様に鋼の而・1食性を顕著に改
善する作用を有しているが、その含有量が05%未満で
は高附食用銅として所望の耐食性同士効果が得られず、
一方5%を越えて含有させると加工性の劣化を招くこと
から、MO含有量を05〜5%と定めた。
9- ■ MO The MO acid component, like Cr, has the effect of significantly improving the corrosion resistance of steel, but if its content is less than 0.5%, it does not have the desired corrosion resistance effect as a highly corrosion resistant copper. is not obtained,
On the other hand, since MO content exceeding 5% causes deterioration of workability, the MO content was set at 0.5 to 5%.

■ 51 Si成分には、鋼の耐高温酸化性を顕著に改善する作用
があり、面]熱用としての所望の耐高温酸化性向」二効
果を確保するためには]係以上の含有量を確保する必要
がある。一方、5係を越えてSlを含有させると加工性
の劣化を招くことから、S1含有量を1〜5%と定めた
■ 51 The Si component has the effect of significantly improving the high temperature oxidation resistance of steel. It is necessary to secure it. On the other hand, the S1 content was determined to be 1 to 5% because if the S1 content exceeds 5%, the workability deteriorates.

■ A7 Al成分には、Slと同様に鋼の耐高温酸化性を顕著に
改善する作用があるが、その含有量が1係未満では耐熱
用として所望の耐高温酸化性向上効果を確保することが
できず、一方10− 5φを越えてA7を含有させると加工性を害1−るよう
になることから、N含有量を1〜5%と定めた。
■ A7 The Al component has the effect of significantly improving the high temperature oxidation resistance of steel, similar to Sl, but if its content is less than 1%, it is difficult to ensure the desired effect of improving high temperature oxidation resistance for heat resistance. On the other hand, if the A7 content exceeds 10-5φ, the workability will be impaired, so the N content was set at 1 to 5%.

(d) Ti 、 Nb 、及びZr これらの成分は、C或いはNと炭・窒化物を形成するこ
とでCr炭化物の粒界析出を防止し、鋼の耐食性及び耐
熱性を改善する有効な元素であるので、必要に1より1
種又は2種以上を添加・含有させるものである。そして
、これらの成分は微量添加でも上記効果を発揮するもの
であるが、C或いはNの含有量が002係以下の場合に
上記元素の合計含有量が1係を越えると鋼の加工性を害
するようになるので、Ti、Nb及びZrの含有量は、
合計量で1チ以下と定めた。
(d) Ti, Nb, and Zr These components are effective elements that prevent grain boundary precipitation of Cr carbides by forming carbon/nitrides with C or N and improve the corrosion resistance and heat resistance of steel. Therefore, it is necessary to use 1 rather than 1.
A species or two or more species are added/contained. These ingredients exhibit the above effects even when added in small amounts, but when the content of C or N is 002 parts or less, if the total content of the above elements exceeds 1 part, the workability of the steel will be impaired. Therefore, the content of Ti, Nb and Zr is
The total amount was set at 1 inch or less.

(e) C Cは、鋼の耐食性、加工性及び靭性に悪影響を及ぼす不
純物元素であり、その含有量が0.03%を越えると前
記悪影響が顕著になることから、C含有量を0.03%
と定めた。好ましくは0.02%以下とするのが良い。
(e) C C is an impurity element that has an adverse effect on the corrosion resistance, workability, and toughness of steel.If its content exceeds 0.03%, the above-mentioned adverse effects become significant, so the C content is reduced to 0.03%. 03%
It was determined that The content is preferably 0.02% or less.

げ) P Pは、製鋼時に不可避的に混入する不純物元素であり、
耐食性を害する有害なものであるが、特にその含有量が
0.04%を越えると耐食性に対する悪影響が顕著にな
ることから、P含有量を004%以下と定めた。
(g) PP is an impurity element that is unavoidably mixed during steel manufacturing,
P is a harmful substance that impairs corrosion resistance, and if its content exceeds 0.04%, the adverse effect on corrosion resistance becomes particularly pronounced, so the P content was set at 0.04% or less.

(gl S Sも、鋼の耐食性を害する有害な元素であり、特にその
含有量が001%を越えると耐食性劣化傾向が著しくな
ることから、その含有量を0.01係以下と定めた。
(gl S S is also a harmful element that impairs the corrosion resistance of steel, and in particular, if its content exceeds 0.01%, the corrosion resistance tends to deteriorate significantly, so its content was set at 0.01% or less.

