JPS60218833A - Deposited film forming method - Google Patents

Deposited film forming method

Info

Publication number
JPS60218833A
JPS60218833A JP7492984A JP7492984A JPS60218833A JP S60218833 A JPS60218833 A JP S60218833A JP 7492984 A JP7492984 A JP 7492984A JP 7492984 A JP7492984 A JP 7492984A JP S60218833 A JPS60218833 A JP S60218833A
Authority
JP
Japan
Prior art keywords
film
deposited film
hydrogen
integer
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7492984A
Other languages
Japanese (ja)
Inventor
Yutaka Hirai
裕 平井
Takeshi Eguchi
健 江口
Masahiro Haruta
春田 昌宏
Hiroshi Matsuda
宏 松田
Yukio Nishimura
征生 西村
Takashi Nakagiri
孝志 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7492984A priority Critical patent/JPS60218833A/en
Priority to US06/722,468 priority patent/US4683147A/en
Publication of JPS60218833A publication Critical patent/JPS60218833A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/483Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/487Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using electron radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/488Protection of windows for introduction of radiation into the coating chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To increase a film-forming rate while keeping high quality, by producing gas atmosphere of hydrogen and chain silicon halide compound in a chamber including substrates and by forming each deposited film containing silicon over the respective substrates. CONSTITUTION:Gas atmosphere of hydrogen and chain silicon halide compound expressed by a general expression: SinXmYl (X and Y represent different halogen atoms respectively, n, an integer of 1-6 and m and l each an integer of 1 or more, and m+l=2n+2) is produced in the housing including substrates, and the compound and the hydrogen are excited and decomposed by utilizing optical energy, forming each deposition film containing silicon over the respective substrates. The resulted deposited film may be crystalline or amorphous and the combination of silicon in the film may be from oligomer to polymer state. Moreover, hydrogen atoms and halogen atoms, etc. in the raw material may be taken in the structure.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はシリコンを含有する堆積膜、とシわけ光導電膜
、半導体膜あるいは絶縁体膜などとして有用なアそルフ
ァスシリコン(以下b a−81という〕あるいは多結
晶シリコンの堆積膜を形成するのに好適な方法に関する
[Detailed Description of the Invention] [Technical Field] The present invention relates to amorphous silicon (hereinafter referred to as ba-81) useful as a deposited film containing silicon, a separated photoconductive film, a semiconductor film, an insulating film, etc. Alternatively, the present invention relates to a method suitable for forming a deposited film of polycrystalline silicon.

〔従来技術〕[Prior art]

従来、例えばa−81の堆積膜を、5IH4又は812
H6i原料として用いたグロー放電堆積法又は熱エネル
ギー堆積法で形成することが知られている。即ち、 8
iH4や5i2H6f:電気エネルギーや熱エネルギー
を用いて励起・分解して基体上にa−81の堆積膜を形
成し、この膜t一種々の目的で利用することが周知であ
る。
Conventionally, for example, a deposited film of A-81 was replaced with 5IH4 or 812.
It is known to form by glow discharge deposition method or thermal energy deposition method using H6i raw material. That is, 8
iH4 and 5i2H6f: It is well known that a deposited film of a-81 is formed on a substrate by excitation and decomposition using electrical energy or thermal energy, and this film t is used for one purpose.

しかし、これら5IH4及び5i2H6vi−原料とし
て用いた場合、グロー放電堆積法においては、高出力下
で堆積中の膜への放電エネルギーの影響が大きく、再現
性のある安定した条件とする制御が難しい。特に、広面
積、厚膜の堆積膜全形成する場合に1これが顕著である
・ また、熱エネルギー堆積法においても、高温が必要とな
ることから、使用される基体が限定されると共に、高温
によJ)a−81中の有用な結合水素原子が離脱してし
まう確率が増え、所望の特性が得にくくなる。
However, when these 5IH4 and 5i2H6vi are used as raw materials, in the glow discharge deposition method, the influence of discharge energy on the film being deposited under high output is large, and it is difficult to control the conditions to achieve stable and reproducible conditions. This is especially noticeable when forming a large-area, thick-film deposited film.1 Also, thermal energy deposition requires high temperatures, which limits the substrates that can be used and YOJ) The probability that useful bonded hydrogen atoms in a-81 will be separated increases, making it difficult to obtain desired properties.

