JPS60223347A - Noise reduction system at non-talking - Google Patents

Noise reduction system at non-talking

Info

Publication number
JPS60223347A
JPS60223347A JP8057984A JP8057984A JPS60223347A JP S60223347 A JPS60223347 A JP S60223347A JP 8057984 A JP8057984 A JP 8057984A JP 8057984 A JP8057984 A JP 8057984A JP S60223347 A JPS60223347 A JP S60223347A
Authority
JP
Japan
Prior art keywords
signal
pilot signal
sinusoidal wave
sine wave
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8057984A
Other languages
Japanese (ja)
Inventor
Yasushi Aoki
泰 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP8057984A priority Critical patent/JPS60223347A/en
Publication of JPS60223347A publication Critical patent/JPS60223347A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B14/00Transmission systems not characterised by the medium used for transmission
    • H04B14/02Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation
    • H04B14/04Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using pulse code modulation
    • H04B14/046Systems or methods for reducing noise or bandwidth

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)

Abstract

PURPOSE:To reduce the increase in noise at non-talking because of a harmonic distortion component of a sinusoidal wave pilot signal for supervising fault by inserting the 2nd sinusoidal wave signal to an idle band in addition to a sinusoidal wave pilot signal. CONSTITUTION:An FDM signal is converted into a PCM signal by an A/D converter 3 and then transmitted to a transmission line. The PCM signal is converted into a PAM signal by a D/A converter 4 at the reception side, and an unnecessary band component is eliminated by a band stop filter 5 and the FDM signal is reproduced. A sinusoidal wave pilot signal for detecting a fault in a frequency fp is generated by a pilot signal generating source 6 and added to the FDM signal by an adder 2 provided before the A/D converter 3 together with a sinusoidal wave in frequency fp' generated by a sinusoidal wave generating source 7 generating the 2nd sinusoidal wave signal. The signal branched after a D/A converter 4 passes through a low pass filter 8 having the cutoff frequency fp at the reception side. The signal passing through the filter 8 is only the sinusoidal wave pilot signal for detecting a fault and the output of the filter 8 is supervised for the level or phase by a pilot signal detecting circuit 9.

Description

【発明の詳細な説明】 発明の属する技術分野 本発明は、周波数分割多重化信号(以下FDM信号と呼
ぶ)をパルス符号変調信号(以下PCM信号と呼ぶ)に
変換する符号化装置における無通話時雑音の低減力式に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical field to which the invention pertains The present invention relates to a coding device that converts a frequency division multiplexed signal (hereinafter referred to as an FDM signal) into a pulse code modulated signal (hereinafter referred to as a PCM signal) during a no-call period. This relates to a noise reduction power formula.

FDM信号をPCM信号に符号化する装[は、既設のP
DM信号伝送路を雑音の影響を受けにくいPCM信号伝
送路に置き換えようとする場合等に、 Fl)M信号を
PCM信号に変換し、伝送路にPCM信号を送シ出すた
めの装置であるoFDM信号は数十〜数百チャネルの音
声信号が周波数分割で多重化されておシ、無通話時雑音
とは各チャネルの無通話時における雑音電力のことであ
る。
The equipment for encoding FDM signals into PCM signals is
When trying to replace a DM signal transmission path with a PCM signal transmission path that is less susceptible to noise, oFDM is a device that converts the Fl)M signal into a PCM signal and sends the PCM signal to the transmission path. The signal is a frequency-division multiplexing of audio signals of several tens to hundreds of channels, and noise during no-call time refers to the noise power of each channel during no-call time.

従来技術の説明 FDM信号をPCM信号に変換する装置、逆変換する装
置及び伝送路における障害検知方式としては、送信側の
FDM信号の帯域外に正弦波パイロット信号を挿入し、
受信側でこのパイロット信号を検出することによって、
装置及び伝送路の障害を検知する方法が用いらnている
Description of the Prior Art As a device for converting an FDM signal into a PCM signal, a device for inverse conversion, and a fault detection method in a transmission path, a sinusoidal pilot signal is inserted outside the band of the FDM signal on the transmitting side,
By detecting this pilot signal on the receiving side,
Methods are used to detect equipment and transmission path failures.