(h) N Nは、Cと同様に鋼の耐食性、加工性及び靭性を害する
不純物元素であり、その含有量が002饅を越えると前
記悪影響が顕著になることから、N含有量を0.03%
以下と定めた。好ましくは0.02%以下とするのが良
い。
(h) N N, like C, is an impurity element that impairs the corrosion resistance, workability, and toughness of steel, and if its content exceeds 0.02 mm, the above-mentioned adverse effects become noticeable, so the N content is reduced to 0. 03%
It was determined as follows. The content is preferably 0.02% or less.

B、熱延・巻取り条件 (al 冷却速度 熱間圧延終了後の冷却速度が10℃/3 e cよりも
遅くなると、熱延鋼帯の衝撃破面遷移温度が0℃を越え
てしまうこととなる。因に、熱延コイルの展開や冷間圧
延をトラブルなしで行うには衝撃破面遷移温度が0℃以
下でなければならないことが、既に経験的に知られてい
る。
B. Hot rolling/coiling conditions (al cooling rate) If the cooling rate after hot rolling is slower than 10°C/3eC, the impact fracture transition temperature of the hot rolled steel strip will exceed 0°C. Incidentally, it is already known from experience that the impact fracture transition temperature must be 0° C. or lower in order to develop and cold-roll a hot-rolled coil without any trouble.

そして、衝撃破面遷移温度:0℃以下を得るには熱延後
の冷却速度を水スプレー法等によって10℃/Bee以
上とする必要があるのである。
In order to obtain an impact fracture surface transition temperature of 0° C. or lower, it is necessary to increase the cooling rate after hot rolling to 10° C./Bee or higher using a water spray method or the like.

第1図は、本発明方法の対象鋼であるところの、0.0
05%C−0,20%5i−0,18%Mn−0,01
9S P 0.0)0.2 % S−26,0%Cr−
1,05%Mo −0,05チAl−0,20%Nb−
0,014チN鋼の衝撃破面遷移温度[vTslに及ぼ
す熱延後の冷却速度の影響を調べたグラフであり、熱間
終止温度:910℃の熱間圧延によって25謳厚のスラ
ブを3調厚にまで熱間圧延した後、400℃で巻取った
ものについての値である。
FIG. 1 shows the 0.0
05%C-0, 20%5i-0, 18%Mn-0,01
9S P 0.0) 0.2% S-26,0%Cr-
1,05%Mo-0,05TAl-0,20%Nb-
This is a graph examining the influence of the cooling rate after hot rolling on the impact fracture transition temperature [vTsl] of 0.014TN steel. This value is for a material that was hot rolled to a controlled thickness and then wound up at 400°C.

第1図からも明らかなように、通常の方法で得られた熱
延銅帯の靭性は、衝撃破面遷移温度が20℃以上と高く
、常温、特に冬期においては熱延鋼13− 帯の取り扱いが遷移温度以下となるので種々の脆化トラ
ブルを発生することが予想される。これに対して、熱間
圧延後に10℃/ 3 e c以上の冷却速度で急冷し
て低温巻取すすると衝撃破面遷移温度が0℃を下回るよ
うになり、上記脆化トラブルの心配がなくなることがわ
かる。
As is clear from Fig. 1, the toughness of the hot-rolled copper strip obtained by the conventional method is as high as the impact fracture transition temperature of 20°C or higher, and the toughness of the hot-rolled copper strip obtained by the conventional method is as high as 20°C or higher. Since it is handled below the transition temperature, it is expected that various embrittlement problems will occur. On the other hand, if the material is rapidly cooled at a cooling rate of 10℃/3eC or higher after hot rolling and then coiled at a low temperature, the impact fracture transition temperature will be below 0℃, eliminating the worry of the above-mentioned embrittlement problem. I understand that.

(bl 巻取り温度 巻取り温度が450℃よりも高いと、熱間圧延終了後の
冷却速度が10℃/Bee以上であったとしても、巻取
り後の徐冷中での熱サイクルによって熱延鋼帯の脆化を
生じるので、巻取り温度を450℃以下と定めた。
(bl Coiling temperature If the coiling temperature is higher than 450°C, even if the cooling rate after hot rolling is 10°C/Bee or more, the hot rolled steel strip will be Since this may cause embrittlement, the winding temperature was set at 450°C or lower.

