JPS60220803A - Method and device for detecting breadthwise position of metallic lump - Google Patents

Method and device for detecting breadthwise position of metallic lump

Info

Publication number
JPS60220803A
JPS60220803A JP59077215A JP7721584A JPS60220803A JP S60220803 A JPS60220803 A JP S60220803A JP 59077215 A JP59077215 A JP 59077215A JP 7721584 A JP7721584 A JP 7721584A JP S60220803 A JPS60220803 A JP S60220803A
Authority
JP
Japan
Prior art keywords
voltage
light
video signal
scanning
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59077215A
Other languages
Japanese (ja)
Other versions
JPH0423722B2 (en
Inventor
Heiji Kato
平二 加藤
Hiroaki Kuwano
博明 桑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP59077215A priority Critical patent/JPS60220803A/en
Publication of JPS60220803A publication Critical patent/JPS60220803A/en
Publication of JPH0423722B2 publication Critical patent/JPH0423722B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/04Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
    • G01B11/046Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving for measuring width

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To detect the breadthwise position of a metallic lump accurately by providing a comparing means which supplies a closure command to a specific switch and a means which varies a scanning period when the switch is closed. CONSTITUTION:The voltage Vi+1 of a video signal of a rolled material and the voltage Vi of a video signal which is stored in a shift register 35 and one address before are sent to a comparator 34, and the difference between Vi+1 and Vi is calculated by comparison at intervals of one pulse and outputted. The voltage difference DELTAVi+1 outputted by the comparator 34 is compared with last voltage difference DELTAVi; when DELTAVi+1>DELTAVi, the number NE of clock pulses counted so far is stored in a storage circuit 38 and this value corresponds to the breadthwise end position of the rolled material and is also held as a video signal corresponding to a voltage VL when the switch 28 is closed. This sequence is repeated to vary the scanning period according to the brightness of the rolled material, thus detecting the breadthwise position of the metallic lump properly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱間圧延設備や連鋳設備等における金属塊の
幅方向位置検出方法及びその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for detecting the position in the width direction of a metal ingot in hot rolling equipment, continuous casting equipment, etc.

〔従来の技術〕[Conventional technology]

圧延又は連鋳加工では、製品歩留りを向上するうえで精
密な板幅管理が望まれる。特に熱間圧延の場合は、圧延
機で水平圧下するために圧延材に幅広がりが生じるが、
これを放置したまま圧延を繰返すと、製品板幅が設定値
よりも極めて大きいものとなり、後工程のサイドトリミ
ング等で切捨てる部分が増大し、歩留りの低下を招来す
る。
In rolling or continuous casting processing, precise sheet width control is desired in order to improve product yield. Particularly in the case of hot rolling, the width of the rolled material widens due to the horizontal reduction in the rolling mill.
If rolling is repeated with this condition left as is, the width of the product sheet will be much larger than the set value, and the portion to be cut off during side trimming or the like in the subsequent process will increase, leading to a decrease in yield.

一方、ジングルスタンドにおけるリバース圧延、連続ス
タンドにおける先後端部通過時等の無張力圧延において
は、蛇行が生じ易いだめ、圧延材の蛇行量を検出して、
左右のロールギャップの調整を行う必要がある。ところ
が、従来の圧延荷重差に基づいて蛇行を検出して制御す
る方式では、圧延材の端折れによる端部2枚噛みゃ先後
端の不規則形状部の圧延時に発生する圧延荷重差等を蛇
行現象と判断し、圧下レベル調整を狂わし、かえって圧
延作業を中断させる、等の致命的な欠陥があった。
On the other hand, meandering is likely to occur during reverse rolling in a jingle stand and in tensionless rolling when passing the leading and trailing ends in a continuous stand, so the amount of meandering of the rolled material is detected.
It is necessary to adjust the left and right roll gaps. However, with the conventional method of detecting and controlling meandering based on the rolling load difference, the difference in rolling load that occurs during rolling of irregularly shaped parts at the leading and trailing ends of the rolled material due to the bending of the two ends is detected and controlled. There was a fatal flaw in that the rolling process was judged to be a phenomenon, disrupted the rolling reduction level adjustment, and even caused the rolling operation to be interrupted.

そこで、最近では、熱間圧延材、連鋳材等の加熱金属塊
の板幅或いは蛇行等を高精度で制御することが望まれ、
その基になる板幅或いは蛇行等の検出手段として光学的
幅方向位置検出器が開発されている。この装置は第1図
に示す原理に基づいている。
Therefore, it has recently become desirable to control the plate width or meandering of heated metal ingots such as hot-rolled materials and continuously cast materials with high precision.
An optical width direction position detector has been developed as a means for detecting the board width or meandering, etc., which is the basis for this. This device is based on the principle shown in FIG.