しかしながら、このパイロット信号にはアナログ−ディ
ジタル変換(以下A/D変換と呼ぶ)の過程で量子化誤
差が発生し、これにより高調波歪を生じる。この高調波
歪は直接及び折シ返しによシ受信側のFDM信号の帯域
内に現われ、こnが無通話時の雑音を増大させる原因と
なっていたO発明の目的 本発明は従来の技術に内在する上記欠点を解消する為に
なされたものであシ、従って本発明の目的は、前記パイ
ロット信号のA/D変換の過程で生じる高調波歪を極め
て簡易に抑え、無通話時における雑音による劣化を的確
に軽減することができる新規な方式を提供することにあ
る。
However, a quantization error occurs in this pilot signal during the process of analog-to-digital conversion (hereinafter referred to as A/D conversion), resulting in harmonic distortion. This harmonic distortion appears within the band of the FDM signal on the receiving side, both directly and in return, and this causes an increase in noise during no calls. The present invention has been made in order to eliminate the above-mentioned disadvantages inherent in The object of the present invention is to provide a new method that can accurately reduce deterioration due to

発明の構成 上記目的を達成する為に、本発明に係る無通話時雑音低
減力式は、障害監視用正弦波パイロット信号を使用する
符号化装置において、更に帯域外周波数のかつ障害監視
用正弦波パイロット信号とは異なる周波数で、低レベル
の1波以上の正弦波信号を挿入することによって構成さ
れ、しかして、前述の理由による無通話時雑音の増大を
軽減しようとするものである。
Composition of the Invention In order to achieve the above object, the no-call noise reduction power method according to the present invention is provided in an encoding device using a sine wave pilot signal for fault monitoring, which further uses a sine wave pilot signal of an out-of-band frequency and for fault monitoring. It is constructed by inserting one or more low-level sine wave signals at a frequency different from that of the pilot signal, and is intended to reduce the increase in no-call noise due to the above-mentioned reasons.

3、発明の詳細な説明 以下本発明をその好ましい一実施例について図面を参照
しながら詳細に説明する。
3. Detailed Description of the Invention Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the drawings.

第1図に通常のFDM信号の符号化における周波数関係
を示T0第1図において、fLはFDM信号の下限周波
数、fHはFDM信号の上限周波数、ByはFDM信号
の帯域幅、fs FiFDM信号のサンプリング周波数
をそれぞれ表わす。ここで、一般にFDM信号はBw(
fzであるので、送信側の入力FDM信号が受信側の出
力に再生されるためには、サンプリング周波数fsFi
(1)式の条件を満たせはよい。
Figure 1 shows the frequency relationship in the encoding of a normal FDM signal.T0 In Figure 1, fL is the lower limit frequency of the FDM signal, fH is the upper limit frequency of the FDM signal, By is the bandwidth of the FDM signal, and fs is the frequency of the FiFDM signal. Each represents the sampling frequency. Here, generally the FDM signal is Bw(
fz, so in order for the input FDM signal on the transmitting side to be reproduced to the output on the receiving side, the sampling frequency fsFi must be
It is good if the condition of equation (1) is satisfied.

fs≧2BW 、 fH≦fs≦2fr、、−−−−−
−−−−−−−一−−,(1)ここで、 2fH≦f s −−−−−−−−−−−−−−−−−
−−−−−−−−一−−−−−−(2)の条件を用いる
のが一般的ではあるが、サンプリング周波数fsは小さ
い力が装置動作速度、伝送路ビットレートを低くできる
ので、FDM信号の符号化の条件はそつう(1)が用い
られる。
fs≧2BW, fH≦fs≦2fr, -----
−−−−−−−−−−, (1) where, 2fH≦f s −−−−−−−−−−−−−−−−
Although it is common to use the condition (2), the sampling frequency fs can be set with a small force because the device operating speed and transmission line bit rate can be lowered. Condition (1) is used for encoding the FDM signal.