この様に、5IH4及び5i2H6t−用いて堆積膜を
形成する場合、均一な電気的・光学的特性及び品質の安
定性の確保が難しく、堆積中の膜表面の乱れ及びバルク
内の欠陥が生じ易いなどの解決されるべき問題点が残き
れているのが現状である。
As described above, when forming a deposited film using 5IH4 and 5i2H6t, it is difficult to ensure uniform electrical and optical characteristics and quality stability, and it is easy to cause disturbances on the film surface and defects in the bulk during deposition. At present, there are still many problems that need to be resolved.

そこで、近年、これらの問題点を解消すべく、SiH4
及びSi2H6に原料とするa −Stの光エネルギー
堆積法〔光CVD法〕が提案され、注目を集めてbる。
Therefore, in recent years, in order to solve these problems, SiH4
A photo-energy deposition method (photo-CVD method) of a-St using Si2H6 as a raw material has been proposed and has attracted attention.

この光エネルギー堆積法によると、a−8t堆積膜を低
温で作製できる利点などによシ、上記問題点を大幅に改
善することができる。しかしながら、光エネルギーとい
った比較的僅少な励起エネルギー下での5iHa及び5
i2H6t−原料とした光エネルギー堆積法では、飛躍
的に効率の良い分解を期待することができないため、成
膜速度の向上が期待できず、量産性i/c難点があると
いう新たな問題点が生じている。
According to this optical energy deposition method, the above-mentioned problems can be significantly improved due to the advantage that the a-8t deposited film can be produced at a low temperature. However, 5iHa and 5 under relatively small excitation energy such as light energy
With the optical energy deposition method using i2H6t as a raw material, dramatically efficient decomposition cannot be expected, so an improvement in film formation speed cannot be expected, and there are new problems such as I/C difficulties in mass production. It is occurring.

本発明は、現状におけるこれら問題点を解消すべく表さ
れたものである・ 〔発明の目的〕 本発明の目的は、高品質を維持しつつ成膜速度を高くす
ることのできるシリコンを含有する堆積膜の形成方法を
提供することにある。
The present invention was developed to solve these current problems. [Objective of the Invention] An object of the present invention is to provide a silicon-containing film that can increase the film formation rate while maintaining high quality. An object of the present invention is to provide a method for forming a deposited film.

本発明の他の目的は、広面積、厚膜の場合においても、
均一な電気的・光学的特性及び品質の安定性全確保しつ
つ高品質のシリコンを含有する堆積膜を作典することの
できる堆積膜形成方法全提供することにある。
Another object of the present invention is that even in the case of a large area and a thick film,
The object of the present invention is to provide a method for forming a deposited film that can produce a deposited film containing high quality silicon while ensuring uniform electrical and optical characteristics and quality stability.

上記目的は、基体を収容した室内に、一般式:SinX
mYt(X及びYはそれぞれ別異のハロゲン原子、nは
1〜6の整数、m及びtはそれぞれ1以上の整数であl
)、m+1=2rx+2である。)で表わされる鎖状ハ
ロゲン化ケイ素化合物及び水素の気体状雰囲気を形成し
、光エネルギーを利用することによりて前記化合物及び
水素を励起して分解し、前記基体上にシリコンを含有す
る堆積膜を形′ 成することを特徴とする堆積膜形成方
法によって達成される。
For the above purpose, the general formula: SinX
mYt (X and Y are each different halogen atoms, n is an integer of 1 to 6, m and t are each an integer of 1 or more,
), m+1=2rx+2. ) by forming a gaseous atmosphere of a chain silicon halide compound and hydrogen, and using light energy to excite and decompose the compound and hydrogen, to form a deposited film containing silicon on the substrate. This is achieved by a deposited film forming method characterized by forming a shape.

〔実施態様〕[Embodiment]

本発明方法によって形成されるシリコンを含有する堆積
膜は、結晶質でも非晶質でもよく、膜中のシリコンの結
合は、オリゴマー状からポリマー状までの何れの形態゛
でもよい。また、原料中の水素原子及びハロゲン原子な
どを構造中にとシ込んでいてもよい。
The silicon-containing deposited film formed by the method of the present invention may be crystalline or amorphous, and the silicon bonds in the film may be in any form from oligomers to polymers. Further, hydrogen atoms, halogen atoms, etc. in the raw materials may be incorporated into the structure.

以下、主としてa−8t堆積膜の場合について、本発明
の実施態様を説明する。
Hereinafter, embodiments of the present invention will be described mainly in the case of an a-8t deposited film.

