JPS60218827A - Formation of deposited film - Google Patents

Formation of deposited film

Info

Publication number
JPS60218827A
JPS60218827A JP7492284A JP7492284A JPS60218827A JP S60218827 A JPS60218827 A JP S60218827A JP 7492284 A JP7492284 A JP 7492284A JP 7492284 A JP7492284 A JP 7492284A JP S60218827 A JPS60218827 A JP S60218827A
Authority
JP
Japan
Prior art keywords
film
substrate
deposited film
silicon
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7492284A
Other languages
Japanese (ja)
Inventor
Takeshi Eguchi
健 江口
Hiroshi Matsuda
宏 松田
Masahiro Haruta
春田 昌宏
Yukio Nishimura
征生 西村
Yutaka Hirai
裕 平井
Takashi Nakagiri
孝志 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7492284A priority Critical patent/JPS60218827A/en
Priority to US06/722,468 priority patent/US4683147A/en
Publication of JPS60218827A publication Critical patent/JPS60218827A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/483Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/487Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using electron radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/488Protection of windows for introduction of radiation into the coating chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve a film forming speed while keeping high quality of film by forming the gaseous ambient of a cyclic silicon compound within a chamber accommodating a substrate and forming a deposited film including silicon on the substrate. CONSTITUTION:The gaseous ambient of a cyclic silicon compound indicated by the general expression: SinHmXl (wherein X is halogen atom, n is an integer of 3 or more; m and l are integers 1 or more, m+l=2n. When l is 2 or more, a plurality of X's may be different halogen atom to each other). is formed in a chamber accommodating a substrate. A deposited film including silicon is formed on the substrate by applying an excitation energy to such compound. The deposited film including silicon may be crystalline or amorphous state and combination of silicon in the film may be from oligomer to polymer. Moreover, it is possible that hydrogen atom and halogen atom in the raw material may be taken within the structure.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はシリコンの堆積膜、とシわけ光導電膜、半導体
膜あるいは絶縁体膜などとして有用なアモルファスシリ
コン(以下、a−8tという)あるいは多結晶シリコン
の堆積膜を形成するのに好適な方法に関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to amorphous silicon (hereinafter referred to as A-8T) or polycrystalline silicon which is useful as a deposited silicon film, a separated photoconductive film, a semiconductor film, an insulating film, etc. The present invention relates to a method suitable for forming a deposited film of.

〔従来技術〕[Prior art]

従来、例えばa−8tの堆積膜を、5IH4又は512
H6を原料として用いたグロー放電堆積法又は熱エネル
ギー堆積法で形成することが知られている。即ち、5l
H4や512H6を電気エネルギーや熱エネルギーを用
いて励起・分解して基体上にa−81の堆積膜を形成し
、この膜を種々の目的で利用することが周知である。
Conventionally, for example, a deposited film of A-8T was deposited using 5IH4 or 512
It is known to form by a glow discharge deposition method or a thermal energy deposition method using H6 as a raw material. That is, 5l
It is well known to form a deposited film of A-81 on a substrate by exciting and decomposing H4 or 512H6 using electrical energy or thermal energy, and to utilize this film for various purposes.

しかし、これらSiH4及びS i 2H6を原料とし
て用いた場合、グロー放電堆積法においては、高出力下
で堆積中の膜への放電エネルギーの影響が大きく、再現
性のある安定した条件とする制御が難しい。特に、広面
積、厚膜の堆積膜を形成する場合に、これが顕著である
However, when these SiH4 and Si2H6 are used as raw materials, in the glow discharge deposition method, the discharge energy has a large influence on the film being deposited under high output, and it is difficult to control the conditions to maintain reproducible and stable conditions. difficult. This is particularly noticeable when forming a thick deposited film over a wide area.

また、熱エネルギー堆積法においても、高温が必要とな
ることから、使用される基体が限定されると共に、高温
によj)a−8t中の有用な結合水素原子が離脱してし
まう確率が増え、所望の特性が得にくくなる。
In addition, the thermal energy deposition method also requires high temperatures, which limits the substrates that can be used and increases the probability that useful bonded hydrogen atoms in j) a-8t will detach due to high temperatures. , it becomes difficult to obtain desired characteristics.