ところで、現存のティジタル回線の階層構造(ハイアラ
ーキ)を考慮すると、サンプリング周波数fsは、 mXfs=145又は6.3又は8又は32又はl 0
0MHz +111 @(ただし、mは整数) −−−
−一−−−−−−−−(3)とすることがフレーム構成
上容易で便オUである。
By the way, considering the hierarchical structure (hierarchy) of the existing digital circuit, the sampling frequency fs is mXfs=145 or 6.3 or 8 or 32 or l 0
0MHz +111 @ (where m is an integer) ---
-1--(3) is easy and convenient in terms of frame structure.

例えば、群帯域符号化装置ではfz =60KHz 、
 fII=108幻りであシ、m=14、伝送路ピント
レートを1.544b&1zとするとサンプリング周波
数fsは110.29 KHzで、第1図に示すり、H
のような突き帯域ができる。
For example, in a group band encoding device, fz = 60KHz,
If fII = 108, m = 14, and the transmission line pin rate is 1.544b & 1z, the sampling frequency fs is 110.29 KHz, and as shown in Figure 1, H
A band like this is created.

もし、この空き帯域がないとすると、折シ返し雑音を除
去するために急峻な竹性をもったアナログの帯域制限フ
ィルタが必要になシ、非現実的である0 従来の障害監視方式はこの空き帯域に正弦波パイロット
信号aを挿入しているが、〜ω変換によって正弦波パイ
ロット信号には量子化誤差が生じ、D/A変換後のパル
ス振幅変調さnた信号(以下PAM信号と呼ぶ)は、正
弦波パイロット信号aをAlCO5ωtとすると、 AlCO3ωt +AlI CO82ωt−1−Ai 
cos 3ωt +A4 CO84ωt+a m m 
−−−−−(4)となシ、高調波歪成分が現わnる。こ
の高調波歪の折シ返しが第2図のように帯域内にはいる
と、無通話時雑音が劣化することになる。第2図におい
てa′はパイロット信号aの折シ返しを示す。
If there is no free band, an analog band-limiting filter with a steep curve will be required to remove the aliasing noise, which is unrealistic. Although a sine wave pilot signal a is inserted into the vacant band, a quantization error occurs in the sine wave pilot signal due to ~ω conversion, and a pulse amplitude modulated signal after D/A conversion (hereinafter referred to as a PAM signal) ), if the sine wave pilot signal a is AlCO5ωt, then AlCO3ωt + AlICO82ωt-1-Ai
cos 3ωt +A4 CO84ωt+a m m
-------(4), harmonic distortion components appear. If this harmonic distortion returns within the band as shown in FIG. 2, the noise during no-call time will deteriorate. In FIG. 2, a' indicates the return of the pilot signal a.

ここで、各高調波歪成分の自乗和ΣAkは量子に=m 化雑音電力を示し、その値は一定である。そしてその分
布は第3図に示すように、量子化ステップがあらい場合
には、 Al+A11))A4+AB+A6+same −−−
−−−−−−−−一−−−−−(5)となって、帯域の
端で無通話時雑音が大きくな多量子化ステップが細かい
場合には、 A2さA3ZA番さA6さ・・・・ −一−−−−−−
−−−−−−−−−−−−−−、(6)となシ、帯域に
分散される。
Here, the sum of squares ΣAk of each harmonic distortion component represents a quantum = m noise power, and its value is constant. As shown in Fig. 3, the distribution is as shown in Fig. 3, when the quantization steps are large, Al+A11)) A4+AB+A6+same ---
------------1--------(5) When the multi-quantization step is small and the noise during no calls is large at the edge of the band, A2, A3, ZA, A6,・・・ −1−−−−−−
-------------, (6) and distributed over the band.