前記一般式の鎖状ハロゲン化ケイ素化合物は、直鎖又は
分岐状の鎖状水素化ケイ素化合物(鎖状シラン化合物〕
”’nH2n+2のハロゲン誘導体でありて、製造が容
易であ夛かつ安定性の高い化合物である。一般式中、X
及びYは、それぞれフッ素、塩素、臭素及びヨウ素から
選ばれる別異のハロダン原子を表わす。nの値全1〜6
に限定したのは、nが大きくなる程分解が容易となるが
気化しにくくなシ合成も困難である上、分解効率も悪く
なるためである。
The chain halogenated silicon compound of the general formula is a linear or branched chain silicon hydride compound (chain silane compound).
It is a halogen derivative of 'nH2n+2, and is a compound that is easy to produce, abundant, and highly stable.In the general formula,
and Y each represent a different halodane atom selected from fluorine, chlorine, bromine and iodine. All values of n are 1 to 6
The reason why n is limited is that as n becomes larger, decomposition becomes easier, but it is also difficult to synthesize a compound that is difficult to vaporize, and the decomposition efficiency also deteriorates.

前記一般式の鎖状ハロゲン化ケイ素化合物の好適Mt−
1以下に列挙する。
Preferred Mt- of the chain halogenated silicon compound of the above general formula
Listed below.

■Fとctを含む化合物: BiF’mCLa−m(mは1〜3の整数)、SSi2
1mC16(mは1〜5の整数)、SI3FmCt8−
m(mは1〜7の整数)、S14Fm”10−m (m
は1〜9の整数)、■FとBr l(含む化合物: S i FmB r 4−rr+ (mは1〜3の整数
)、5i2F、、Br6m (mは1〜5の整数)、s
i3Fmnr5−m(mは1〜7の整数〕、5i4Fr
nBr10 m (mは1〜9の整数〕、■CtとBr
 t−含む化合物: SiCtrnBr4−m(mは1〜3の整数〕、5i2
C’mBr6−m (mは1〜5の整数)、81、C1
rnBr8.、、 (mは1〜7の整数)、5i4Cz
n、Br、(、−(mは1〜9の整数〕、■Fと工を含
む化合物: ”lFm”4−m (mは1〜3の整数〕、812Fn
、I6−m(mは1〜5の整数)。
■Compounds containing F and ct: BiF'mCLa-m (m is an integer from 1 to 3), SSi2
1mC16 (m is an integer from 1 to 5), SI3FmCt8-
m (m is an integer from 1 to 7), S14Fm"10-m (m
is an integer of 1 to 9), ■F and Br l (compounds containing: S i FmBr 4-rr+ (m is an integer of 1 to 3), 5i2F,, Br6m (m is an integer of 1 to 5), s
i3Fmnr5-m (m is an integer from 1 to 7), 5i4Fr
nBr10 m (m is an integer from 1 to 9), ■Ct and Br
Compounds containing t-SiCtrnBr4-m (m is an integer of 1 to 3), 5i2
C'mBr6-m (m is an integer from 1 to 5), 81, C1
rnBr8. ,, (m is an integer from 1 to 7), 5i4Cz
n, Br, (, -(m is an integer of 1 to 9), ■ Compound containing F and 4-m (m is an integer of 1 to 3), 812Fn
, I6-m (m is an integer from 1 to 5).

上記■〜■のうち、最も好ましい具体例としては、以下
の化合物を挙げることができる。
Among the above-mentioned compounds (1) to (2), the most preferred specific examples include the following compounds.

(1) 5iFsC’ % (2) 5IF2C42、
(a) 5iy3ct 。
(1) 5iFsC'% (2) 5IF2C42,
(a) 5iy3ct.

(4) S 12FC2s、(5) Si 、F2CL
4、(6) 812F3Ct3、(7) 812F4C
t2、(s) s i 2F5Ct% (9) s t
 3F7ct bQG st、r6cz2、α1) 8
1.F5Ct、、α215iFxBr %(135iF
zBr2、α4JS i FB r s、α515t2
F5Br k(1f95i2F4Br2、(17) S
 12F s B r s、α8SiCtsBr %(
II S i C22B r 2、CI!l5iC2B
r3、(21)SiF、I、c138iF2I2゜ 本発明においてシリコン全含有する堆積膜全形成する前
記室は、減圧下におかれるのが好ましいが、常圧下ない
し加圧下においても本発明方法を実施することができる
(4) S12FC2s, (5) Si, F2CL
4, (6) 812F3Ct3, (7) 812F4C
t2, (s) s i 2F5Ct% (9) s t
3F7ct bQG st, r6cz2, α1) 8
1. F5Ct, α215iFxBr % (135iF
zBr2, α4JS i FB r s, α515t2
F5Br k(1f95i2F4Br2, (17) S
12FsBrs, α8SiCtsBr% (
II S i C22B r 2, CI! l5iC2B
r3, (21) SiF, I, c138iF2I2゜In the present invention, the chamber in which the entire silicon-containing deposited film is formed is preferably placed under reduced pressure, but the method of the present invention may also be carried out under normal pressure or under pressure. be able to.

