JPS60223121A - Pattern forming method - Google Patents

Pattern forming method

Info

Publication number
JPS60223121A
JPS60223121A JP59078868A JP7886884A JPS60223121A JP S60223121 A JPS60223121 A JP S60223121A JP 59078868 A JP59078868 A JP 59078868A JP 7886884 A JP7886884 A JP 7886884A JP S60223121 A JPS60223121 A JP S60223121A
Authority
JP
Japan
Prior art keywords
water
organic film
soluble
resist
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59078868A
Other languages
Japanese (ja)
Other versions
JPH0244139B2 (en
Inventor
Masaru Sasago
勝 笹子
Masataka Endo
政孝 遠藤
Kenichi Takeyama
竹山 健一
Noboru Nomura
登 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59078868A priority Critical patent/JPS60223121A/en
Priority to US06/724,304 priority patent/US4745042A/en
Publication of JPS60223121A publication Critical patent/JPS60223121A/en
Publication of JPH0244139B2 publication Critical patent/JPH0244139B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/016Diazonium salts or compounds
    • G03F7/021Macromolecular diazonium compounds; Macromolecular additives, e.g. binders
    • G03F7/0212Macromolecular diazonium compounds; Macromolecular additives, e.g. binders characterised by the polymeric binder or the macromolecular additives other than the diazo resins or the polymeric diazonium compounds
    • G03F7/0215Natural gums; Proteins, e.g. gelatins; Macromolecular carbohydrates, e.g. cellulose; Polyvinyl alcohol and derivatives thereof, e.g. polyvinylacetals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/095Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To prevent the deterioration of resolution and the accuracy of a pattern due to the effect of reflected beams resulting from the stepped section and smoothness of a foundation substrate by applying a water-soluble antireflection organic film on the substrate and forming resist on the organic film. CONSTITUTION:Stepped sections 2 consisting of an insulator, etc. are shaped on a semiconductor substrate 1, and a metallic film having high reflectivity such as an Al film 4 as a wiring is evaporated. A water-soluble antireflection organic film 8 is applied. A positive type UV resist 3 is applied on the water-soluble antireflection organic film 8, and the organic film 8 is exposed by ultraviolet rays 7 through a chromium pattern 6 for a photo-mask 5. Lastly, the resist 3 exposed by an alkaline developer is removed through development while the water-soluble antireflection organic film exposed through a rinsing process is removed, thus acquiring patterns 3f, 8a. The water-soluble antireflection organic film is constituted by a water-soluble organic matter, such as polysaccharide, protein, polyvinyl pyrrolidone, polyvinyl alcohol, etc. and a substance absorbing beam (ultraviolet rays) having 500nm or less, such as an acid, basic dyes and a crosslinking agent for adjusting the speed of dissolution to water, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体集積回路の製造等において、特にフォト
リソグラフィのパターン形成における、下地基板からの
反射を防止し、段差上でのパターン精度を向)し、かつ
解像度を高めるだめの、放射線感応性樹脂の下敷襠する
水溶性有機膜を使用するパターン形成方法である。
[Detailed Description of the Invention] Industrial Application Field The present invention is used in the manufacture of semiconductor integrated circuits, etc., particularly in photolithography pattern formation, to prevent reflections from the underlying substrate and improve pattern accuracy on steps. This is a pattern forming method that uses a water-soluble organic film underlaid with a radiation-sensitive resin to increase resolution.

従来例の構成とその問題点 集積回路の高集積化、高密度化は従来のリングラフィ技
術の進歩により増大してきた。その最小線幅も1μm前
後となってきており、この加工線幅を達成するには、高
開口レンズを有した縮小投影法により紫外線露光する方
法、基板上に直接描画する電子ビーム露光法、X線を用
いたグロキシミティ露光法があげられる。しかし、いず
れの方幅制御と高解像度及び良好な段差部のカバレジを
同時に得ることは困難である。特に実際の集積回路上に
おいては必然的に凹凸が発生し、放射線感応性樹脂(以
後、レジストと略)を塗布した後では、凹凸部における
レジストの膜厚差が発生し、良好な線幅制御が不可能と
なる。
Conventional configurations and their problems High integration and high density of integrated circuits have increased due to advances in conventional phosphorography technology. The minimum line width has become around 1 μm, and in order to achieve this processed line width, there are three methods: ultraviolet exposure using a reduction projection method with a high aperture lens, electron beam exposure that draws directly on the substrate, One example is the gloximity exposure method using lines. However, it is difficult to simultaneously obtain both width control, high resolution, and good coverage of stepped portions. In particular, unevenness inevitably occurs on actual integrated circuits, and after coating a radiation-sensitive resin (hereinafter referred to as resist), differences in resist film thickness occur at the uneven parts, making it difficult to control line width. becomes impossible.