すなわち、圧延材(1)の下方から投光器(2)により
圧延材(1)を投光し、上方、つまり圧延材(1)の表
面方向部位に設けた受光器(3)によって圧延材(1)
に遮蔽されない部分の受光量を測定し、板幅を検出する
ものである。受光器(3)には、光電素子(フォトダイ
オード)を利用したもの、テレビカメラ式撮1象管を利
用したもの等があるが、以下、光電素子を利用したもの
について説明する。テレビカメラ式撮像管を用いた場合
も原理的には変らない。光電素子(5)は投光器(2)
と平行に、複数個、直線状に配列しく個数単位として一
般に「ビット」を用いる)、レンズ(6)を通して集光
した像の受光量に比例した電気信号(7)を発する。乙
の受光量を所定の変換器により一部レベルでスレッシュ
ホールドすることにより、電気信号をオン、オフ2種類
の同期信号(8)に変換する。1ビット当りの集光距離
はレンズ(6)の集光角度2α(又は集光範囲L)及び
被測定物としての圧延材(1)とレンズ(6)との間の
距離Hによって定寸るので、全光電素子数をNピットと
すると、板幅Wは次式でめることができる。
That is, the rolled material (1) is illuminated by the light projector (2) from below the rolled material (1), and the light receiver (3) provided above, that is, in the surface direction of the rolled material (1), illuminates the rolled material (1). )
The width of the plate is detected by measuring the amount of light received in the areas that are not shielded. The light receiver (3) includes one using a photoelectric element (photodiode), one using a television camera type one-quadrant tube, etc., and the one using a photoelectric element will be explained below. The principle remains the same even when a television camera type image pickup tube is used. The photoelectric element (5) is a floodlight (2)
A plurality of them are arranged in a straight line in parallel with each other (generally, a "bit" is used as a unit of number), and they emit an electric signal (7) proportional to the amount of light received from the image focused through the lens (6). By thresholding the amount of light received by B at a partial level using a predetermined converter, the electrical signal is converted into two types of synchronization signals (8): on and off. The focusing distance per bit is determined by the focusing angle 2α (or focusing range L) of the lens (6) and the distance H between the rolled material (1) as the object to be measured and the lens (6). Therefore, if the total number of photoelectric elements is N pits, the plate width W can be determined by the following formula.

W = Lx (N −(Nl+N2) l/N= 2
I(tanct x (N −(Nl+N2 ) )/
N −・・(+)而し7て、このような板幅検出手段を
圧延材等の蛇行検出に適用することも考えられ、既に一
部では実施されているが、特に熱間圧延では圧延4A自
体が800℃前後の高温であるため、第1図に示す投光
器(2)を廃して圧延材自体の光を検知する方式が有効
である。この場合の原理を第2図により説明すると、圧
延材(1)の左右両側、すなわち、ワークサイドとドラ
イブサイドの夫々に受光器(9)αQを設け、該受光器
(9)αOにより圧延材(1)の光を検知するようにす
る。検知時には、受光素子α1)Hの各ビットごとに集
光が行われ、各ビットごとに集光された光の強さに比例
する電圧が発生する。例えば、受光素子0υで検出され
た電圧と受光素子α◇の各ビットとの関係を図示すると
第3図に示すようになり、電圧差が発生し始めだ位置が
圧延材(1)のワークサイド側端部として検知される。
W = Lx (N - (Nl+N2) l/N= 2
I(tanct x (N-(Nl+N2))/
N -...(+)7 Therefore, it is possible to apply such a strip width detection means to detect meandering of rolled materials, etc., and this has already been done in some cases, but especially in hot rolling, rolling Since 4A itself has a high temperature of around 800° C., it is effective to eliminate the light projector (2) shown in FIG. 1 and detect the light from the rolled material itself. The principle in this case will be explained with reference to FIG. 2. A light receiver (9) αQ is provided on both the left and right sides of the rolled material (1), that is, on the work side and the drive side, and the light receiver (9) αO is used to detect the rolled material. The light of (1) is detected. At the time of detection, light is focused for each bit of the light receiving element α1)H, and a voltage proportional to the intensity of the focused light is generated for each bit. For example, the relationship between the voltage detected by the light receiving element 0υ and each bit of the light receiving element α◇ is shown in Figure 3, and the position where the voltage difference starts is on the work side of the rolled material (1). Detected as a side edge.

なお、第5図を映像信号と称する。第6図において、’
8は夫々の受光素子αυ(6)の全ビットの走査に要す
る走査周期、■は圧延材幅端光量差を表わす電圧である
。 。
Note that FIG. 5 is referred to as a video signal. In Figure 6, '
8 is the scanning period required to scan all the bits of each light receiving element αυ (6), and ■ is a voltage representing the difference in light amount at the width end of the rolled material. .