この様に、SiH4及び812H6を用いて堆積膜を形
成する場合、均一な電気的・光学的特性笈び品質の安定
性の確保が難しく、堆積中の膜表面の乱れ及びバルク内
の欠陥が生じ易いなどの解決される、べき問題点が消さ
朴るf?;1.現状である。
As described above, when forming a deposited film using SiH4 and 812H6, it is difficult to ensure uniform electrical and optical characteristics and quality stability, resulting in disturbances on the film surface and defects in the bulk during deposition. Is it easy to solve problems that should be solved? ;1. This is the current situation.

そこで、近年、これらの問題点を解消すべく、8iH4
及び812H6を原料とするa−81の光エネルギー堆
積法(光CVD法)が提案され、注目を集めている◎こ
の光エネルギー堆積法によると、a−81堆積膜を低温
で作製できる利点などによシ、上記問題点を大幅に改善
することができる。しかしながら、光エネルギーといっ
た比較的僅少な励起エネルギー下でのSiH4及び81
2H6’を原料とした光エネルギー堆積法では、飛躍的
に効率の良い分解を期待することができないため、成膜
速度の向上が期待できず、量産性に難点があるという新
たな問題点が生じている。
Therefore, in recent years, in order to solve these problems, 8iH4
A light energy deposition method (photoCVD method) for A-81 using 812H6 and 812H6 as raw materials has been proposed and is attracting attention. ◎This light energy deposition method has the advantage of being able to produce A-81 deposited films at low temperatures. Yes, the above problems can be greatly improved. However, under relatively small excitation energy such as light energy, SiH4 and 81
With the optical energy deposition method using 2H6' as a raw material, it is not possible to expect dramatically efficient decomposition, so an improvement in the film formation rate cannot be expected, and a new problem arises in that mass production is difficult. ing.

本発明は、現状に訃けるこれら問題点を解消すべくなさ
れたものである。
The present invention has been made to solve these problems that plague the current situation.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高品質を維持しつつ成膜速度を高くす
ることのできるシリコンを含有する堆積膜の形成方法を
提供することにある。
An object of the present invention is to provide a method for forming a silicon-containing deposited film that can increase the film formation rate while maintaining high quality.

本発明の他の目的は、広面積、厚膜の場合において−も
、均一な電気的・光学的特性及び品質の安定性を確保し
つつ高品質のシリコンを含有する堆積膜を作製すること
のできる堆積膜の形成方法を提供する仁とにある。
Another object of the present invention is to produce a deposited film containing high quality silicon while ensuring uniform electrical and optical properties and quality stability even in the case of a large area and thick film. The purpose of this invention is to provide a method for forming a deposited film that can be produced.

上記目的は、基体を収容した室内に、一般式:”n”r
r?’t (式中、Xはハロゲン原子、nは3以上の整
数、m及びtは1以上の整数であシ、m +仁2 nで
ある。但し、tが2以上のとき複数個のXはそれぞれ異
なるハロゲン原子であってもよい。)で表わされる環状
ケイ素化合物の気体状雰囲気を形成し、導入し、この化
合物に励起エネルギーを作用させることによシ、前記基
体上にシリコンを含有する堆積膜を形成することを特徴
とする堆積膜形成方法によりて達成される◎ 〔実施態様〕 本発明方法によって形成されるシリコンを含有する堆積
膜は、結晶質でも非晶質でもよく、膜中のシリコンの結
合は、オリゴ9マー状からポリマー状までの何れの形態
でもよい。また、原料中の水素原子及びハロゲン原子な
どを構造中にとシ込んでいてもよい。
For the above purpose, the general formula: “n”r
r? 't (wherein, may be different halogen atoms.) By forming and introducing a gaseous atmosphere of a cyclic silicon compound represented by and applying excitation energy to this compound, silicon is contained on the substrate. Achieved by a deposited film forming method characterized by forming a deposited film ◎ [Embodiment] The silicon-containing deposited film formed by the method of the present invention may be crystalline or amorphous; The silicon bond may be in any form from oligo-9mer to polymer. Further, hydrogen atoms, halogen atoms, etc. in the raw materials may be incorporated into the structure.

以下、主としてa−81堆積膜の場合について、本発明
の実施態様を説明する。
Hereinafter, embodiments of the present invention will be described mainly in the case of an A-81 deposited film.