このことを第1図を用いて説明する。第1図は従来法に
より単層レジスト膜を段差部へ塗布し、その段差部に対
して交叉してバターニングを行なった状態を示したもの
である。第1図(へは半導体基板等の基板1上に5lo
2膜2等の段差物パターン2aが形成されておりその上
にレジスト3が塗布された状態の断面図である。この場
合、段差物パターン2aがない平坦な膜上のレジスト3
の膜厚をtRlの厚さに塗布した時、段差物ノリーン2
a上のレジスト3の膜厚は、レジスト自身の粘性と塗布
時の回転数により膜厚tR2に決定される。この時tR
1=tR2にすること、つ゛まり凹凸部でのレジスト膜
の膜厚差を皆無にすることは物理的に不可能である。こ
のようにtRl ” tR2の膜厚においてレジストパ
ターンを形成した場合の平面図を第1図(B)に示す。
This will be explained using FIG. FIG. 1 shows a state in which a single-layer resist film is applied to a stepped portion by a conventional method, and patterning is performed across the stepped portion. Figure 1 (see Figure 1) 5lo
2 is a cross-sectional view of a state in which a step pattern 2a such as a two-layer film 2 is formed and a resist 3 is applied thereon. FIG. In this case, the resist 3 on a flat film without the step pattern 2a
When the film thickness of tRl is applied, the step Noreen 2
The film thickness of the resist 3 on the surface a is determined to be the film thickness tR2 depending on the viscosity of the resist itself and the number of revolutions during coating. At this time tR
It is physically impossible to set 1=tR2, that is, to completely eliminate the difference in the thickness of the resist film at the uneven portion. FIG. 1B shows a plan view of a resist pattern formed with a film thickness of tRl''tR2 in this manner.

これは、段差物パターン2aに対して直角に交叉して形
成されたレジストパターン3の膜厚tR1ン幅は22 
でかつfil) 12となり段差部における寸法変換差
φ(発生してしまう。つまり、非常に微細パターンにな
ると良好な線幅制御が得られず、更に段差物2aのエツ
ジ部2bで実質上、平坦部の膜厚tR1より厚くなるた
め解像度が低下する。
This means that the film thickness tR1 and width of the resist pattern 3 formed perpendicularly to the step pattern 2a is 22.
and fil) 12, and a dimensional conversion difference φ (occurs) at the stepped portion.In other words, when a very fine pattern is obtained, good line width control cannot be obtained, and furthermore, the edge portion 2b of the stepped object 2a is substantially flat. Since the film thickness becomes thicker than the film thickness tR1 of the part, the resolution decreases.

一般に解像度はレジストの膜厚が薄くなればなるほど向
上する。これは放射線自身の波長によって微細間隙にな
ると干渉、回折現像のため入射するエネルギーが減衰し
てしまうためである。つ捷り段差物上のレジスト膜厚差
を少なくするために、ただ単にレジストを厚く塗布し見
掛は上のレジスト膜厚差を軽減しようとしても解像度が
低下するためにパターン形成上好捷しくない。
Generally, the resolution improves as the resist film thickness becomes thinner. This is because the incident energy is attenuated due to interference and diffraction development when fine gaps are formed due to the wavelength of the radiation itself. In order to reduce the difference in resist film thickness on the folded step, simply applying a thick layer of resist, which appears to reduce the difference in resist film thickness above, reduces the resolution, making it difficult to form a pattern. do not have.

更に反射の影響について第2図を用いて説明する。Further, the influence of reflection will be explained using FIG. 2.

第2図(5)は基板1上の凸部状段差2に金属膜4例え
ばへ2膜が全面に蒸着され、更に上部に感光性樹脂(以
後、レジスト)3が塗布された状態にマスク6のクロム
6を介して紫外線を照射した場合の断面図である。この
時の紫外線(以後、UV光)の入射状態を拡大した図が
第2図(B)である。
FIG. 2 (5) shows a mask 6 with a metal film 4, e.g. FIG. 3 is a cross-sectional view when ultraviolet rays are irradiated through chromium 6 of FIG. FIG. 2(B) is an enlarged view of the incident state of ultraviolet rays (hereinafter referred to as UV light) at this time.