本発明において使用される励起エネルギーは、光エネル
ギー忙限定されるものであるが、前記一般式の鎖状ノ・
ロダン化ケイ素化合物は、光エネルギー等比較的低いエ
ネルギーの付与によシ容易に励起・分解し、良質なシリ
コン堆積膜全形成することができ、またこれに際し、基
体の温度も比較的低い温度とすることができるという特
長を有する。また、励起エネルギーは基体近傍に到達し
た原料に一様にあるいは選択的制御的に付与されるが、
光エネルギーを使用すれば、適宜の光学系を用いて基体
の全体に照射して堆積膜全形成することができるし、あ
るいは所望部分にのみ選択的制御的に照射して部分的に
堆積膜を形成することもでき、またレジスト等を使用し
て所定の図形部分のみに照射し堆積膜を形成できるなど
の便利さを有しているため、有利に用いられる。
Although the excitation energy used in the present invention is limited by the light energy level,
Silicon rhodanide compounds can be easily excited and decomposed by applying relatively low energy such as light energy, and can form a high-quality silicon deposited film. It has the advantage of being able to In addition, excitation energy is applied uniformly or selectively to the raw material that reaches the vicinity of the substrate, but
Using light energy, it is possible to irradiate the entire substrate using an appropriate optical system to form the entire deposited film, or to selectively control and irradiate only the desired area to partially form the deposited film. It is also advantageously used because it has the convenience of being able to form a deposited film by irradiating only a predetermined graphical portion using a resist or the like.

本発明においては、前記室内に前記一般式の鎖状ハロダ
ン化ケイ素化合物及び水素の気体状雰囲気を形成するこ
とによシ、励起・分解反応の過程で生成する水素ラジカ
ルが反応の効率を高める。
In the present invention, by forming a gaseous atmosphere of the chain silicon halide compound of the general formula and hydrogen in the chamber, the hydrogen radicals generated during the excitation/decomposition reaction improve the efficiency of the reaction.

その上、形成される堆積膜中に水素がとシ込まれ、St
結合構造の欠陥金波らす役割全果たす。また、前記一般
式の鎖状ノ・ロダン化ケイ素化合物は、分解の過程でs
tx、 5tx2、six、、s i 2x、、5i2
X4.513X4 、st 、x5 、siy 、 5
iy2 、SiY、、S量2Y5 、St Y SI 
Y Si Y Sin\5i)CF2.24%54%5
5% 512XY2.812XY、、s t 、xy、、S 
i 3X2Y2 、’ S i 5XY4.5i3X2
Y3などのラジカルを発生させ、また水素によって、s
i、x、y及びHが結合したラジカルが発生するため、
これらのラジカルを含む反応プロセス奮経て、最終的に
、Slのダングリングプントt−H,X又はYで十分に
ターミネートした局在準位密度の小さい良質の膜が得ら
れるO また、前記一般式の鎖状ノ10ダン化ケイ素化合物は、
2種以上を併用してもよいが、この場合、各化合物によ
って期待される膜特性を平均化した程度の特性、ないし
は相乗的に改良された特性が得られる。
Moreover, hydrogen is injected into the deposited film to be formed, and St
It plays a full role in inducing defects in the bonding structure. In addition, in the process of decomposition, the chain-like rhodanized silicon compound of the general formula
tx, 5tx2, six,,s i 2x,,5i2
X4.513X4, st, x5, siy, 5
iy2 , SiY, , S amount 2Y5 , St Y SI
Y Si Y Sin\5i)CF2.24%54%5
5% 512XY2.812XY,, s t , xy,, S
i 3X2Y2 ,' S i 5XY4.5i3X2
By generating radicals such as Y3, and by hydrogen, s
Because a radical in which i, x, y and H are combined is generated,
Through a reaction process involving these radicals, a high-quality film with a low localized level density sufficiently terminated with dangling Punts of Sl, X, or Y can be obtained. The chain-like decadanic silicon compound is
Two or more types may be used in combination, but in this case, properties that are the average of the film properties expected by each compound, or properties that are synergistically improved can be obtained.