前記一般式の環状化合物は、環状ケイ素化合物(環状シ
ラン化合物)SinH2nのハロダン誘導体であって、
製造が容易であシかつ安定性の高い化合中である。一般
式中、Xは、フッ素、塩素、臭素及びヨウ素から選ばれ
るハロゲン原子を表わす。
The cyclic compound of the general formula is a halodane derivative of a cyclic silicon compound (cyclic silane compound) SinH2n,
The compound is easy to manufacture and highly stable. In the general formula, X represents a halogen atom selected from fluorine, chlorine, bromine and iodine.

また、tが1のときは11iのハロダン原子、tが2以
上のときは1種又は2種以上のハロゲン原子を表わす。
Further, when t is 1, it represents a halodane atom of 11i, and when t is 2 or more, it represents one or more types of halogen atoms.

nのシリコン原子数は3〜7個が好ましい。曳質なa−
81膜を得るには、nは4〜6、更には5又は6である
ことが好ましい。nが8以上であると、分解が容易で低
エネルギー励起により所望の堆積膜が得られることが期
待されるが予想に反し光導電膜、半導体膜として品質が
劣、シ、その上、膜の表面上での欠陥及びバルク内での
乱れが多く、不均一な膜となることが判明した。したが
ってこのような原料ガスを使用すれば堆積膜の製造のコ
ントロールが困難である。
The number of silicon atoms of n is preferably 3 to 7. Hiki na a-
In order to obtain an 81 film, n is preferably 4 to 6, more preferably 5 or 6. When n is 8 or more, it is expected that decomposition will be easy and a desired deposited film can be obtained by low-energy excitation, but contrary to expectations, the quality of the photoconductive film and semiconductor film will be poor, and in addition, the film will deteriorate. It was found that there were many defects on the surface and disturbances in the bulk, resulting in a non-uniform film. Therefore, if such a raw material gas is used, it is difficult to control the production of the deposited film.

水素原子とハロダン原子の総数m + 1は2nと同一
であるが、ハロダン原子数tが水素原子数m以下である
ことが好ましい。
The total number m + 1 of hydrogen atoms and halodan atoms is the same as 2n, but it is preferable that the number t of halodan atoms is equal to or less than the number m of hydrogen atoms.

一方、ケイ素と各ハロゲン原子の結合エネルギーg(s
tx)の大小は、 E(SiF))E(SICz))E(SiBr))E(
SII)によって表わされる。即ち、8i−F結合は非
常に安定で、この結合を光エネルギー等比較的低い励起
エネルギーで切断するのは困難である。そこで、本発明
の目的を達成するためには、XがBr及びIから選ばれ
ることが好ましい。特に5i−I結合は、81−H結合
に比べて不安定であるので、分解し易く、更に5t−I
結合における光吸収エネルギーは低エネルギー側、即ち
長波長側にシフトするため、光分解効率が向上する。
On the other hand, the bond energy g(s
The magnitude of tx) is E(SiF))E(SICz))E(SiBr))E(
SII). That is, the 8i-F bond is very stable, and it is difficult to break this bond with relatively low excitation energy such as light energy. Therefore, in order to achieve the object of the present invention, it is preferable that X be selected from Br and I. In particular, the 5i-I bond is unstable compared to the 81-H bond, so it is easily decomposed, and the 5t-I bond is more unstable than the 81-H bond.
Since the light absorption energy in the bonding is shifted to the lower energy side, that is, to the longer wavelength side, the photolysis efficiency is improved.

前記一般式の環状ケイ素化合物の光エネルギー励起にお
いて、比較的結合エネルギーの小さい8l−8t結合、
5t−Br結合及び81−I結合等が分解して、:81
H2、:5iHX、更に: 812H4、:5i2H,
X。
In light energy excitation of the cyclic silicon compound of the general formula, an 8l-8t bond with relatively small bond energy,
The 5t-Br bond and the 81-I bond are decomposed, resulting in: 81
H2, :5iHX, further: 812H4, :5i2H,
X.

: BiH2X2等のラジカル種な発生する。これらの
ラジカル種は更にエネルギー励起を受けて、良質なa−
81膜を堆積することができる。
: Radical species such as BiH2X2 are generated. These radical species undergo further energy excitation to produce high-quality a-
81 films can be deposited.

前記一般式の環状ケイ素化合物として本発明で使用する
具体的化合物としては、以下のものを代表例として挙げ
ることができる。
As the specific compound used in the present invention as the cyclic silicon compound of the above general formula, the following can be mentioned as representative examples.