ところで、一般的には圧延材の種類によって温度が異な
るだめ、第2図に示す受光器(9) Qlへ入る光量に
温度による差が生じる。すなわち、温度の高い圧延材で
走査周期t8を大きくすると、受光素子α])(6)へ
の入光時間が長くなり、圧延材から発せられるローラー
テーブル等に反射した弱い光も多量に受光素子0υ(6
)に受光される結果、第4図のイに示すように、電圧V
が圧延材(1)から離れた位置で急激に立上り、幅端部
の検出精度が悪化する。文通に走査周期t8が短がすぎ
ると、受光素子Oυ(2)の各ビットへの入光時間が短
くなシ、光が十分に受光素子αυ(2)に受光されない
結果、第4図の口に示すように電圧■のレベルが低下し
、板幅端部検出の信号が基準となるスレッシュレベル電
圧vLに達せず、検出が不可能となる虞れがある。従っ
て、走査周期t8を自動的にコントロールし、受光素子
(11)(2)に受光される光量を常に一定に保持し、
電圧Vを第4図のハに示すように調節することが必要と
なる。
By the way, since the temperature generally varies depending on the type of rolled material, the amount of light entering the light receiver (9) Ql shown in FIG. 2 varies depending on the temperature. In other words, when the scanning period t8 is increased for a hot rolled material, the time for light to enter the light receiving element α]) (6) becomes longer, and a large amount of weak light emitted from the rolled material and reflected on the roller table etc. is also transmitted to the light receiving element. 0υ(6
) As a result, the voltage V
suddenly rises at a position away from the rolled material (1), and the detection accuracy at the width end portion deteriorates. If the scanning period t8 is too short, the time for light to enter each bit of the light-receiving element Oυ(2) will be short, and as a result, the light will not be sufficiently received by the light-receiving element αυ(2). As shown in the figure, the level of the voltage (2) decreases, and there is a possibility that the signal for detecting the edge of the plate width does not reach the reference threshold level voltage vL, making detection impossible. Therefore, the scanning period t8 is automatically controlled, and the amount of light received by the light receiving elements (11) and (2) is always kept constant.
It is necessary to adjust the voltage V as shown in FIG. 4C.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、高温の金属塊の幅方向位置を検出する際に、
走査周期を金属塊の温度に対応した最適な時間になるよ
うにし、金属塊の幅方向位置を正確に検出することによ
り上述の問題点を解決すべくなしたものである。
In the present invention, when detecting the widthwise position of a hot metal lump,
The above-mentioned problem is solved by setting the scanning period to an optimum time corresponding to the temperature of the metal lump and accurately detecting the position of the metal lump in the width direction.

〔問題点を解決するための手段〕[Means for solving problems]

本発明においては加熱された金属塊の発する光を受光す
る受光素子群とレンズとにより構成され、該受光素子を
金属塊の幅方向へ走査し得るようにした検出手段と、該
検出手段で検出された金属塊の映像信号電圧と予め設定
されたレベルの電圧とを比較し、映像信号電圧が設定さ
れたレベルの電圧以上になったら信号を出力する比較手
段と、該比較手段よりの信号を受けたらそのときの前記
検出手段の受光素子の番地を記憶する記憶手段と、該記
憶手段から送られて来た番地と前記設定されたレベルの
電圧の発生する受光素子の番地の近傍の番地との差をめ
る減算手段と、該減算手段でめられた受光素子の番地の
差と走査開始によりカウントされるクロックパルスのカ
ウント数とを比較してクロックパルスのカウント数が減
算手段から送られて来た受光素子の番地の差より大きく
なったら所定のスイッチを閉じる指令を与える比較手段
と、該スイッチが閉じた際にホールドされた映像信号電
圧に対応した速度で金属塊を幅方向に走査し映像信号の
1ビツトごとに信号電圧の差を演算する手段を設けてい
る。
In the present invention, a detection means is constructed of a light receiving element group and a lens that receive light emitted from a heated metal lump, and is configured to scan the light receiving element in the width direction of the metal lump, and a detection means is configured to detect light emitted by the detection means. a comparison means for comparing the video signal voltage of the metal block and a voltage at a preset level and outputting a signal when the video signal voltage exceeds the voltage at the set level; a storage means for storing the address of the light-receiving element of the detection means at that time when received, the address sent from the storage means and an address near the address of the light-receiving element where the voltage of the set level is generated; and a subtraction means for calculating the difference between the addresses of the light-receiving elements determined by the subtraction means and a count number of clock pulses counted at the start of scanning, and a count number of clock pulses is sent from the subtraction means. a comparing means for giving a command to close a predetermined switch when the difference in address of the light receiving element is larger than the difference in address of the light receiving element, and scanning the metal lump in the width direction at a speed corresponding to the video signal voltage held when the switch is closed. However, means is provided for calculating the difference in signal voltage for each bit of the video signal.

従って前記検出器により金属塊を幅方向へ走査し、該走
査により得られた映像信号の略中間レベルの電圧を発生
する受光素子の近傍の受光素子が受けている光量から走
査周期を決定し、該決定された走査周期により金属塊を
幅方向へ走査して映像信号の1ピツトごとに電圧差を演
算し、最大の電圧差が得られた1位置をめ、その位置を
金属塊Ω幅端位置とすることができる。
Therefore, the metal block is scanned in the width direction by the detector, and the scanning period is determined from the amount of light received by a light receiving element near the light receiving element that generates a voltage at approximately the intermediate level of the video signal obtained by the scanning, The metal block is scanned in the width direction according to the determined scanning period, the voltage difference is calculated for each pit of the video signal, the one position where the maximum voltage difference is obtained is found, and that position is set as the metal block Ω width end. It can be the location.

〔実 施 例〕〔Example〕

以下、本発明の実施例を図面を参照しつつ説明する。 Embodiments of the present invention will be described below with reference to the drawings.