以下、図面を参照して説明する。This will be explained below with reference to the drawings.

図面は、本発明方法によって光導電膜、半導体膜又は絶
縁体膜等として用いられるa −St堆積膜を形成する
のに使用する装置の1例を示した模式図中、1は堆積室
であシ、内部の基体支持台2上に所望の基体3が載置さ
れる。基体3は、導電性、半導電性あるbは電気絶縁性
の何れの基体でもよく、例えば、電気絶縁性の基体とし
ては、ポリエステル、ポリエチレン、ホリカー、J?ネ
ー)、セルローズアセテート、ポリプロピレン、ポリ塩
化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリア
ミド等の合成樹脂のフィルム又はシート、ガラス、セラ
ミック、紙等が通常使用される。また、基体3には予め
電極層、他のシリコン層等が積層されていてもよい。
The drawing is a schematic diagram showing an example of an apparatus used to form an a-St deposited film used as a photoconductive film, a semiconductor film, an insulator film, etc. by the method of the present invention, in which 1 is a deposition chamber. A desired substrate 3 is then placed on the substrate support 2 inside. The base 3 may be conductive, semi-conductive, or electrically insulating. For example, the electrically insulating base may be polyester, polyethylene, Holicar, J? Films or sheets of synthetic resins such as cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, glass, ceramics, paper, etc. are usually used. Moreover, an electrode layer, another silicon layer, etc. may be laminated on the base 3 in advance.

4は基体加熱用のヒーターであシ、導線5全介して給電
され、発熱する。基体温度は特に制限されないが、本発
明方法を実施するにあたっては、好ましくは50〜15
0℃、よシ好ましくは100〜150℃であることが望
ましい。
Reference numeral 4 denotes a heater for heating the substrate, which is supplied with electricity through all conductive wires 5 and generates heat. The substrate temperature is not particularly limited, but in carrying out the method of the present invention, it is preferably 50 to 15
The temperature is preferably 0°C, more preferably 100 to 150°C.

6乃至9は、ガス供給源であシ、前記一般式で示される
鎖状ハロゲン化ケイ素化合物のうち液状のものを使用す
る場合には、適宜の気化装置全具備させる。気化装置に
は加熱沸騰全利用するタイプ、液体原料中にキャリアー
ガスを通過させるタイプ等があシ、何れでもよい。また
、水素ガスは分子状のままで用いても、予めラジカル化
して用いてもよい。ガス供給源の個数は4に限蝋されず
、使用する前記一般式の鎖状ハロダン化ケイ素化合物の
数、キャリヤーガス、希釈ガス、触媒ガス等を使用する
場合において、原料ガスである前記−般式の化合物及び
水素との予備混合の有無等に応じて適宜選択される。図
中、ガス供給源6乃至9の符号に、aを付したのは分岐
管、bを付したのは流量計、ct−付したのは各流量計
の高圧側の圧力を計測する圧力計、d又はet−付した
のは各気体流の開閉及び流量の調整をするためのパルプ
である。
Reference numerals 6 to 9 are gas supply sources, and if a liquid one of the chain halogenated silicon compounds represented by the above general formula is used, all appropriate vaporization equipment is provided. The vaporizer may be of any type, such as a type that utilizes heating and boiling, or a type that allows a carrier gas to pass through the liquid raw material. Furthermore, hydrogen gas may be used in its molecular form or may be radicalized beforehand. The number of gas supply sources is not limited to 4, and the number of chain halodanized silicon compounds of the above general formula to be used, carrier gas, diluent gas, catalyst gas, etc. It is appropriately selected depending on the presence or absence of premixing with the compound of the formula and hydrogen. In the figure, the reference numbers for gas supply sources 6 to 9 are marked with a for branch pipes, b for flowmeters, and ct- for pressure gauges that measure the pressure on the high pressure side of each flowmeter. , d or et- are pulps for opening/closing each gas flow and adjusting the flow rate.

各ガス供給源から供給される原料ガス等は、ガス導入管
10の途中で混合され、図示しない排気装置に付勢され
て、室1内に導入される。11は室1内に導入されるガ
スの圧力全計測するための圧力計である。また、12は
ガス排気管であシ、堆積室l内を減圧したシ、導入ガス
を強制排気するための図示しない排気装置と接続されて
いる。
Raw material gases and the like supplied from each gas supply source are mixed in the middle of the gas introduction pipe 10, and are introduced into the chamber 1 by being energized by an exhaust device (not shown). Reference numeral 11 denotes a pressure gauge for measuring the total pressure of the gas introduced into the chamber 1. Further, reference numeral 12 is a gas exhaust pipe, which is connected to an exhaust device (not shown) for forcibly exhausting the pressure inside the deposition chamber 1 and the introduced gas.