上述よ多量子化ステップを細かくする、即ち、正弦波パ
イロット信号の振幅AXを大きくすれば無通話時雑音は
良くなるが、主信号の過負荷レベルが低下するために、
信号対量子化雑音比(以下S/N比と呼ぶ)をその分低
下させて使用することにな夛、好ましくない。従って、
パイロット信号はあるレベル以上には設定できない。
As mentioned above, if the multi-quantization step is made finer, that is, if the amplitude AX of the sine wave pilot signal is increased, the noise during no calls will be improved, but since the overload level of the main signal will be reduced,
It is undesirable to reduce the signal to quantization noise ratio (hereinafter referred to as S/N ratio) by that amount. Therefore,
The pilot signal cannot be set above a certain level.

今、正弦波パイロット信号以外に第2の正弦波信号を空
き帯域に挿入することを考える0即ち、パイロット信号
をB z cosωt1第2の正弦波信号をBl’ c
osω′tとし、Bx’\Bl、ω′\ω、 Bl十B
l’ =Al とする。このとき、パイロット信号と第
2の正弦波信号の和の振幅は振幅A1のパイロット信号
の振幅と等しく、主信号の過負荷レベルは変らない。そ
して、パイロット信号と第2の正弦波信号の和の信号 Bl cos a+t 十Bl’ cos a+’ t
 −−−−−−−−−−−−−−−−−−−−−−−(
7)のA/D変換による量子化誤差の波形は、第4図(
a)に示すように、時間軸上に圧縮、伸長が加えられる
ために、パイロット信号だけの場合に比べ、数多くノ周
波数スペクトラムが発生する。
Now, let's consider inserting a second sine wave signal into an empty band in addition to the sine wave pilot signal0, that is, the pilot signal is B z cosωt1 The second sine wave signal is Bl' c
Let osω't be Bx'\Bl, ω'\ω, Bl0B
Let l' = Al. At this time, the amplitude of the sum of the pilot signal and the second sine wave signal is equal to the amplitude of the pilot signal with amplitude A1, and the overload level of the main signal does not change. Then, the signal Bl cos a+t + Bl' cos a+' t which is the sum of the pilot signal and the second sine wave signal
−−−−−−−−−−−−−−−−−−−−−−−(
The waveform of the quantization error due to A/D conversion in 7) is shown in Figure 4 (
As shown in a), since compression and expansion are applied on the time axis, more frequency spectra are generated than in the case of only the pilot signal.

前述のように、量子化誤差による量子化雑音電力は一定
であるので、数多くの周波数スペクトラムに分散さnる
ことにより、第4図(b)に示すように、量子化雑音の
スペクトラムのかたよシが少なくなる。
As mentioned above, since the quantization noise power due to the quantization error is constant, by distributing it over many frequency spectra, the shape of the quantization noise spectrum changes as shown in Figure 4(b). becomes less.

以上のように、正弦波パイロット信号以外に第2の正弦
波信号を空き帯域に挿入することによシ、効果的に無通
話雑音が改善される。同様に、第3の正弦波信号、第4
の正弦波信号を空き帯域に挿入することによυ、更に大
きく無通話時雑音が改善される。
As described above, by inserting the second sine wave signal in addition to the sine wave pilot signal into the vacant band, no-call noise can be effectively improved. Similarly, the third sine wave signal, the fourth
By inserting a sine wave signal of υ into the vacant band, the no-call noise can be further improved by υ.

以上、正弦波信号を空き帯域に挿入する場合を説明した
が、同空き帯域に低レベルの雑音信号を挿入しても効果
があるのは明らかである。
The case where a sine wave signal is inserted into an empty band has been described above, but it is clear that inserting a low-level noise signal into the same empty band is also effective.

第5図に本発明の実施例を示す。第5図において、FD
M信号は、帯域制限フィルタlによシ帯域外成分が除去
され、〜Φ変換器3によJ PCM信号に変換されて伝
送路に送り出される。
FIG. 5 shows an embodiment of the present invention. In Figure 5, FD
The M signal has out-of-band components removed by a band-limiting filter l, is converted into a J PCM signal by a ~Φ converter 3, and is sent out to a transmission path.