1、 H81F 2. H6816Ct6.3. H6
5i6Br6.6 66S 4、 H6816I6.5. H6B16F4Br2.
6. H65i6Cz4Br2.7、 H8816F4
.8. H85i6Ct4.9. H8816Br4.
10、 H8816I4、ii、 a5st5p5.1
2. H5S15Ct5.13、 H58i5Br5.
14. H5815I5.15. H5St5F、Br
2.16、 H4S14Ct3Br2.17. H68
15F4.18. H6515C24,19、H65i
5Br4.20. H681,I、、21. H45i
F4.22、 H4S14Ct4.23. H45i4
Br4゜本発明においてシリコンを含有する堆積膜を形
成する前記痙は、減圧下におかれるのが好ましいが、常
圧下ないし加圧下においても本発明方法を実施すること
ができる。 ・ 本発明において使用される前記励起エネルギーは、特に
制限されず、光などの何れのエネルギーでもよい。前記
一般式の環状ケイ素化合物は、光エネルギー等比較的低
いエネルギーの付与にょシ容易に励起・分解し、良質な
シリコン堆積膜を形成することができ、またこれに際し
、基体の温度も比較的低い温度とすることができるとい
う特長を有する。また、励起エネルギーは基体近傍に到
達し・九原料に一様にあるいは選択的制御的に付与され
るが、光エネルギーを使用すれば、適宜の光学系を用い
て基体の全体に照射して堆積膜を形成することができる
し、あるいは所望部分に選択的制御的に照射して部分的
に堆積膜を形成することができ、またレジスト等を使用
して所定の図形部分のみに照射し堆積膜を形成できるな
どの便利さを有しているため、有利に用いられる。′本
発明においては、前記家内に前記一般式の環状ケイ素化
合物の気体状雰囲気を形成することによシ、励起・分解
反応の過程で生成する尿素ラジカルが反応の効率を高め
る。
1. H81F 2. H6816Ct6.3. H6
5i6Br6.6 66S 4, H6816I6.5. H6B16F4Br2.
6. H65i6Cz4Br2.7, H8816F4
.. 8. H85i6Ct4.9. H8816Br4.
10, H8816I4, ii, a5st5p5.1
2. H5S15Ct5.13, H58i5Br5.
14. H5815I5.15. H5St5F, Br
2.16, H4S14Ct3Br2.17. H68
15F4.18. H6515C24, 19, H65i
5Br4.20. H681,I,,21. H45i
F4.22, H4S14Ct4.23. H45i4
Br4° In the present invention, it is preferable that the silicon-containing deposited film is placed under reduced pressure, but the method of the present invention can also be carried out under normal pressure or increased pressure. - The excitation energy used in the present invention is not particularly limited, and may be any energy such as light. The cyclic silicon compound of the above general formula can be easily excited and decomposed by application of relatively low energy such as light energy, and can form a high-quality silicon deposited film, and at the same time, the temperature of the substrate is also relatively low. It has the advantage of being able to change the temperature. In addition, the excitation energy reaches the vicinity of the substrate and is applied uniformly or selectively to the raw materials, but if optical energy is used, the entire substrate is irradiated using an appropriate optical system to deposit the material. It is possible to form a film, or it is possible to selectively and controllably irradiate a desired area to form a partially deposited film, or it is possible to use a resist etc. to irradiate only a predetermined graphic part to form a deposited film. It is advantageously used because it has the convenience of being able to form. 'In the present invention, by forming a gaseous atmosphere of the cyclic silicon compound of the general formula in the chamber, the urea radicals generated during the excitation/decomposition reaction process increase the efficiency of the reaction.

また、前記一般式の環状ケイ素化合物は、2種以上を併
用してもよいが、この場合、各化合物によって期待゛さ
れる膜特性を平均化した程度の物性、ないしは相乗的に
改良された特性が得られる。
In addition, two or more of the cyclic silicon compounds having the above general formula may be used in combination, but in this case, the physical properties that are averaged over the film properties expected by each compound, or the properties that are synergistically improved. is obtained.

以下、図面を参照して説明する。This will be explained below with reference to the drawings.

図面は、本発明方法によりて光導電膜、半導体膜又は絶
縁体膜等として用いられるa−8t堆積膜を形成するの
に使用する装置の1例を示した模式図である。
The drawing is a schematic diagram showing an example of an apparatus used to form an a-8t deposited film used as a photoconductive film, a semiconductor film, an insulating film, etc. by the method of the present invention.