先ず、走査時間(走査周期)の決め方について第5図(
イ)(ロ)、第6図(イ)(ロ)により説明すると、素
子数Nビットの検出器で所定の走査時間により圧延材の
幅方向へ向けて走査を行い、圧延材の幅方向位置を検出
した場合に、スレツノニレベル電圧■Lの信号が得られ
た素子番地をNc番地とすると、それよりもNT番地手
前の電圧vTを検出し、この電圧vTの大きさから走査
時間を決定する。
First, let's talk about how to decide the scanning time (scanning period) as shown in Figure 5 (
A) (B), Figure 6 (A) (B) To explain, a detector with N bits of elements scans in the width direction of the rolled material for a predetermined scanning time, and the width direction position of the rolled material is If the element address from which the signal of thread level voltage ■L was obtained is the Nc address, then the voltage vT at the NT address before it is detected, and the scanning time is determined from the magnitude of this voltage vT. do.

例えば、第5図(イ)のような光量の少ない映像信号の
場合板端での信号は減衰し、第5図←)に示すようにN
T番地手前の電圧vTは低くなるので、走査時間を長く
シ、第6図(イ)のような光量の多い映像信号の場合、
板端での信号の立ち上がりは急峻で、第6図(ロ)に示
すようにNT番地手前の電圧VTは高くなるので走査時
間を短くする。
For example, in the case of a video signal with a small amount of light as shown in Figure 5 (a), the signal at the edge of the board is attenuated, and as shown in Figure 5 (←), the signal is attenuated.
Since the voltage vT before the T address is low, the scanning time is long, and in the case of a video signal with a large amount of light as shown in Figure 6 (a),
The rise of the signal at the edge of the plate is steep, and the voltage VT before the NT address becomes high as shown in FIG. 6(b), so the scanning time is shortened.

次に、圧延材の幅方向位置の演算タイミングを金属塊中
央より幅端方向へ走査する場合について第7図により説
明する。検出開始点Aから最初の1走査周期目において
は、スレッシュレベル電圧■Lの得られだNc番地の検
出を行ない、2走査周期目においては、1走査周期目の
Nc番地よりNT番地手前の電圧vTをサンプルホール
ドすると共に2走査周期目のスレッシュレベル電圧VL
の得られたNc番地を再記憶し、6走査周期目は2走査
周期目で得られたNT番地の電圧VTに対応するよう検
出器がコントロールされ、圧延材の幅端位置が演算され
てその結果Bが出力され、4走査周期目は、2走査周期
目のNc番地よりNT番地手前の電圧VTをサンプルホ
ールドすると共に4走査周期目のスレッシュレベル電圧
vLの得られたNc番地を再記憶し、5走査周期目は4
走査周期目で得られだNT番地の電圧vTに対応するよ
う検出器がコントロールされ、圧延材の幅端位置が演算
されてその結果Bが出力され、以下同様に偶数番地目で
は、その前の走査周期目のNc0番地りNT番地手前の
電圧vTを苛ンブルホールドすると共に当該走査周期口
のスレッシュレベル電圧VLの得られだNc0番地再記
憶し、奇数走査周期口では前の走査周期目で得られたN
T7番地電圧vTに対応するよう検出器がコントロール
され、圧延材の幅端位置が演算されてその結果が出力さ
れる。金属塊板端方向から中央へ走査する場合には、1
走査周期目でNc1■Tを同時にめるととができるので
、2走査周期目に演算結果Bが出力される。
Next, the case where the calculation timing of the width direction position of the rolled material is scanned from the center of the metal mass toward the width end direction will be explained with reference to FIG. In the first scanning cycle from the detection start point A, the Nc address where the threshold level voltage ■L is obtained is detected, and in the second scanning cycle, the voltage at the NT address before the Nc address in the first scanning cycle is detected. While sampling and holding vT, the threshold level voltage VL of the second scanning period
The obtained Nc address is re-memorized, and in the 6th scanning cycle, the detector is controlled so as to correspond to the voltage VT of the NT address obtained in the 2nd scanning cycle, and the width end position of the rolled material is calculated. Result B is output, and in the fourth scanning cycle, the voltage VT at the NT address before the Nc address in the second scanning cycle is sampled and held, and the Nc address where the threshold level voltage vL in the fourth scanning cycle was obtained is re-stored. , the 5th scanning period is 4
The detector is controlled to correspond to the voltage vT of the NT address obtained in the scanning cycle, the width end position of the rolled material is calculated, and the result B is output. The voltage vT before the Nc0 address and the NT address of the scan cycle is held and the Nc0 address where the threshold level voltage VL at the start of the scan cycle was obtained is stored again. N
The detector is controlled to correspond to the T7 address voltage vT, the width end position of the rolled material is calculated, and the result is output. When scanning from the edge of the metal block plate to the center, 1
Since Nc1■T can be calculated at the same time in the 2nd scanning period, the calculation result B is output in the 2nd scanning period.