第2図は、第1図の場合と同様の対象鋼を用い、熱間圧
延終了後の冷却速度を15〜b したほかは第1図の場合と同様の条件で熱間圧延したも
のについて、巻取り温度と衝撃破面遷移温度[vTsl
 との関係を調べたグラフであるが、この第2図からは
、通常の熱延条件である800〜700℃で巻取りを行
った場合には衝撃破面遷移温度が0℃を越えてしまうの
に対して、巻取り温14− 度を450℃以下とすれば、衝撃破面遷移温度を安定し
て0℃以下にできることがわかる。
Figure 2 shows the same target steel as in Figure 1, which was hot-rolled under the same conditions as in Figure 1 except that the cooling rate after hot rolling was 15~b. Coiling temperature and impact fracture surface transition temperature [vTsl
This graph examines the relationship between On the other hand, it can be seen that if the winding temperature is set to 450°C or lower, the impact fracture transition temperature can be stably maintained at 0°C or lower.

なお、巻取り温度の下限は格別に制限されるものではな
いが、250℃よりも低い温度になると銅帯の変形強度
が著しく高(なり、実用」二巻取りに大きな困離をとも
なうことから、250℃以上で巻取ることが好ましい。
The lower limit of the winding temperature is not particularly limited, but if the temperature is lower than 250°C, the deformation strength of the copper strip will be extremely high (and it will be difficult to roll it up twice in practical use). , it is preferable to wind up at 250°C or higher.

以上述べたように、従来の方法で得られる高純度フェラ
イト系ステンレス鋼熱延銅帯では、巻取り後の銅帯の取
り扱いに種々のトラブルが発生していたのに対して、こ
の発明の方法によれば、優れた靭性を備えた熱延鋼帯を
安定して得られるので脆化に起因するトラブルを一掃す
ることができるのである。
As mentioned above, with the high purity ferritic stainless steel hot rolled copper strip obtained by the conventional method, various troubles occurred when handling the copper strip after winding, whereas the method of the present invention According to this method, hot-rolled steel strips with excellent toughness can be stably obtained, thereby eliminating problems caused by embrittlement.

もつとも、従来法によって得られた熱延銅帯であっても
、900〜950℃の焼鈍によって衝撃破面遷移温度の
改善は可能であるが、焼鈍後に急冷(空冷以」二の冷却
速度での冷却)が必要どされ、コイル形態ではこのよう
な急冷は不可能なことである。万が−そのような急冷が
可能であったとしても、再加熱時に結晶粒が和犬化する
危険を伴うこととなる。しかし、熱間圧延後に低温巻取
りを行う本発明の方法では、たとえ熱間圧延の加熱温度
が高かったとしても圧延によって十分な細粒化がなされ
るので、上記のような心配は全(ない。
However, even for hot-rolled copper strips obtained by conventional methods, it is possible to improve the impact fracture transition temperature by annealing at 900 to 950°C, but it is possible to improve the impact fracture transition temperature after annealing. Such rapid cooling is not possible in coil form. Even if such rapid cooling were possible, there would be a risk that the crystal grains would become hardened during reheating. However, in the method of the present invention in which low-temperature winding is performed after hot rolling, the grains are sufficiently refined by rolling even if the heating temperature during hot rolling is high, so the above concerns are completely eliminated. .

次に、この発明を実施例により比較例と対比しながら具
体的に説明する。
Next, the present invention will be specifically explained using examples and comparing with comparative examples.

〈実施例〉 まず、真空溶解法によって第1表に示される如き成分組
成の鋼A−Nを溶製した。
<Example> First, steel A-N having the composition shown in Table 1 was melted by a vacuum melting method.

次いで、これらの各鋼を第2表に示される条件で熱間圧
延し、巻取りを行って厚さ=3telO熱延銅帯を製造
した。
Next, each of these steels was hot rolled under the conditions shown in Table 2 and wound up to produce a hot rolled copper strip having a thickness of 3 telO.

このようにして得られた各熱延鋼帯コイルについて常温
でのコイル展開試験を実施したところ、同じく第2表に
示される如き結果が得られた。
When a coil development test was conducted at room temperature for each of the hot-rolled steel strip coils thus obtained, the same results as shown in Table 2 were obtained.