受信側では、このPCM信号がD/A変換器4により 
PAM信号に変換される。このPAM信号は、次いで帯
域制限フィルタ5によって不要帯域成分が除去され、F
DM信号が再生される。周波数fpの障害検知用正弦波
パイロット信号はパイロット信号発生源6で生成され、
第2の正弦波信号を発生する正弦波発生源7で生成され
た周波数f plの正弦波とともにA/D変換器3の前
に設けらnた加算器2でFDM信号に加算される。
On the receiving side, this PCM signal is processed by the D/A converter 4.
It is converted into a PAM signal. This PAM signal is then filtered by a band-limiting filter 5 to remove unnecessary band components, and F
The DM signal is played. A fault detection sine wave pilot signal of frequency fp is generated by a pilot signal generation source 6,
The second sine wave signal is added to the FDM signal by an adder 2 provided in front of the A/D converter 3 together with a sine wave having a frequency fpl generated by a sine wave generation source 7 that generates a second sine wave signal.

受信側ではD/A変換器4の後で分岐された信号をfp
の遮断周波数をもつ低域通過フィルタ8に通す。このフ
ィルタ8を通る信号は障害検知用正弦波ハイロット信号
のみでアシ、このフィルタ8の出力はパイロット信号検
出回路9でレベル又は位相が監視される。
On the receiving side, the branched signal after the D/A converter 4 is sent to fp.
The signal is passed through a low-pass filter 8 having a cut-off frequency of . The signal passing through this filter 8 is only a sine wave high lot signal for failure detection, and the level or phase of the output of this filter 8 is monitored by a pilot signal detection circuit 9.

発明の効果 以上の説明で明らかなように、本発明によれば、障害監
視用の正弦波パイロット信号の高調波歪成分による無通
話時雑音の増大が軽減的確にできる効果が得らnる。
Advantages of the Invention As is clear from the above description, the present invention provides an effect in which the increase in no-call noise due to harmonic distortion components of a sine wave pilot signal for failure monitoring can be reduced and accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はFDM信号の符号化における周波数関係を示す
図、第2図は障害検知用パイロット信号に起因する高調
波歪が発生している様子を示T図、第3図は正弦波パイ
ロット信号による量子化雑音スペクトラムの量子化ステ
ップの大きさによる相違を示す図、第4図(a)、(b
)、(C)は正弦波パイロット信号以外に第2の正弦波
信号を加えた場合のPAM信号、量子化雑音、量子化雑
音スペクトラムを示す図、第5図は本発明の一実施例を
示すブロック構成図である。 l・・・帯域制限フィルタ、2@・・信号加算器、3・
e・アナログーテイジタル変換器、4・−・ディジタル
−アナログ変換器、5・・φ帯域制限フィルタ、6・・
・パイロット信号発生源、7・・・第2の正弦波信号発
生似、8・[相]・低域通過フィルタ、9@・9パイロ
ット信号検出回路特許出願人 日本電気株式会社 代 理 人 弁理士 熊谷雄太部
Figure 1 is a diagram showing the frequency relationship in FDM signal encoding, Figure 2 is a T diagram showing how harmonic distortion occurs due to the pilot signal for failure detection, and Figure 3 is a sine wave pilot signal. Figures 4(a) and 4(b) show the differences in the quantization noise spectrum depending on the size of the quantization step.
), (C) are diagrams showing a PAM signal, quantization noise, and quantization noise spectrum when a second sine wave signal is added in addition to the sine wave pilot signal, and FIG. 5 shows an embodiment of the present invention. FIG. 2 is a block configuration diagram. l...Band limit filter, [email protected] adder, 3.
e.Analog-to-digital converter, 4.--Digital-to-analog converter, 5..φ band limit filter, 6..
・Pilot signal generation source, 7...similar to second sine wave signal generation, 8.[phase]・Low pass filter, 9@・9 pilot signal detection circuit Patent applicant NEC Corporation Representative Patent attorney Yutabu Kumagai

Claims (1)