次に、圧延材の幅端位置の演算の仕方につい、て第8図
により説明すると、受光素子の1ピツトごとに映像信号
の電圧差を演算して行き、最大の電圧差が得られたとこ
ろの番地に圧延材の幅端部があるとする。すなわち、1
番地手前の受光素子で得られた映像信号の電圧をV<、
現在の番地の受光素子で得られた映像信号の電圧をV<
+1とすると、電圧差ΔVj+1−vi+I V<tr
順次演算し、この電圧差ΔVi+1が最大の受光素子の
番地NF、を幅端とする。この場合の走査方向は圧延材
の中央側から幅端側へ行っても良いし、或いは幅端側か
ら中央側へ行っても良い。
Next, to explain how to calculate the width end position of the rolled material using Fig. 8, the voltage difference of the video signal is calculated for each pit of the light receiving element, and the point where the maximum voltage difference is obtained is Assume that the width end of the rolled material is located at the address. That is, 1
The voltage of the video signal obtained by the light receiving element in front of the address is V<,
V<
+1, the voltage difference ΔVj+1−vi+I V<tr
The calculations are performed sequentially, and the address NF of the light receiving element with the largest voltage difference ΔVi+1 is set as the width end. In this case, the scanning direction may be from the center to the width end of the rolled material, or from the width end to the center.

次に、本発明において圧延材幅端部の走査周期を決定す
る具体例を第9図により説明する。
Next, a specific example of determining the scanning period of the width end portion of a rolled material in the present invention will be explained with reference to FIG.

図中■υは図示してない検出器で検出された圧延材映像
信号電圧Vと設定されたスレッシュレベル電圧■、とを
比較し、V≧VLの場合に信号を出力する比較器、(イ
)は比較器QDからの信号によりその時のクロックパル
スのカウント数N。(N。
In the figure, ■υ is a comparator (I ) is the count number N of clock pulses at that time based on the signal from the comparator QD. (N.

番地)を記憶する記憶回路、(至)は検出器からのイネ
ーブル信号■1により記憶回路(2)に記憶されている
クロックパルスのカウント数N。が移行され記憶される
記憶回路、(ハ)は記憶回路翰からの定されたカウント
数NTを減算する減算回路、(ホ)は減算回路(ハ)か
ら送られて来たN。番地よりNT番地手前のカウント数
N。−NTとカウンタに)から送られて来たカウント数
とを比較しカウンタ(イ)でのカウント数がカウント数
N。−NTより大きくなったときに信号を出力し得るよ
うにした比較器、(ト)は比較器(ホ)よりの指令信号
により閉じるスイッチ、(イ)はスイッチ(ハ)が閉じ
たらそのときの圧延材映像信号の電圧VTをホールドす
るサンプルホールド回路、(至)はゲイン、cl])は
電圧信号をそれに対応する周波数のパルスに変換するV
/F変換回路、(イ)は0υの出力パルスをカウントす
るカウンタ、(至)はスタートパルス発生回路である。
(to) is the count number N of clock pulses stored in the memory circuit (2) by the enable signal (1) from the detector. (C) is a subtraction circuit that subtracts a predetermined count number NT from the storage circuit (C). (E) is N sent from the subtraction circuit (C). Count number N before the NT address. -NT and the count number sent from the counter (A) are compared, and the count number at the counter (A) is the count number N. - A comparator that can output a signal when the signal becomes larger than NT, (G) is a switch that closes by a command signal from the comparator (E), (A) is a switch that is closed when the switch (C) is closed. A sample and hold circuit holds the voltage VT of the rolled material video signal, (to) is the gain, and cl]) is the voltage signal V that converts the voltage signal into a pulse of the corresponding frequency.
/F conversion circuit, (a) is a counter that counts output pulses of 0υ, and (to) is a start pulse generation circuit.

スタートパルスにより全てのカウンタ■カ(2)はクリ
アされ、同時に初期電圧■。に対応する周波数のクロッ
クパルスのカウントがカウンタ(イ)により開始される
。又、圧延桐の発する光によって検出器の受光素子に生
ずる映像信号電圧Vを各ビットごとに比較器Qカに出力
し、該比較器でv′−VLが比較、演算される。而して
、V≧vLとなった時に、比較器Q])から記憶回路(
イ)に信号が一出力され、そのときのクロックパルスの
カウント数Ncが記憶回路(財)に記憶される。
All counters (2) are cleared by the start pulse, and at the same time the initial voltage (2) is cleared. The counter (A) starts counting clock pulses with a frequency corresponding to . Further, the video signal voltage V generated in the light receiving element of the detector by the light emitted by the rolled paulownia is outputted bit by bit to a comparator Q, and the comparator compares and calculates v'-VL. Therefore, when V≧vL, the comparator Q]) to the storage circuit (
One signal is output to b), and the count number Nc of clock pulses at that time is stored in a memory circuit.

検出器からイネーブル信号が発生すると、カウント数N
。は記憶回路(ハ)に移行されると共に減算回路(ハ)
でNc−NTが演算され、サンプルホールド回路−が待
機の状態になる。
When the enable signal is generated from the detector, the count number N
. is transferred to the memory circuit (c) and also to the subtraction circuit (c)
Nc-NT is calculated, and the sample and hold circuit goes into a standby state.