第2表に示される結果からも明らかなように、本発明に
おける条件を満足する方法で得られた熱延銅帯は、全て
熱間圧延のままで優れた靭性な有していてコイル展開時
等のトラブルを生じる恐れがないのに対して、高純度フ
エライl−Mステンレス鋼を対象とした上で、熱間圧延
終了から巻取り開始までの間の冷却速度や巻取り温度が
本発明の条件から外れている比較法によって得られた熱
延鋼帯は、靭性に著しく劣っており、展開時にコイル破
断のトラブルを発生することがわかる。
As is clear from the results shown in Table 2, all the hot-rolled copper strips obtained by the method satisfying the conditions of the present invention have excellent toughness even after being hot-rolled, and when rolled out into coils, On the other hand, the cooling rate and coiling temperature from the end of hot rolling to the start of coiling can be adjusted according to the present invention for high-purity Ferrite l-M stainless steel. It can be seen that the hot-rolled steel strip obtained by the comparative method, which deviates from the conditions, is significantly inferior in toughness and causes problems such as coil breakage during development.

〈総括的な効果〉 上述のように、この発明によれば、特別な設備等を必要
とすることなく、熱延のままで良好な靭性な示す高純度
フェライト系ステンレス鋼熱延銅帯を安定して量産する
ことができ、比較的コストの安いフェライト系ステンレ
ス鋼の適用分野が一段と拡大されるなど、産業上有用な
効果がもたらされるのである。
<Overall Effects> As described above, according to the present invention, high-purity ferritic stainless steel hot-rolled copper strips exhibiting good toughness as hot-rolled can be stabilized without the need for special equipment. This brings about industrially useful effects, such as further expanding the field of application of relatively low-cost ferritic stainless steel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高純度フェライト系ステンレス鋼熱延銅帯の靭
性に及ぼす熱延後の冷却速度の影響を示すグラフ、第2
図は同じく高純度フェライト系ステンレス鋼熱延銅帯の
靭性に及ぼす巻取り温度の影響を示すグラフである。 出願人 住友金属工業株式会社 代理人 富 1) 和 夫 はか1名 cつ。) 5ユ八 (つ。) SIA
Figure 1 is a graph showing the effect of cooling rate after hot rolling on the toughness of high purity ferritic stainless steel hot rolled copper strip, Figure 2
The figure is also a graph showing the influence of the winding temperature on the toughness of a high-purity ferritic stainless steel hot-rolled copper strip. Applicant Sumitomo Metal Industries Co., Ltd. Agent Tomi 1) Kazuo Haka 1 person. ) 5yu8 (tsu.) SIA

Claims (1)

【特許請求の範囲】 重量割合にて、 Mn:2%以下、Cr:9−35% を含有するとともに、必要により、 Mo : 0.5〜5%。 Si:1〜5チ。 A7:1〜5% のうちの1種以上を含み、更に必要により、Tl* N
b 及びZrのうちの1種以上:1チ以下。 をも含有し、 残部:Fe及び不純物 から成る成分組成を有しており、かつ不純物元素1− であるc、p、s及びNの含有量を、それぞれ、C:0
.03%以下。 P:0.04%以下。 S:001%以下。 N:0.03%以下 に抑えた高純度フェライト系ステンレス鋼の熱延鋼帯を
製造するに際し、前記成分組成の鋼を熱間圧延した後、
直ちに10℃/sec以上の冷却速度にて急冷を行い、
450℃以下の温度で巻取ることを特徴とする、靭性の
優れた高純度フェライト系ステンレス鋼熱延銅帯の製造
方法。
[Claims] Contains Mn: 2% or less, Cr: 9-35%, and optionally Mo: 0.5-5% in terms of weight percentage. Si: 1 to 5 chi. A7: Contains one or more of 1 to 5%, and if necessary, Tl*N
One or more of b and Zr: 1 or less. , and the remainder: Fe and impurities, and the content of c, p, s, and N, which are impurity elements 1-, is C: 0.
.. 03% or less. P: 0.04% or less. S: 001% or less. When producing a hot-rolled steel strip of high-purity ferritic stainless steel with N: 0.03% or less, after hot-rolling the steel with the above-mentioned composition,
Immediately perform rapid cooling at a cooling rate of 10°C/sec or more,
A method for producing a high-purity ferritic stainless steel hot-rolled copper strip with excellent toughness, which is characterized by winding at a temperature of 450° C. or lower.
JP59083302A 1984-04-25 1984-04-25 Manufacturing method of ferritic stainless steel hot rolled strip Expired - Lifetime JPH0617516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59083302A JPH0617516B2 (en) 1984-04-25 1984-04-25 Manufacturing method of ferritic stainless steel hot rolled strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59083302A JPH0617516B2 (en) 1984-04-25 1984-04-25 Manufacturing method of ferritic stainless steel hot rolled strip