入射するUV光7のうち平坦部3aへ入射するUV光7
aの反射光7bは正確に180°の角度で反射するが、
Affi膜4の段差部の位置へ入射するUV光7cはA
2膜4の側面から反射して反射光7Cとなり、反射光7
dは未露光部のレジスト領域3bに侵入し、実質現像後
のレジスト断面3cはマスク6のクロム部6の幅よりも
狭くなりパターン精度が劣化する。捷だ段差間とレジス
トパターン端部との距離によってはレジストパターンが
消滅し、パターン断線が発生する。
Of the UV light 7 that enters, the UV light 7 that enters the flat portion 3a
The reflected light 7b of a is reflected at an angle of exactly 180°, but
The UV light 7c incident on the stepped portion of the Affi film 4 is A
2 reflected from the side surface of the film 4 to become reflected light 7C;
d invades the unexposed resist region 3b, and the resist cross section 3c after development becomes narrower than the width of the chrome portion 6 of the mask 6, deteriorating pattern accuracy. Depending on the distance between the twisted steps and the end of the resist pattern, the resist pattern may disappear and pattern breakage may occur.

以上述べたように、基板上の段差や平滑性によってパタ
ーン精度が低下し微細化に対し大きな障害であった。特
に光強度の高い縮小投影露光法においては、下地反射に
よる解像度、パターン精度の低下がはなはだしく、例え
ば段差を有するAfi上の配線パターン形成において2
μm以下のパターン寸法は必らず断線する現象がある。
As described above, pattern accuracy is reduced due to differences in level and smoothness on the substrate, which is a major hindrance to miniaturization. In particular, in the reduction projection exposure method with high light intensity, the resolution and pattern accuracy are significantly degraded due to reflection from the base.
Pattern dimensions of less than μm always cause disconnection.

発明の目的 本発明は、従来例からも述べたように特にフォトリング
ラフィにおける下地基板の段差や平滑性からくる反射光
の影響による解像度の低下とパターンの精度の低下を防
ぐ目的とするものである。
Purpose of the Invention As stated in the prior art, the purpose of the present invention is to prevent a decrease in resolution and a decrease in pattern accuracy due to the influence of reflected light caused by steps and smoothness of the underlying substrate, especially in photolithography. be.

発明の構成 本発明は、室温で可溶で、有機溶媒系のレジストが積層
可能であってかつ、現像液であるアルカリ水溶液及び水
に対して溶解速度が調節しうる水溶性反射防止用有機膜
を使用し、基板上にこの膜を塗布した後、前記水溶性反
射防止用有機膜上にレジストを重ねて塗布し、選択的に
放射線例えば紫外線、遠紫外線、X線、電子線、イオン
線などを露光し、前記選択的に露光したレジストとその
直下の水溶性反射防止有機膜を同時に現像除去しパター
ン形成方法を提供しようとするものである。
Structure of the Invention The present invention provides a water-soluble anti-reflection organic film which is soluble at room temperature, allows lamination of an organic solvent-based resist, and whose dissolution rate can be adjusted in an alkaline aqueous solution as a developer and water. After coating this film on the substrate, a resist is overlaid on the water-soluble antireflection organic film, and selectively exposed to radiation such as ultraviolet rays, deep ultraviolet rays, X-rays, electron beams, ion beams, etc. The present invention aims to provide a pattern forming method in which the selectively exposed resist and the water-soluble antireflection organic film immediately below the selectively exposed resist are simultaneously developed and removed.

笠に述べた水溶性反射防止用有機膜は、水溶性有機物例
えば多糖体、たんばく質、ポリビニルピロリドン、ポリ
ビニルアルコールなどと500nm以下の光(紫外線)
を吸収する物質例えば酸、塩基性染料と、水などへの溶
解速度を調整するだめの架橋剤例えばジアルデヒドデン
プン、重クロム酸塩、ジアジド化合物、アジド化合物、
アルデヒド化合物などと、水とからなる構成を有するも
のである。
The water-soluble anti-reflection organic film described in Kasa is made of water-soluble organic substances such as polysaccharides, proteins, polyvinylpyrrolidone, polyvinyl alcohol, etc. and light of 500 nm or less (ultraviolet light).
substances that absorb substances such as acids, basic dyes, and crosslinking agents that adjust the rate of dissolution in water, etc. such as dialdehyde starch, dichromates, diazide compounds, azide compounds,
It has a structure consisting of an aldehyde compound or the like and water.

実施例の説明 まず、本発明の中で特に冷水に易溶性で多糖類であるプ
ルランを主成分とする水溶性有機膜について、説明する
。プルランの構造は、次のように示される。
DESCRIPTION OF EMBODIMENTS First, a water-soluble organic film of the present invention, which is particularly easily soluble in cold water and whose main component is pullulan, which is a polysaccharide, will be described. The structure of pullulan is shown below.