13はレギュレータ・パルプである。原料ガス等を導入
する前に1室1内全排気し、減圧状態とする場合、室内
の気圧は、5 X 1O−5Torr以下・更にはI 
X 10 ’ Torr以下であることが好ましい〇ま
た、原料ガス等全導入し次状態において、室1内の圧力
は、好ましくはI X 10 ”〜100 Torr。
13 is regulator pulp. Before introducing raw material gas, etc., if the entire chamber 1 is evacuated and the pressure is reduced, the atmospheric pressure in the room should be 5 X 1O-5 Torr or less, and even I
The pressure inside the chamber 1 is preferably I x 10 '' to 100 Torr in the next state after all the raw material gases and the like are introduced.

よシ好ましくはI X 10 ”〜I Torrの範囲
に維持されることが望まし込@ 本発明で使用する励起エネルギー供給源の1例として、
14は光エネルギー発生装置であって、例えば水銀ラン
プ、キセノンランプ、炭酸ガスレーザ、アルがンイオン
レーデ、エキシマレーデ等が用いられる。なお、本発明
でm−る光エネルギーは紫外線エネルギーに限定されず
、原料ガスを励起・分解せしめ、分解生成物全堆積させ
ることができるものであれば、波長域を問うものではな
い・また、光エネルギーが原料ガス、又は基板に吸収さ
れて熱エネルギーに変換し、その熱エネルギーによって
原料ガスの励起・分解がもたらされて堆積膜が形成され
る場合を排除するものでもない・光エネルギー発生装置
14がら適宜の光学系を用いて基体全体あるいは基体の
所望部分に向けられた光15は、矢印16の向きlC流
れて゛いる原料ガス等に照射され、励起・分解を起こし
て基体3上の全体あるいは所望部分にa−81の堆積膜
を形成する。
It is preferable to maintain the excitation energy in the range of I x 10'' to I Torr. As an example of the excitation energy source used in the present invention,
Reference numeral 14 denotes a light energy generating device, such as a mercury lamp, a xenon lamp, a carbon dioxide laser, an aluminum ion radar, an excimer laser, or the like. Note that the light energy used in the present invention is not limited to ultraviolet energy, and the wavelength range does not matter as long as it can excite and decompose the raw material gas and deposit all the decomposition products. This does not exclude the case where light energy is absorbed by the raw material gas or substrate and converted into thermal energy, and the thermal energy excites and decomposes the raw material gas to form a deposited film.・Light energy generation The light 15, which is directed to the entire substrate or a desired part of the substrate using an appropriate optical system from the device 14, is irradiated onto the raw material gas flowing in the direction of the arrow 16, causing excitation and decomposition, and causing the light on the substrate 3 to be emitted. A deposited film of a-81 is formed on the entire surface or a desired portion.

本発明方法によれば、所望によシ、薄膜から厚膜までの
任意の膜厚の堆積膜が得られ、また、膜面積も所望によ
シ任意に選択することができる。
According to the method of the present invention, a deposited film having any thickness from a thin film to a thick film can be obtained as desired, and the film area can also be arbitrarily selected as desired.

膜厚の制御は、原料ガスの圧力、流量、濃度等の制御、
励起エネルギー量の制御等通常の方法で行なうことがで
きる。例えば、一般の光導電膜、半導体膜又は絶縁体膜
等全構成するa−8lは作製する場合、膜厚は好まり、
<は500〜5 X 10’ X、よ)好ましくは10
00〜100OOXの範囲で選択されることが望ましい
The film thickness is controlled by controlling the pressure, flow rate, concentration, etc. of the raw material gas,
This can be done by conventional methods such as controlling the amount of excitation energy. For example, when manufacturing a-8l, which consists of a general photoconductive film, semiconductor film, or insulator film, the film thickness is preferably
< is 500 to 5 X 10' X, preferably 10
It is desirable to select it in the range of 00 to 100OOX.

以下に、本発明の具体的実施例を示す。Specific examples of the present invention are shown below.