Publications (2)

Publication Number Publication Date
JPS60228616A true JPS60228616A (en) 1985-11-13
JPH0617516B2 JPH0617516B2 (en) 1994-03-09

Family

ID=13798611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59083302A Expired - Lifetime JPH0617516B2 (en) 1984-04-25 1984-04-25 Manufacturing method of ferritic stainless steel hot rolled strip

Country Status (1)

Country Link
JP (1) JPH0617516B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169917A (en) * 1984-09-14 1986-04-10 Nippon Kokan Kk <Nkk> Manufacture of ferritic stainless steel
US5340415A (en) * 1992-06-01 1994-08-23 Sumitomo Metal Industries, Ltd. Ferritic stainless steel plates and foils and method for their production
JP2007191739A (en) * 2006-01-18 2007-08-02 Jfe Steel Kk Heat resistant material having excellent oxidation resistance and brazability
DE102011003388A1 (en) * 2011-01-31 2012-08-02 J. Eberspächer GmbH & Co. KG Cast steel alloy and cast component
WO2014157576A1 (en) 2013-03-27 2014-10-02 新日鐵住金ステンレス株式会社 Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
WO2018158853A1 (en) 2017-02-28 2018-09-07 新日鐵住金株式会社 Ferritic stainless steel sheet, hot coil, and flange member for motor vehicle exhaust system
WO2018158854A1 (en) 2017-02-28 2018-09-07 新日鐵住金株式会社 Ferritic stainless steel sheet, hot coil, and flange member for motor vehicle exhaust system
KR20180125584A (en) 2016-03-30 2018-11-23 닛신 세이코 가부시키가이샤 Ti-containing ferritic stainless steel sheet, manufacturing method and flange
KR20190008900A (en) 2016-05-16 2019-01-25 닛신 세이코 가부시키가이샤 Ti-containing ferritic stainless steel sheet for exhaust pipe flange parts, manufacturing method and flange part

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136011A (en) 2005-11-21 2007-06-07 Isshiki Seisakusho:Kk Waterproofing structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5683755A (en) * 1979-11-15 1981-07-08 Xerox Corp Sheet curl remover
JPS579662A (en) * 1980-06-16 1982-01-19 Matsushita Graphic Commun Syst Inc Recording paper curl eliminating equipment
JPS5930156U (en) * 1982-08-20 1984-02-24 キヤノン株式会社 Fusing device
JPS5930157U (en) * 1982-08-20 1984-02-24 キヤノン株式会社 Fusing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5683755A (en) * 1979-11-15 1981-07-08 Xerox Corp Sheet curl remover
JPS579662A (en) * 1980-06-16 1982-01-19 Matsushita Graphic Commun Syst Inc Recording paper curl eliminating equipment
JPS5930156U (en) * 1982-08-20 1984-02-24 キヤノン株式会社 Fusing device
JPS5930157U (en) * 1982-08-20 1984-02-24 キヤノン株式会社 Fusing device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360810B2 (en) * 1984-09-14 1988-11-25
JPS6169917A (en) * 1984-09-14 1986-04-10 Nippon Kokan Kk <Nkk> Manufacture of ferritic stainless steel
US5340415A (en) * 1992-06-01 1994-08-23 Sumitomo Metal Industries, Ltd. Ferritic stainless steel plates and foils and method for their production
JP2007191739A (en) * 2006-01-18 2007-08-02 Jfe Steel Kk Heat resistant material having excellent oxidation resistance and brazability
JP4742876B2 (en) * 2006-01-18 2011-08-10 Jfeスチール株式会社 Heat resistant material with excellent oxidation resistance and brazing
DE102011003388A1 (en) * 2011-01-31 2012-08-02 J. Eberspächer GmbH & Co. KG Cast steel alloy and cast component
US9090958B2 (en) 2011-01-31 2015-07-28 Eberspaecher Exhaust Technology Gmbh & Co. Kg Cast steel alloy and cast component
WO2014157576A1 (en) 2013-03-27 2014-10-02 新日鐵住金ステンレス株式会社 Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
KR20180125584A (en) 2016-03-30 2018-11-23 닛신 세이코 가부시키가이샤 Ti-containing ferritic stainless steel sheet, manufacturing method and flange
KR20190008900A (en) 2016-05-16 2019-01-25 닛신 세이코 가부시키가이샤 Ti-containing ferritic stainless steel sheet for exhaust pipe flange parts, manufacturing method and flange part
US10995888B2 (en) 2016-05-16 2021-05-04 Nippon Steel Stainless Steel Corporation Ti-containing ferritic stainless steel sheet for exhaust pipe flange member, production method, and flange member
WO2018158853A1 (en) 2017-02-28 2018-09-07 新日鐵住金株式会社 Ferritic stainless steel sheet, hot coil, and flange member for motor vehicle exhaust system
CN110366601A (en) * 2017-02-28 2019-10-22 日本制铁株式会社 Ferrite series stainless steel plate, coils of hot rolled and automobile exhaust system flange component
KR20190124260A (en) 2017-02-28 2019-11-04 닛폰세이테츠 가부시키가이샤 Ferritic stainless steel plate, hot coil and automotive exhaust system flange member
KR20190124266A (en) 2017-02-28 2019-11-04 닛폰세이테츠 가부시키가이샤 Ferritic stainless steel plate, hot coil and automotive exhaust system flange member
WO2018158854A1 (en) 2017-02-28 2018-09-07 新日鐵住金株式会社 Ferritic stainless steel sheet, hot coil, and flange member for motor vehicle exhaust system
US11111570B2 (en) 2017-02-28 2021-09-07 Nippon Steel Corporation Ferritic stainless steel sheet, hot coil, and automobile exhaust flange member
CN110366601B (en) * 2017-02-28 2021-10-22 日本制铁株式会社 Ferritic stainless steel sheet, hot-rolled coil, and flange member for automobile exhaust system
US11214856B2 (en) 2017-02-28 2022-01-04 Nippon Steel Corporation Ferritic stainless steel sheet, hot coil, and automobile exhaust flange member