以 下 余 白 / このン嶋ンはグルコース単位を中心とするデンプン、セ
ルロースなどの多糖類と分子構造が異なっている。そし
て更にその性質も異なる。例えば、デンプン、セルロー
スは冷水に溶けにくいのに対し、プルランは冷水に易溶
であり、その水溶液は水溶性高分子の水溶液の中で、同
一の濃度、同一の分子量においては、粘度の低いものの
1つである。
Margin below/ This substance has a different molecular structure from polysaccharides such as starch and cellulose, which are centered on glucose units. Moreover, their properties are also different. For example, starch and cellulose are difficult to dissolve in cold water, whereas pullulan is easily soluble in cold water, and its aqueous solution has a low viscosity at the same concentration and molecular weight in an aqueous solution of water-soluble polymers. There is one.

またプルラン水溶液は長期間安定であって、ゲル化ある
いは老化現象は認められない。更にその膜は有機溶媒に
対してまったく溶解しない性質も有する。つまり半導体
製造におけるリソグラフィー技術に使用する有機溶媒系
の放射線感応性樹脂(以後、レジスト、)を重ねて塗布
しやすい性質を有している。
In addition, the pullulan aqueous solution is stable for a long period of time, and no gelation or aging phenomenon is observed. Furthermore, the film has the property of not being dissolved at all in organic solvents. In other words, it has the property of being easy to coat with an organic solvent-based radiation-sensitive resin (hereinafter referred to as resist) used in lithography technology in semiconductor manufacturing.

更に放射線例えば紫外線を吸収する材料、染料等を前記
プルラン水溶液に溶解させる。この時、染料は酸性染料
であるが、プルラン水溶液はpHにまったく影響されず
安定した水溶液である。
Furthermore, materials that absorb radiation, such as ultraviolet rays, dyes, etc. are dissolved in the pullulan aqueous solution. At this time, although the dye is an acidic dye, the pullulan aqueous solution is completely unaffected by pH and is a stable aqueous solution.

そして、本発明は、レジストのパターン形成の印倫T程
V卦はス王目イ中訪(了ルナ11士痕瀉)IIンス液(
水)に対してプルラン膜の溶解速度をコントロールする
ため、架橋剤としてたとえばジアルデヒドデンプンを少
量混合することを特徴としている。ジアルデヒドはデン
プンを過沃素酸により酸化して、デンプンの構成単位を
ジアルデヒドに換えたものである。とのジアルデヒドデ
ンプンは前記のプルランと反応しアセタール結合を作り
水に対し難溶性を示す。
The present invention also provides a method for forming a pattern on a resist using a liquid solution (
In order to control the dissolution rate of the pullulan membrane in water), a small amount of dialdehyde starch, for example, is mixed as a crosslinking agent. Dialdehyde is produced by oxidizing starch with periodic acid to change the constituent units of starch to dialdehyde. The dialdehyde starch reacts with the above-mentioned pullulan to form an acetal bond and exhibits poor solubility in water.

同様に、水に対する難溶性を串すため、感光性やエステ
ル化、エーテル化させるため、重クロム酸塩、ジアジド
化合物、アジド化合物(感光性)。
Similarly, dichromates, diazide compounds, and azide compounds (photosensitive) are used to reduce their poor solubility in water, and to make them photosensitive, esterified, and etherified.

アルデヒド化合物などと反応させるのもよい。It is also good to react with aldehyde compounds.

以下、詳細な実施例を説明する。Detailed examples will be described below.

まず、本発明に用いる水溶性反射防止用有機膜の一例の
合成方法とその性質について述べる。
First, a method for synthesizing an example of a water-soluble antireflection organic film used in the present invention and its properties will be described.

ビー力に純水(脱イオン水)を100CGを入れ温度を
室温のまま、重金属を充分とった平均分子量2o万のプ
ルランを攪拌しながら添加してゆき、20F溶解させる
。一方、温度80℃の温水100CCに酸性染料(5o
onm以下の紫外領域を吸収する染料)2.esPを攪
拌しながら溶解していく。
Add 100 CG of pure water (deionized water) to a beaker, and while keeping the temperature at room temperature, add pullulan with an average molecular weight of 20,000, which contains enough heavy metals, while stirring to dissolve it at 20 F. On the other hand, acid dye (5o
(dye that absorbs ultraviolet light below 100 nm) 2. Dissolve the esP while stirring.