実施例1 前記一般式の鎖状ハロゲン化ケイ素化合物として、前記
飼示化合物(1)、(2)、(7)又は(8)を用い、
図面の装置によJ)a−8t堆積膜全形成した。
Example 1 Using the feed compound (1), (2), (7) or (8) as the chain halogenated silicon compound of the general formula,
J) A-8t deposited film was entirely formed using the apparatus shown in the drawing.

先づ、導電性フィルム基板(コーニング社製、#705
9)k支持台2上に載置し、排気装置を用いて堆積室1
内全排気し、10 ’ Torrに減圧した。第1表に
示した基板温度で、気体状態とされている前記ハシグン
化ケイ素化合物’i 110 SCCM。
First, conductive film substrate (manufactured by Corning, #705
9) Place it on the k support stand 2 and remove it from the deposition chamber 1 using an exhaust system.
The inside was completely evacuated and the pressure was reduced to 10' Torr. The silicon halide compound 'i 110 SCCM is in a gaseous state at the substrate temperature shown in Table 1.

水素ガス’lz 40 SCCMの流量で堆積室内に導
入し、室内9気圧’f(0,I Torrに保ちつつ低
圧水銀灯を光強度100 mW / cm2で基板処垂
直に照射して、膜厚4000Xの!型a−8i膜を形成
した。成膜速度はtjs X/seaであった。
Hydrogen gas was introduced into the deposition chamber at a flow rate of 40 SCCM, and a low-pressure mercury lamp was irradiated perpendicularly to the substrate at a light intensity of 100 mW/cm2 while maintaining the chamber at 9 atm (0,1 Torr) to form a film with a film thickness of 4000X. A !type a-8i film was formed.The film formation rate was tjs X/sea.

比較のため、5i2a6vi−用いて同様Kしてa−8
1膜を形成した。成膜速度は /A−X / seeで
ありた。
For comparison, use 5i2a6vi- and do the same K to a-8
One film was formed. The film formation rate was /A-X/see.

次いで、得られた各a−81膜試料全蒸着槽に入れ−1
0’ Torrまで引いた後真空度1O−5Torr 
Next, each obtained A-81 film sample was placed in a total deposition tank -1
After pulling down to 0' Torr, the vacuum level is 1O-5 Torr.
.

成膜速度20X/aacでAt11500X蒸着し、ク
シ型のAtギャップ電極(長さ250μ、巾5m)を形
成した後、印加電圧10Vで光電流(AMI。
After depositing At11500X at a deposition rate of 20X/aac to form a comb-shaped At gap electrode (length 250μ, width 5m), photocurrent (AMI) was applied at an applied voltage of 10V.

100 mW / cm2)と暗電流を測定し、光導電
率り、σ、と暗導電率σdとの比り請求めて、a−8i
膜全評価した。結果を第1表に示した。
The dark current was measured as 100 mW/cm2), and the photoconductivity, σ, was compared with the dark conductivity, σd.
All membranes were evaluated. The results are shown in Table 1.

第1表から、本発明によるa−8t膜は従来品に比べ、
低い基板温度でもσ、及びσ、/σdが向上している。
From Table 1, compared to the conventional product, the a-8t film according to the present invention has
σ and σ, /σd are improved even at low substrate temperatures.

実施例2 基板をポリイミド基板、光源及び光強度全高圧水銀灯2
’ 00 mW / an2とし、前記一般式の鎖状ハ
0グン化ケイ素化合物として、前記例示化合物a渇、α
J%a5全用いた以外は、実施例1と同様にa−8i膜
全形成し、σ、及び請求めた。結果を第2表に示した。
Example 2 The substrate is a polyimide substrate, the light source and the light intensity are all high pressure mercury lamps 2
' 00 mW/an2, and as the chain halide silicon compound of the general formula, the exemplified compound a, α
The a-8i film was entirely formed in the same manner as in Example 1, except that J%a5 was used entirely, and σ and claim were determined. The results are shown in Table 2.

第 2 表 〔発明の効果〕 本発明によれば、低い基体温度でしかも高い成膜速度に
よって高品質のシリコン堆積膜を形成することができる
。その上、形成する膜が広面積、厚膜の場合においても
、均一な電気的・光学的特性が得られ、品質の安定性も
確保できるという従来にない格別の効果が奏される。ま
た、ほかにも、基体の高温加熱が不要であるためエネル
ギーの節約忙なる、耐熱性の乏しい基体上にも成膜でき
る、低温処理によって工程の短縮化を図れる、原料化合
物が容易に合成でき、安価でしかも安定性に優れ取扱上
の危険も少ない、と込りた効果が発揮される。
Table 2 [Effects of the Invention] According to the present invention, a high quality silicon deposited film can be formed at a low substrate temperature and at a high film formation rate. Moreover, even when the film to be formed has a wide area and is thick, uniform electrical and optical characteristics can be obtained and quality stability can be ensured, which is an unprecedented and exceptional effect. In addition, there is no need to heat the substrate to a high temperature, which saves energy; it is possible to form a film even on substrates with poor heat resistance; the process can be shortened by low-temperature processing; and the raw material compounds can be easily synthesized. It is inexpensive, has excellent stability, and has little handling danger, and has a profound effect.