クロックパルスが検出器の受光素子の数だけ数え終った
ら再度スタートパルスが発生し、クロックパルスのカウ
ント数が比較器−でNc−+JTと比較され、クロック
パルスのカウント数がNc−NTより太きくなると、比
較器(ホ)からの出力信号がスイッチ■を閉じ、そのと
きの映像信号の電圧vTがスレッシュレベル電圧vLに
対応する受光素子のNc0番地りNT番地手前の映像信
号としてサンプルホールド回路−に保持される。又同時
にこの走査周期におけるスレッシュレベル電圧vLに対
応するカウント数Ncが前述と同様にしてめられ、記憶
回路(支)に記憶される。
When the clock pulse has finished counting the number of light-receiving elements of the detector, a start pulse is generated again, and the count number of clock pulses is compared with Nc-+JT by the comparator-, and the count number of clock pulses is thicker than Nc-NT. Then, the output signal from the comparator (E) closes the switch (2), and the voltage vT of the video signal at that time is sent to the sample and hold circuit as the video signal from address Nc0 to address NT of the light receiving element corresponding to the threshold level voltage vL. is maintained. At the same time, the count number Nc corresponding to the threshold level voltage vL in this scanning period is determined in the same manner as described above and is stored in the memory circuit (support).

更に、検出器からイネーブル信号VIが発生し、再度ス
タートパルスが発生し、切り替えスイッチ員が切り替わ
って電圧vTに対応する周波数のクロックパルスのカウ
ントが開始される。
Further, an enable signal VI is generated from the detector, a start pulse is generated again, the changeover switch member is changed over, and counting of clock pulses with a frequency corresponding to the voltage vT is started.

以下上記の7−ケンスが繰返されて走査周期が圧延材の
明るさに対応して最適になるようコントロールされる。
Thereafter, the above-mentioned 7 steps are repeated to control the scanning period to be optimal in accordance with the brightness of the rolled material.

なお、vLの値は調整によって適宜変更できることは言
うまでもない。
Note that it goes without saying that the value of vL can be changed as appropriate by adjustment.

次に、圧延材幅端部を検出する具体例について第10図
により説明する。
Next, a specific example of detecting the width end portion of a rolled material will be described with reference to FIG.

図中(ロ)は圧延材幅端部をめる場合に、クロックパル
スCの1パルスごとに、現在の番地の受光素子で得られ
た映像信号の電圧vi+1とシフトレジスタ(至)から
送られて来た1番地手前の受光素子で得られた映像信号
の電圧V、とを比較、演算する比較器、(ト)は比較器
(至)から送られて来た電圧差Δv、+1=Vi+1−
viと、シフトレジスタ(ロ)から送られて来た一時点
前の電圧差ΔV、とを比較、演算する比較器、(ト)は
Δ■i+1〉ΔV、の場合にそのときまでにカウンタ(
2)でカウントされたクロックパルス数NB(受光素子
の番地NF、)を記憶する記憶回路である。
In the figure (b), when adjusting the width end of the rolled material, the voltage vi+1 of the video signal obtained by the light receiving element at the current address and the voltage sent from the shift register (to) are sent for each pulse of the clock pulse C. A comparator that compares and calculates the voltage V of the video signal obtained from the light-receiving element in front of the 1st address that has come, (g) is the voltage difference Δv, +1 = Vi +1 sent from the comparator (to). −
A comparator that compares and calculates vi and the voltage difference ΔV of the previous point sent from the shift register (b).
2) is a memory circuit that stores the number of clock pulses NB (address NF of the light receiving element) counted in step 2).

圧延材映像信号の電圧■i+1及びシフトレジメタ(至
)に記憶されていた1番地手前の映像信号の電圧Vjが
比較器(至)に送られてクロックパルスCの1パルスご
とに比較器−でvi+1とVjとの差が比較、演算され
、電圧差ΔVj+1が比較器(ロ)から出力される。又
シフトレジスタ(至)にはクロックパルスCの1パルス
ごとに映像信号の値が更改′される。
The voltage of the rolling material video signal i+1 and the voltage Vj of the video signal at the previous address stored in the shift register (to) are sent to the comparator (to), and every pulse of the clock pulse C, the voltage at the comparator - is vi+1. The difference between and Vj is compared and calculated, and a voltage difference ΔVj+1 is output from the comparator (b). Further, the value of the video signal is updated in the shift register (to) every pulse of the clock pulse C.

比較器(ロ)から出力された電圧差Δvi+1は1時点
前の電圧差Δviと比較器(至)で比較、演算され、Δ
vi+1〉ΔVjのとき、そのときまでにカウンタ(至
)でカウントされたクロックパルス数NEが記憶回路(
至)に記憶される。このクロックパルス数NK’が圧延
材幅端位置となる。又シフトレジスタ(ロ)にはクロッ
クパルスCの1パルスごとに電圧差の値が更改される。
The voltage difference Δvi+1 output from the comparator (b) is compared and calculated with the voltage difference Δvi one time before in the comparator (to), and Δ
When vi+1>ΔVj, the number of clock pulses NE counted by the counter up to that point is stored in the memory circuit (
to). This number of clock pulses NK' becomes the width end position of the rolled material. Further, the value of the voltage difference is updated in the shift register (b) every pulse of the clock pulse C.