次にプルラン水溶液と染料水溶液を混合して染料式りプ
ルラン水溶液を作製した。次にジアルデビドデンブン水
溶液(1Q%)数GGを染料式りプルラン水溶液に混合
させた。この状態では、ゲル化はみられず長期間おいて
も品質はまったく変化がみられない。この溶液を石英ガ
ラス板上にスピンナーを用いて3000 rpmで回転
塗布したところ、均一な5000人の膜厚が得られ、紫
外透過特性も波長500 nm以下で、60%以下の透
過を示し半導体製造における紫外線露光に対し充分な反
射防止効果があった。更にこの水溶性有機膜を塗布した
後この有機膜上にレジストの塗布を行ったところ溶解も
なく、きわめて容易にレジストを積層することが可能で
あった。水への溶解速度も架橋剤なしの時よりも1Q部
程度遅くなり、半導体製造における制御性もあった。
Next, a dye-type pullulan aqueous solution was prepared by mixing the pullulan aqueous solution and the dye aqueous solution. Next, several GG of dialdevidodene aqueous solution (1Q%) was mixed with the dye-type pullulan aqueous solution. In this state, gelation is not observed and the quality does not change at all even after a long period of time. When this solution was spin-coated onto a quartz glass plate at 3000 rpm using a spinner, a uniform film thickness of 5000 nm was obtained, and the ultraviolet transmission characteristics were 60% or less at wavelengths of 500 nm or less, making it suitable for semiconductor manufacturing. It had a sufficient antireflection effect against UV exposure. Further, after coating this water-soluble organic film, when a resist was coated on this organic film, there was no dissolution, and it was possible to layer the resist very easily. The dissolution rate in water was also about 1Q part slower than when no crosslinking agent was used, and the controllability in semiconductor manufacturing was also improved.

なお、プルラン、染料、架橋剤の量は、塗布する膜厚、
紫外線吸収量、水への溶解速度によって任意に選択する
ことが可能である。また、水への溶解性の制御には、プ
ルラン自身をエーテル、エステル化することも考えられ
る。
The amount of pullulan, dye, and crosslinking agent depends on the coating thickness,
It can be arbitrarily selected depending on the amount of ultraviolet absorption and the rate of dissolution in water. Furthermore, in order to control the solubility in water, it is also possible to ether or esterify pullulan itself.

この水溶性反射防止用有機膜を使用した・くターン形成
方法の実施例を第3図を用いて説明する。
An example of a pattern forming method using this water-soluble antireflection organic film will be described with reference to FIG.

従来例の説明に使用した第2図と同様に半導体基板1上
に絶縁物等の段差2が形成し、反射率の高い金属膜例え
ば配線となるへ2膜4を蒸着する。
Similar to FIG. 2 used to explain the conventional example, a step 2 made of an insulating material or the like is formed on a semiconductor substrate 1, and a metal film 4 having a high reflectivity, such as a metal film 4 that will become a wiring, is vapor-deposited.

そして前述の水溶性反射防止用有機膜8を塗布する〔第
3図A〕。この時の水溶性反射防止用有機膜の膜厚はこ
の後で露光する際に施こすエネルギー量によって適当に
設定されるものであるが、本実施例においては2000
人に塗布形成し薄い膜とした。
Then, the water-soluble antireflection organic film 8 described above is applied (FIG. 3A). The film thickness of the water-soluble antireflection organic film at this time is appropriately set depending on the amount of energy applied during subsequent exposure, but in this example, the film thickness was 2000.
It was applied to a person to form a thin film.

続いて、ポジ型UVレジスト3を水溶性反射防止用有機
膜8上に塗布する。この際、ポジ型UVレジスト3と水
溶性反射防止用有機膜8とは互いに溶解することなく均
一に塗布することが可能であった〔第3図B〕。
Subsequently, a positive UV resist 3 is applied onto the water-soluble antireflection organic film 8. At this time, it was possible to uniformly apply the positive UV resist 3 and the water-soluble antireflection organic film 8 without dissolving each other [FIG. 3B].

そして、フォトマスク6のクロムパターン6を介して縮
小投影露光法によって436 nmの紫外線7を16o
ml/lrlのエネルギーで露光する。この時、段差側
面や表面からの反射は水溶性反射防止用有機膜8中の紫
外線吸収剤により吸収されるため、まったく反射が起こ
らずクロムパターン6通りの未露光領域3eが形成され
る〔第3図C〕。
Then, ultraviolet rays 7 of 436 nm are exposed at 16° C. through the chrome pattern 6 of the photomask 6 using the reduction projection exposure method.
Expose with energy of ml/lrl. At this time, reflections from the side surfaces and surfaces of the steps are absorbed by the ultraviolet absorber in the water-soluble anti-reflection organic film 8, so no reflection occurs at all, and six unexposed areas 3e of chrome patterns are formed. Figure 3C].

最後にアルカリ現像波によって露光したポジ型UVレジ
スト3を現像除去し、同時にリンス工程で露出した水溶
性反射防止用有機膜を除去しパター73f、8aを得だ
〔第3図D〕。
Finally, the positive UV resist 3 exposed to alkaline development waves was developed and removed, and at the same time, the water-soluble anti-reflection organic film exposed in the rinsing process was removed to obtain putters 73f and 8a (FIG. 3D).