図中、1は堆積室であシ、内部の基体支持台2上に所望
の基体3が載置される。基体3は、導電性、半導電性あ
るいは電気絶縁性の何れの基体でもよく、例えば、電気
絶縁性の基体としては、ポリエステル、4リエチレン、
ポリカー、11−)、セルローズアセテート、ポリプロ
ピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリス
チレン、/17アミド等の合成樹脂のフィルム又はシー
ト、ガラス、セラミック、紙等が通常使用される。また
、基体3には予め電極層、他のシリコン層等が積層され
ていてもよい。
In the figure, 1 is a deposition chamber, and a desired substrate 3 is placed on a substrate support 2 inside. The base 3 may be a conductive, semiconductive, or electrically insulating base. For example, as an electrically insulating base, polyester, 4-lyethylene,
Films or sheets of synthetic resins such as polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, /17 amide, glass, ceramics, paper, etc. are usually used. Moreover, an electrode layer, another silicon layer, etc. may be laminated on the base 3 in advance.

4は基体加熱用のヒーターであシ、導線5を介して給電
され、発熱する。基体温度は特に制限されないが、本発
明方法を実施するにあたっては、好ましくは50〜15
0℃、よシ好ましくは100〜150℃であることが望
ましい6 6乃至9は、ガス供給源であシ、前記一般式で示される
環状ケイ素化合物のうち液状のものを使用する場合には
、適宜の気化装置を具備させる◎気化装置には加熱沸騰
を利用するタイプ、液体原料中にキャリアーガスを通過
させるタイプ等があシ、何れでもよい。ガス供給源の個
数は4に限定されず、使用する前記一般式の環状ケイ素
化合物の数、水素ガス、キャリアーガス、希釈ガス、触
媒ガス等を使用する場合において原料ガスである前記一
般式の化合物との予備混合の有無等に応じて適宜選択さ
れる。図中、ガス供給源6乃至9の符号に、aを付した
のは分岐管、bを付したのは流量計、Cを付したのは各
流量計の高圧側の圧力を計測する圧力計、d又は・を付
し九のは各気体流量を調整するだめのパルプである。
Numeral 4 is a heater for heating the substrate, which is supplied with electricity through a conductor 5 and generates heat. The substrate temperature is not particularly limited, but in carrying out the method of the present invention, it is preferably 50 to 15
It is desirable that the temperature is 0°C, preferably 100 to 150°C. 6 6 to 9 are gas supply sources. When a liquid cyclic silicon compound represented by the above general formula is used, Provide an appropriate vaporization device. The vaporization device may be of a type that utilizes boiling or a type that allows a carrier gas to pass through the liquid raw material. The number of gas supply sources is not limited to four, and the number of cyclic silicon compounds of the general formula to be used, hydrogen gas, carrier gas, diluent gas, catalyst gas, etc., is the compound of the general formula that is the raw material gas. It is selected as appropriate depending on the presence or absence of pre-mixing with. In the figure, to the gas supply sources 6 to 9, a is added to the branch pipes, b is the flowmeter, and C is the pressure meter that measures the pressure on the high pressure side of each flowmeter. , d or 9 indicates the pulp used to adjust the flow rate of each gas.

各ガス供給源から供給される原料ガス等は、ガス導入管
10の途中で混合され、図示しない排気装置に付勢され
て、室1内に導入される。11は室1内に導入されるガ
スの圧力を計測するだめの圧力計である。また、12は
ガス排気管であり、堆積室1内を減圧したシ、導入ガス
を強制排気するための図示しない排気装置と接続されて
いる。
Raw material gases and the like supplied from each gas supply source are mixed in the middle of the gas introduction pipe 10, and are introduced into the chamber 1 by being energized by an exhaust device (not shown). Reference numeral 11 denotes a pressure gauge for measuring the pressure of gas introduced into the chamber 1. Further, 12 is a gas exhaust pipe, which is connected to an exhaust device (not shown) for forcibly exhausting the introduced gas while reducing the pressure inside the deposition chamber 1.

13はレギーレータ・バルブである。原料ガス等を導入
する前に、室1内を排気し、減圧状態とする場合、室内
の気圧は、5 X 10−5Torr以下、更にはI 
X 10−’Torr以下であることが好ましい。
13 is a regirator valve. Before introducing the raw material gas, etc., when the inside of the chamber 1 is evacuated and brought into a reduced pressure state, the atmospheric pressure in the chamber is 5 X 10-5 Torr or less, and furthermore, I
It is preferable that X10-'Torr or less.