なお、本発明の実施例においては、圧延材幅端部の位置
を検出する場合について説明したが、圧延材に限らず高
温の金属塊ならいかなる金属塊に対しても適用可能なこ
と、コンピュータによるソフトウェアにより構成するこ
ともできるし或いは電子回路等のハードウェアで構成す
るとともできること、その他、本発明の要旨を逸脱しな
い範囲内で種々変更を加え得ること、等は勿論である。
In the embodiments of the present invention, a case has been described in which the position of the width end of a rolled material is detected, but it is applicable not only to rolled materials but also to any high-temperature metal lump. It goes without saying that the present invention may be configured by software or by hardware such as an electronic circuit, and various other changes may be made without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明の金属塊の幅方向位置検出方法及びその装置によ
れば、圧延材板端の適正な映像信号を得ることが可能に
なると共に金属塊の幅端部位置を精度良く検出すること
ができる。
According to the method and device for detecting the widthwise position of a metal lump of the present invention, it is possible to obtain an appropriate video signal of the edge of a rolled material plate, and it is also possible to accurately detect the width end position of a metal lump. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は金属塊等の材料の幅方向位置を検出する原理の
説明図、第2図は加熱された金属塊の幅方向位置を検出
する原理の説明図、第3図は第2図で示す幅方向位置検
出の場合に幅端部に生じる光量差を表わす信号と走査時
間との関係を示すグラフ、第4図は加熱された金属塊の
幅端部を検出する場合に走査時間の変更による出力信号
の変化を示す説明図、第5図(イ)は光量が少ない場合
の本発明における映像信号の説明図、第5図(ロ)は第
5図(イ)の映像信号の場合にサンプルホールドされる
所定の番地の信号電圧の説明図、第6図(イ)は光量が
多い場合の本発明における映像信号の説明図、第6図(
ロ)は第6図(イ)の映像信号の場合にサンプルホール
ドされる所定の番地の信号電圧の説明図、第7図は本発
明において金属塊の走査を行う場合の演算タイミングの
一例の説明図、第8図は本発明において金属塊の幅端位
置を検出する原理の説明図、第9図は本発明で走査周期
をめる場合の手段を具体化した一実施例の説明図、第1
0図は本発明で金属塊の幅端位置を演算する際に信号電
圧差が最大になる番地をめる手段を具体化した一実施例
の説明図である。 図中儲りは比較器、@(2)は記憶回路、(ハ)は減算
回路、(イ)は比較器、に)はカウンタ、(ホ)はスイ
ッチ、翰はサンプルホールド回路、OメはV/F変換回
路、(2)はカウンタ、(至)はスタートパルス発/4
回路、(ロ)は比較器、(2)はシフトレジスタ、(至
)は比較器、(2)はシフトレジスタ、(至)は記憶回
路、(至)はカウンタを示す。
Figure 1 is an explanatory diagram of the principle of detecting the widthwise position of a material such as a metal lump, Figure 2 is an explanatory diagram of the principle of detecting the widthwise position of a heated metal mass, and Figure 3 is the same as Figure 2. Graph showing the relationship between the signal representing the difference in light intensity occurring at the width edge and the scanning time in the case of width direction position detection shown in Fig. 4. FIG. 5(A) is an explanatory diagram showing the change in the output signal according to the present invention. FIG. 5(B) is an explanatory diagram of the video signal in the present invention when the amount of light is small. FIG. An explanatory diagram of the signal voltage at a predetermined address that is sampled and held, FIG. 6 (a) is an explanatory diagram of the video signal in the present invention when the amount of light is large,
B) is an explanatory diagram of the signal voltage at a predetermined address sampled and held in the case of the video signal of FIG. 6(A), and FIG. 7 is an explanatory diagram of an example of the calculation timing when scanning a metal lump in the present invention. 8 is an explanatory diagram of the principle of detecting the width end position of a metal lump in the present invention, and FIG. 9 is an explanatory diagram of an embodiment embodying the means for setting the scanning period in the present invention. 1
FIG. 0 is an explanatory diagram of an embodiment embodying means for determining the address at which the signal voltage difference is maximum when calculating the width end position of the metal lump according to the present invention. In the figure, the gain is the comparator, @(2) is the memory circuit, (C) is the subtraction circuit, (A) is the comparator, ni) is the counter, (E) is the switch, the pen is the sample hold circuit, and the Ome is the V/F conversion circuit, (2) is a counter, (to) is a start pulse generator/4
In the circuit, (b) shows a comparator, (2) shows a shift register, (to) shows a comparator, (2) shows a shift register, (to) shows a storage circuit, and (to) shows a counter.