なお、水溶性反射防止用有機膜8の水への溶解速度は塗
布後の熱処理や架橋剤の添加量によって自在にコントロ
ールが可能で上層のポジUVレジストの膜厚によって設
定されるものである。
The dissolution rate of the water-soluble antireflection organic film 8 in water can be freely controlled by heat treatment after coating and the amount of crosslinking agent added, and is set by the thickness of the upper positive UV resist.

第3図(d)ののち、パターン3f、8aをマスクとし
てA2膜4を選択除去して電極配線を形成する。
After FIG. 3(d), the A2 film 4 is selectively removed using the patterns 3f and 8a as masks to form electrode wiring.

次に第2の実施例を第4図を用いて説明する。Next, a second embodiment will be explained using FIG. 4.

第1の実施例の場合には水溶性反射防止用有機膜8を露
光エネルギのうちの反射光を防ぐ最小の膜厚にしたため
下地基板10段差2の形状は変化せず、ポジ形UVレジ
スト3は段差付近で膜厚の変動が発生し、最終的にパタ
ーン精度が劣化する。
In the case of the first embodiment, since the water-soluble anti-reflection organic film 8 was made to have the minimum thickness to prevent reflected light of the exposure energy, the shape of the base substrate 10 step 2 did not change, and the positive UV resist 3 In this case, variations in film thickness occur near the step, and pattern accuracy eventually deteriorates.

これを防ぐために、第2の実施例では水溶性反射防止用
有機膜8を厚く塗布し平坦に形成する〔第4図A〕。こ
の後、ポジ形UVレジスト3は平坦に塗布されるために
レジスト膜厚の変動がまったく無くなる。そして露光現
像、リンス工程を加えれば、(B)のごとくパターン精
度が高く、高アスペクト比パターン3f 、8aが得ら
れた。この時、水溶性反射防止用有機膜8は熱処理を低
温で行なっただめかつ架橋剤の添加量を最適化しただめ
水への溶解速度が大きく、膜厚にあまり依存しなくない
ので上層であるポジ形UVポジレジストパターン3fに
忠実に転写される。
In order to prevent this, in the second embodiment, the water-soluble antireflection organic film 8 is applied thickly and formed flatly (FIG. 4A). After this, since the positive UV resist 3 is applied flatly, there is no variation in the resist film thickness. By adding exposure, development, and rinsing steps, patterns 3f and 8a with high pattern accuracy and high aspect ratios were obtained as shown in (B). At this time, the water-soluble anti-reflection organic film 8 is heat-treated at a low temperature and the amount of cross-linking agent added is optimized.The water-soluble anti-reflection organic film 8 has a high dissolution rate in water and does not depend much on the film thickness, so it is the upper layer. It is faithfully transferred to the positive UV positive resist pattern 3f.

具体的に本発明による実験データを第5図に示す。横軸
は第1図における段差エツジからマスクツクロームパタ
ーンエツジまでの距離Sを示し、縦軸はパターン形成後
のレジストパターンを示した。またマスクパターンを転
写したものである。
Specifically, experimental data according to the present invention is shown in FIG. The horizontal axis represents the distance S from the step edge to the mask chrome pattern edge in FIG. 1, and the vertical axis represents the resist pattern after pattern formation. It is also a transfer of a mask pattern.

これによると、従来例の曲線11に示されるものはS(
段差からの距離)が1〜2μmの距離でレジストパター
ンが下地AQからの反射によって、レジストパターンが
断線あるいは、断線傾向となる。例えばSが0.57z
mの時は、レジストパターンが0.5μmとパターン細
りが生じていた。一方、曲線10に示す本発明のものは
、Sの距離に関係なく、レジストパターンに変動なく1
μmパターンが形成可能であった。
According to this, what is shown in the curve 11 of the conventional example is S(
At a distance of 1 to 2 μm (distance from the step), the resist pattern becomes disconnected or tends to disconnect due to reflection from the base AQ. For example, S is 0.57z
At the time of m, the resist pattern was thinned to 0.5 μm. On the other hand, in the case of the present invention shown by curve 10, there is no change in the resist pattern regardless of the distance S.
A μm pattern could be formed.

なお、以上の実施例ではレジストとしてポジ型のものを
説明しだが、ネガレジストを用いた場合でも本発明を適
用できることは当然である。
In the above embodiments, a positive type resist was explained, but it goes without saying that the present invention can also be applied to a case where a negative resist is used.

発明の効果 本発明の効果は、パターン形成用水溶性有機膜を紫外線
露光法に適用した場合、下地基板からの反射を吸収する
ため、パターン断線などの不良を解消しかつ、パターン
精度が向上した。また、パターン形成用水溶性有機膜の
膜厚を厚く塗布することにより、マスクパターン転写精
度が向上し、解像度も向上した。以上、本発明は微細化
をたどる半導体集積回路製造技術に非常に有益なもので
あることが言える。
Effects of the Invention The effects of the present invention are that when a water-soluble organic film for pattern formation is applied to an ultraviolet exposure method, it absorbs reflection from the underlying substrate, eliminating defects such as pattern breakage and improving pattern accuracy. Furthermore, by applying a thicker water-soluble organic film for pattern formation, mask pattern transfer accuracy and resolution were improved. As described above, it can be said that the present invention is extremely useful for semiconductor integrated circuit manufacturing technology that follows miniaturization.