【図面の簡単な説明】[Brief explanation of drawings]

図面社、本発明で使用する光エネルギー照射凰堆積膜形
成装の1例全示した概略構成図である。 1・・・堆積室、2・・・基体支持台、3・・・基体、
4・・・ヒーター、6〜9・・・ガス供給源、10・・
・ガス導入管、12・・・ガス排気管、14・・・光エ
ネルギー発生装置。
FIG. 1 is a schematic diagram showing an example of a light energy irradiation deposition film forming apparatus used in the present invention, manufactured by Zukosha. DESCRIPTION OF SYMBOLS 1... Deposition chamber, 2... Substrate support stand, 3... Substrate,
4...Heater, 6-9...Gas supply source, 10...
- Gas introduction pipe, 12... Gas exhaust pipe, 14... Light energy generator.

Claims (1)

【特許請求の範囲】[Claims] 基体を収容した室内に、一般式:5111x1nYt(
式中、X及びYはそれぞれ別異のハロゲン原子、nは1
〜6の整数、m及びtはそれぞれ1以上の整数であり、
m−1−z=2.−1−2である。)で表わされる鎖状
ハロダン化ケイ素化合物及び水素の気体状雰囲気を形成
し、光エネルギーを利用することによって前記化合物及
び水素を励起して分解し、前記基体上にシリコンを含有
する堆積膜を形成することt−特徴とする堆積膜形成方
法。
The general formula: 5111x1nYt (
In the formula, X and Y are different halogen atoms, and n is 1
An integer of ~6, m and t are each an integer of 1 or more,
m-1-z=2. -1-2. ) A gaseous atmosphere of a chain silicon halide compound represented by the formula () and hydrogen is formed, and the compound and hydrogen are excited and decomposed by using light energy to form a deposited film containing silicon on the substrate. t-Characteristic method for forming a deposited film.
JP7492984A 1984-04-16 1984-04-16 Deposited film forming method Pending JPS60218833A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7492984A JPS60218833A (en) 1984-04-16 1984-04-16 Deposited film forming method
US06/722,468 US4683147A (en) 1984-04-16 1985-04-12 Method of forming deposition film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7492984A JPS60218833A (en) 1984-04-16 1984-04-16 Deposited film forming method

Publications (1)

Publication Number Publication Date
JPS60218833A true JPS60218833A (en) 1985-11-01

Family

ID=13561533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7492984A Pending JPS60218833A (en) 1984-04-16 1984-04-16 Deposited film forming method

Country Status (1)

Country Link
JP (1) JPS60218833A (en)

Similar Documents

Publication Publication Date Title
JPH0557731B2 (en)
JPS59188913A (en) Photo cvd device
JPS60218833A (en) Deposited film forming method
US4921722A (en) Method for forming deposited film
JP2758247B2 (en) Organic metal gas thin film forming equipment
JPS60218830A (en) Deposited film forming method
JPS60218828A (en) Formation of deposited film
JPS60218827A (en) Formation of deposited film
JPS60218838A (en) Deposited film forming method
JPH0651908B2 (en) Method of forming thin film multilayer structure
JPS60218836A (en) Deposited film forming method
JPS60218473A (en) Formation of deposited film
JP3040247B2 (en) Manufacturing method of silicon thin film
JPS61170573A (en) Photo cvd device
JPH0682616B2 (en) Deposited film formation method
JPS60218840A (en) Deposited film forming method
JPS60218834A (en) Deposited film forming method
JPH0463536B2 (en)
JPS60218841A (en) Formation of deposited film
JPS61170574A (en) Deposited film forming device
JPS6247945B2 (en)
JPS6216512A (en) Manufacture of semiconductor thin film
JPH03222321A (en) Manufacture of amorphous semiconductor thin film
JPS60218835A (en) Deposited film forming method
JPH05226251A (en) Formation method of high-quality film and manufacture of igfet