Claims (1)

【特許請求の範囲】 1)加熱された金属塊の発する光を受光する受光素子群
とレンズとより構成された検出器により金属塊幅端位置
を検出する際に、受光素子を金属塊の幅方向へ走査し、
該走査により得られた映像信号中、予め設定されたレベ
ルの電圧を発生する受光素子近傍の受光素子が受けてい
る光量から走査周期を決定し、該決定された走査周期に
より金属塊を幅方向へ走査して映像信号の1ビツトごと
に電圧差を演算し、最大の電圧差が得られた位置をめる
ことを特徴とする金属塊の幅方向位置検出方法。 2)加熱された金属塊の発する光を受光する受光素子群
とレンズとにより構成され金属塊を幅方向へ走査し得る
゛ようにした検出手段と、該検出手段で検出された金属
塊の映像信号電圧と予め設定されたレベルの電圧とを比
較し、映像信号電圧が設定されたレベルの電圧以上にな
ったら信号を出力する比較手段と、該比較手段からの信
号を受け、そのときの前記検出手段の受光素子の番地を
記憶する記憶手段と、該記憶手段の出力と走査開始によ
りカウントサレるクロックパルスのカウント数とを比較
してクロックパルスのカウント数が該記憶手段の出力以
上になったら所定のスイッチを閉じる指令を与える比較
手段と、該スイッチが閉じた際にホールドされた映像信
号電圧を基に走査周期を変更する手段と、映像信号の1
ビツトごとに信号電圧の差を演算する手段を設けたこと
を特徴とする金属塊の幅方向位置検出装置。
[Claims] 1) When detecting the width end position of a metal lump using a detector composed of a light receiving element group and a lens that receive light emitted from a heated metal lump, scan in the direction,
A scanning period is determined from the amount of light received by a light-receiving element near a light-receiving element that generates a voltage at a preset level in the video signal obtained by the scanning, and the metal block is moved in the width direction according to the determined scanning period. 1. A method for detecting a position in the width direction of a metal lump, which comprises scanning a metal block, calculating a voltage difference for each bit of a video signal, and finding the position where the maximum voltage difference is obtained. 2) A detection means configured by a light-receiving element group and a lens that receive light emitted from the heated metal lump and capable of scanning the metal lump in the width direction, and an image of the metal lump detected by the detection means. Comparing means for comparing the signal voltage with a voltage at a preset level and outputting a signal when the video signal voltage exceeds the voltage at the preset level; A memory means stores the address of the light receiving element of the detection means, and the output of the memory means is compared with the count number of clock pulses counted at the start of scanning, and the number of clock pulses counted exceeds the output of the memory means. means for changing the scanning period based on the video signal voltage held when the switch is closed;
1. A width direction position detection device for a metal lump, characterized in that it is provided with means for calculating a difference in signal voltage for each bit.
JP59077215A 1984-04-17 1984-04-17 Method and device for detecting breadthwise position of metallic lump Granted JPS60220803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59077215A JPS60220803A (en) 1984-04-17 1984-04-17 Method and device for detecting breadthwise position of metallic lump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59077215A JPS60220803A (en) 1984-04-17 1984-04-17 Method and device for detecting breadthwise position of metallic lump

Publications (2)

Publication Number Publication Date
JPS60220803A true JPS60220803A (en) 1985-11-05
JPH0423722B2 JPH0423722B2 (en) 1992-04-23

Family

ID=13627610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59077215A Granted JPS60220803A (en) 1984-04-17 1984-04-17 Method and device for detecting breadthwise position of metallic lump

Country Status (1)

Country Link
JP (1) JPS60220803A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256020A (en) * 2009-04-21 2010-11-11 Kodenshi Corp Device for detecting end part of moving body
JP2013213829A (en) * 2013-06-19 2013-10-17 Kodenshi Corp End portion detection device of moving body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256020A (en) * 2009-04-21 2010-11-11 Kodenshi Corp Device for detecting end part of moving body
JP2013213829A (en) * 2013-06-19 2013-10-17 Kodenshi Corp End portion detection device of moving body

Also Published As

Publication number Publication date
JPH0423722B2 (en) 1992-04-23

Similar Documents

Publication Publication Date Title
US3967056A (en) Automatic focusing apparatus
US5124810A (en) Image reading apparatus
EP0462289A1 (en) Apparatus for measuring three-dimensional coordinates
US4271477A (en) Determining the dimensions of workpieces
US4277176A (en) Method and apparatus for checking the width and parallelism of margins following the centering of a print with respect to a support
JPS60220803A (en) Method and device for detecting breadthwise position of metallic lump
JPH0423721B2 (en)
JPS61111403A (en) Method and instrument for detecting position of metallic lamp in its width direction
JPH0467888B2 (en)
JP2500733B2 (en) Laser distance measuring device
JPH04224016A (en) Position detecting device for width end part of hot rolled stock
JPH04348211A (en) Optical shape measuring method
JPS60129603A (en) Width-wise position detector for rolling material
SU761826A1 (en) Apparatus for measuring length of rolled stock being moved by rolls
JPH0612486Y2 (en) Width direction position detector for heated metal block
SU275423A1 (en) Photoelectronic device for measuring hot and cold rolled thickness
JPH0953919A (en) Width measuring instrument
JP2531402B2 (en) Width direction position detector for metal ingot
JPS6134447A (en) Optical flaw detector for continuously cast slab
JPS60202375A (en) Width-wise position detector for metal mass
JPS61118606A (en) Optical dimension measuring machine
JPS62166613A (en) Signal detecting device
JPS6132324Y2 (en)
JPH0786478B2 (en) Periodic flaw detector
JP2005257461A (en) Method for detecting plate end position of hot-rolled member, hot rolling method, and hot rolling facilities