【図面の簡単な説明】 第1図(A) 、 (B)は従来例によるパターン形成
後の断面図、平面図、第2図(5)、(B)は従来のレ
ジストパターン形成工程断面図、第3図(5)〜(至)
は本発明の第1の実施例のパターン形成工程断面図、第
4図(へ、(B)は本発明の第2の実施例のパターン形
成工程断面図、第6図は本発明と従来例との比較データ
を示す図である。 1・・・・・基板+2 ・・段差、3・・・レジスト、
8・・・水溶性反射防止用有機膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2因 第3図 第3図 f 第4図 第5図
[Brief Description of the Drawings] Figures 1 (A) and (B) are cross-sectional views and plan views after pattern formation according to the conventional example, and Figures 2 (5) and (B) are cross-sectional views of the conventional resist pattern forming process. , Figure 3 (5) to (to)
4(B) is a sectional view of the pattern forming process of the second embodiment of the present invention, and FIG. 6 is a sectional view of the pattern forming process of the first embodiment of the present invention. It is a diagram showing comparison data with 1...substrate+2...step, 3...resist,
8...Water-soluble anti-reflection organic film. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Cause 3 Figure 3 Figure f Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 0)基板に水溶性反射防止用有機膜を塗布する工程、前
記水溶性反射防止用有機膜上に放射線感応性樹脂を塗布
形成する工程9選択的に放射線を露光する工程、前記選
択的に露光した放射線感応性樹脂と直下の前記水溶性反
射防止有機膜を同時に現像除去する工程を含むことを特
徴とするパターン形成方法。 @)水溶性反射防止用有機膜が、水溶性有機物と500
 nm以下の光を吸収する物質と架橋剤と水を含むこと
を特徴とする特許請求の範囲第1項に記載のパターン形
成方法。 (3)水溶性有機物が、多糖体、たんば〈質、ポリビニ
ルピロリドン、ポリビニルアルコールヲ少なくとも一つ
を含むものであることを特徴とする特許請求の範囲第2
項に記載のパターン形成方法。 (4)架橋剤が、ジアルデヒドデンプン、重クロム酸塩
、ジアジド化合物、アジド化合物、アルデヒド化合物を
少なくとも一つを含むものであることを特徴とする特許
請求の範囲第2項に記載のパターン形成方法。
[Claims] 0) Step of coating a water-soluble anti-reflection organic film on a substrate; step 9 of coating and forming a radiation-sensitive resin on the water-soluble anti-reflection organic film; step 9 of selectively exposing to radiation; . A pattern forming method comprising the step of simultaneously developing and removing the selectively exposed radiation-sensitive resin and the water-soluble anti-reflection organic film immediately below. @) The water-soluble anti-reflection organic film has a water-soluble organic substance and 500%
2. The pattern forming method according to claim 1, comprising a substance that absorbs light of nm or less, a crosslinking agent, and water. (3) Claim 2, characterized in that the water-soluble organic substance contains at least one of polysaccharide, protein, polyvinylpyrrolidone, and polyvinyl alcohol.
The pattern forming method described in section. (4) The pattern forming method according to claim 2, wherein the crosslinking agent contains at least one of dialdehyde starch, dichromate, diazide compound, azide compound, and aldehyde compound.
JP59078868A 1984-04-19 1984-04-19 Pattern forming method Granted JPS60223121A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59078868A JPS60223121A (en) 1984-04-19 1984-04-19 Pattern forming method
US06/724,304 US4745042A (en) 1984-04-19 1985-04-17 Water-soluble photopolymer and method of forming pattern by use of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59078868A JPS60223121A (en) 1984-04-19 1984-04-19 Pattern forming method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP61041246A Division JPS61179440A (en) 1986-02-26 1986-02-26 Pattern forming organic film and formation of pattern

Publications (2)

Publication Number Publication Date
JPS60223121A true JPS60223121A (en) 1985-11-07
JPH0244139B2 JPH0244139B2 (en) 1990-10-02

Family

ID=13673796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59078868A Granted JPS60223121A (en) 1984-04-19 1984-04-19 Pattern forming method

Country Status (1)