Also Published As

Publication number Publication date
JPH0617516B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
JP3292671B2 (en) Hot-rolled steel strip for cold-rolled steel sheet with good deep drawability and aging resistance
JPH01172524A (en) Production of complex phase structure chromium stainless strip having excellent corrosion resistance and high ductility and strength
WO2017169011A1 (en) Ti-containing ferritic stainless steel sheet, manufacturing method, and flange
JPS60228616A (en) Manufacture of hot rolled steel strip of ferrite stainless steel
JPS60197824A (en) Production of hot rolled two-phase stainless steel strip having high toughness
JPH0619110B2 (en) Method for producing high Mn austenitic stainless steel for cryogenic use
JPH0681036A (en) Production of ferritic stainless steel sheet excellent in ridging characteristic and workability
JPH0472013A (en) Manufacture of two phase stainless steel having excellent corrosion resistance to concentrated sulfuric acid
JPH0124206B2 (en)
JP2006233251A (en) Method for producing high purity ferritic stainless steel and product thereof
JPS62192539A (en) Manufacture of high gamma value hot rolled steel plate
US4594114A (en) Process for producing strip of corrosion resistant alloy steel
JPS60184664A (en) High ductile and high tensile steel containing stable retained austenite
JPH09256065A (en) Production of ferritic stainless steel thin sheet excellent in surface property
JPH05331543A (en) Manufacture of ferritic stainless steel hot rolled steel strip
JPH0353026A (en) Manufacture of ferritic stainless steel sheet having excellent heat resistance and corrosion resistance
CN115386807B (en) Ferrite stainless steel hot-rolled middle plate and preparation method thereof
JPS6052551A (en) Steel having high ductility and high workability and its production
JPH0353025A (en) Manufacture of high heat-resistant and high-corrosion resistant ferritic stainless steel sheet
JP4494653B2 (en) Manufacturing method of ferritic stainless steel sheet
JPH0835010A (en) Production of steel and steel tube, excellent in high temperature characteristic
JPH06184637A (en) Production of steel tube for automotive exhaust system
JPS61272322A (en) Manufacture of sea water resistant stainless steel sheet
JP2549018B2 (en) Method for producing hot rolled steel strip of ferritic stainless steel with excellent heat resistance and corrosion resistance
JPH07233449A (en) Ferritic stainless steel sheet and its production