【特許請求の範囲】[Claims] 正弦波パイロット信号を挿入し該正弦波パイロット信号
を障害監視用として使用する周波数分割多重化信号用符
号化装置において、更に前記正弦波パイロット信号の周
波数とは異な)■1つ帯域外であって低レベルの一波以
上の正弦波信号または雑音信号を挿入して符号化するよ
うにしたことを特徴とする無通話時雑音低減力式。
In a frequency division multiplexed signal encoding device that inserts a sine wave pilot signal and uses the sine wave pilot signal for fault monitoring, the sine wave pilot signal has a frequency that is different from the frequency of the sine wave pilot signal) and is outside the band. A method for reducing noise during no-call operation, characterized in that one or more low-level sine wave signals or noise signals are inserted and encoded.
JP8057984A 1984-04-20 1984-04-20 Noise reduction system at non-talking Pending JPS60223347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8057984A JPS60223347A (en) 1984-04-20 1984-04-20 Noise reduction system at non-talking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8057984A JPS60223347A (en) 1984-04-20 1984-04-20 Noise reduction system at non-talking

Publications (1)

Publication Number Publication Date
JPS60223347A true JPS60223347A (en) 1985-11-07

Family

ID=13722253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8057984A Pending JPS60223347A (en) 1984-04-20 1984-04-20 Noise reduction system at non-talking

Country Status (1)

Country Link
JP (1) JPS60223347A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0266751A2 (en) * 1986-11-07 1988-05-11 ANT Nachrichtentechnik GmbH Digital signal-processing method and system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535519A (en) * 1976-07-05 1978-01-19 Kokusai Denshin Denwa Co Ltd System for dtecting failure of multiplex signal convertors
JPS5612144A (en) * 1979-07-11 1981-02-06 Mitsubishi Electric Corp Dither

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535519A (en) * 1976-07-05 1978-01-19 Kokusai Denshin Denwa Co Ltd System for dtecting failure of multiplex signal convertors
JPS5612144A (en) * 1979-07-11 1981-02-06 Mitsubishi Electric Corp Dither

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0266751A2 (en) * 1986-11-07 1988-05-11 ANT Nachrichtentechnik GmbH Digital signal-processing method and system

Similar Documents

Publication Publication Date Title
US4999831A (en) Synchronous quantized subcarrier multiplexer for digital transport of video, voice and data
JPH0654085A (en) Digital communication system
Freeny et al. Systems analysis of a TDM-FDM translator/digital A-type channel bank
JPS59500039A (en) Simultaneous transmission system and method for two information signals in a band-limited communication channel
WO2013083222A1 (en) A method of processing a digital signal for transmission, a method of processing an optical data unit upon reception, and a network element for a telecommunications network
JPH0234497B2 (en)
AU7091394A (en) Optimization of weighted signal-to-noise ratio for a digital video encoder
CA1272311A (en) Digital audio transmission system
US4181822A (en) Bandsplitter systems
CA1208817A (en) Fourth-order digital multiplex system for transmitting a plurality of digital signals at a nominal bit rate of 44 736 kbit/s
US4013842A (en) Method and apparatus for interfacing digital and analog carrier systems
JPS60223347A (en) Noise reduction system at non-talking
KR940004461B1 (en) Cryptographic digital signal tranceiver method and apparatus
US3916107A (en) Digital system for reclocking pulse code modulation circuits
Raulin et al. A 60 Channel PCM-ADPCM Converter
JPS61159826A (en) Digital-to-analaog converter
JPS58145252A (en) Failure monitoring system for transmultiplexer
EP0543220A1 (en) Method and apparatus for A/D and D/A conversion
Bellanger et al. Specification of A/D and D/A converters for FDM telephone signals
Niwa et al. A new channel bank with block companding
Gunn et al. Mastergroup digital transmission on modern coaxial systems
JPH05218992A (en) Digital fm stereo modulation method
Klein et al. SONET/SDH pointer processor implementations
JPH0452694B2 (en)
Hessenmuller The transmission of broadcasting programs in a digital integrated network