Country Link
JP (1) JPS60223121A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0257255A2 (en) * 1986-08-25 1988-03-02 International Business Machines Corporation Photoresist process for reactive ion etching of metal patterns for semiconductor devices
US5130263A (en) * 1990-04-17 1992-07-14 General Electric Company Method for photolithographically forming a selfaligned mask using back-side exposure and a non-specular reflecting layer
JPH04226013A (en) * 1990-04-18 1992-08-14 Internatl Business Mach Corp <Ibm> Imaging exposure device and exposure method
EP0803777A1 (en) * 1996-04-25 1997-10-29 Tokyo Ohka Kogyo Co., Ltd. Undercoating composition for photolithographic resist
US5830623A (en) * 1995-09-12 1998-11-03 Kabushiki Kaisha Toshiba Pattern lithography method
JP2007017950A (en) * 2005-06-07 2007-01-25 Shin Etsu Chem Co Ltd Material for resist underlayer film and method for forming pattern using the same
US7687223B2 (en) 2004-11-01 2010-03-30 Nissan Chemical Industries, Ltd. Underlayer coating forming composition for lithography containing cyclodextrin compound
US8916327B2 (en) 2003-10-30 2014-12-23 Nissan Chemical Industries, Ltd. Underlayer coating forming composition containing dextrin ester compound

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5955019A (en) * 1982-09-24 1984-03-29 Oki Electric Ind Co Ltd Formation of minute pattern
JPS59168637A (en) * 1983-03-15 1984-09-22 Nec Corp Forming method of minute pattern

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5955019A (en) * 1982-09-24 1984-03-29 Oki Electric Ind Co Ltd Formation of minute pattern
JPS59168637A (en) * 1983-03-15 1984-09-22 Nec Corp Forming method of minute pattern

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0257255A2 (en) * 1986-08-25 1988-03-02 International Business Machines Corporation Photoresist process for reactive ion etching of metal patterns for semiconductor devices
US5130263A (en) * 1990-04-17 1992-07-14 General Electric Company Method for photolithographically forming a selfaligned mask using back-side exposure and a non-specular reflecting layer
JPH04226013A (en) * 1990-04-18 1992-08-14 Internatl Business Mach Corp <Ibm> Imaging exposure device and exposure method
US5830623A (en) * 1995-09-12 1998-11-03 Kabushiki Kaisha Toshiba Pattern lithography method
EP0803777A1 (en) * 1996-04-25 1997-10-29 Tokyo Ohka Kogyo Co., Ltd. Undercoating composition for photolithographic resist
US8916327B2 (en) 2003-10-30 2014-12-23 Nissan Chemical Industries, Ltd. Underlayer coating forming composition containing dextrin ester compound
US7687223B2 (en) 2004-11-01 2010-03-30 Nissan Chemical Industries, Ltd. Underlayer coating forming composition for lithography containing cyclodextrin compound
JP2007017950A (en) * 2005-06-07 2007-01-25 Shin Etsu Chem Co Ltd Material for resist underlayer film and method for forming pattern using the same

Also Published As

Publication number Publication date
JPH0244139B2 (en) 1990-10-02

Similar Documents

Publication Publication Date Title
US4745042A (en) Water-soluble photopolymer and method of forming pattern by use of the same
US5178989A (en) Pattern forming and transferring processes
JPH08503983A (en) Reduction of metal ions in bottom antireflective coatings for photoresists
JPS6358367B2 (en)
TW200428168A (en) Rinse solution for lithography and pattern forming method using the same
US5554489A (en) Method of forming a fine resist pattern using an alkaline film covered photoresist
US4777111A (en) Photographic element with diazo contrast enhancement layer and method of producing image in underlying photoresist layer of element
JPS60223121A (en) Pattern forming method
JPH0367261B2 (en)
DE2335072A1 (en) PHOTOGRAPHIC RECORDING MATERIAL FOR THE DIRECT MANUFACTURE OF PHOTOMASKS AND METHOD OF MANUFACTURING THEREOF
JPH0245325B2 (en)
JPS61179434A (en) Pattern forming organic film
JPH086256A (en) Resist pattern forming method and acidic watersoluble material composition used in same
US5173382A (en) Photosensitive composition containing water-soluble binder and aromatic diazonium chromate forming fluorescent screens employing same
JPH07142344A (en) Method for developing photoresist
JPH06348036A (en) Method for forming resist pattern
BE1014248A3 (en) Method for producing a printed circuit used for manufacturing semiconductor device.
JPS6186745A (en) Pattern-forming organic film
JPH0376740B2 (en)
JPS62269946A (en) Resist pattern forming method
JPH0261021B2 (en)
JPH0416106B2 (en)
JPH0814699B2 (en) Pattern formation method
JPH0458170B2 (en)
KR100741912B1 (en) Method for Forming Fine Photoresist Pattern in Semiconductor Device by Using Double Exposure

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term