また、原料ガス等を導入した状態において、室1内の圧
力は、好ましくは1×10〜100Torr。
Further, in a state where the raw material gas and the like are introduced, the pressure inside the chamber 1 is preferably 1×10 to 100 Torr.

よシ好ましくはI X 10”−2〜l Torrの範
囲に維持されることが望ましい。
It is preferable to maintain it preferably in the range of I.times.10"-2 to 1 Torr.

本発明で使用する励起エネルギー供給源の1例として、
14は光エネルギー浄土装置でありて、例えば水銀ラン
プ、キセノンランプ、炭酸ガスレーサ、アルがンイオン
レーザ、エキシマレーザ等が用いられる。なお、本発明
で用いる光エネルギーは紫外線エネルギーに限定されず
、原料ガスを励起・分解せしめ、分解生成物を堆積させ
ることができるものであれば、波長域を問うものではな
い。また、光エネルギーが原料ガス、又は基板に吸収さ
れて熱エネルギーに変換し、その熱エネルギーによって
原料ガスの励起・分解がもたらされて堆積膜が形成され
る場合を排除するものでもない。光エネルギー発生装置
14から適宜の光学系を用いて基体全体あるいは基体の
所望部分に向けられた光15は、矢印16の向きに流れ
ている原料ガス等に照射され、励起・分解を起こして基
体3上の全体あるいは所望部分にa−8lの堆積膜を形
成する。
As an example of an excitation energy supply source used in the present invention,
Reference numeral 14 denotes a light energy purifying device, which uses, for example, a mercury lamp, a xenon lamp, a carbon dioxide laser, an aluminium ion laser, an excimer laser, or the like. Note that the light energy used in the present invention is not limited to ultraviolet energy, and any wavelength range may be used as long as it can excite and decompose the source gas and deposit decomposition products. Further, the present invention does not exclude the case where light energy is absorbed by the source gas or the substrate and converted into thermal energy, and the thermal energy causes excitation and decomposition of the source gas to form a deposited film. Light 15 is directed from the optical energy generator 14 to the entire substrate or a desired portion of the substrate using an appropriate optical system, and is irradiated to the raw material gas flowing in the direction of the arrow 16, causing excitation and decomposition, and causing the substrate to be heated. A deposited film of a-8l is formed on the entire surface of 3 or on a desired portion.

本発明方法によれば、所望により、薄膜から厚膜までの
任意の膜厚の堆積膜が得られ、また膜面積も所望により
任意に選択することができる。膜厚の制御は、原料ガス
の圧力、流量、濃度等の制御、励起工采ルギー量の制御
等通常の方法で行なうことができる。例えば一般の光導
電膜、半導体膜又は絶縁体膜等を構成するa−8i膜を
作製する場合、膜厚は好ましくは500〜5X10’X
、より好ましくは1000〜100OOXの範囲で選択
されることが望ましい。
According to the method of the present invention, a deposited film having any thickness from a thin film to a thick film can be obtained as desired, and the film area can also be arbitrarily selected as desired. The film thickness can be controlled by conventional methods such as controlling the pressure, flow rate, concentration, etc. of the raw material gas, controlling the amount of excitation energy, etc. For example, when producing an a-8i film constituting a general photoconductive film, semiconductor film, insulator film, etc., the film thickness is preferably 500 to 5 x 10'
, more preferably in the range of 1000 to 100OOX.

以下に、本発明の具体的実施例を示す。Specific examples of the present invention are shown below.

実施例1 前記一般式の環状ケイ素化合物として、前記例示化合物
(1) 、 (4) 、 (5) 、(至)、αカ、Q
l又は(2)を用い、図−の装置によpa−8i堆積膜
を形成した。
Example 1 As the cyclic silicon compound of the general formula, the exemplary compounds (1), (4), (5), (to), αka, Q
A PA-8i deposited film was formed using the apparatus shown in the figure.

先づ、導電性フィルム基板(コーニング社製、÷705
9)を支持台2上に載置し、排気装置を用いて堆積室1
内を排気し、10−6Torrに減圧した。第1表に示
した基板温度で、気体状態とされている前記ハロダン化
ケイ素化合物を110 SCCM。
First, a conductive film substrate (manufactured by Corning, ÷705
9) on the support stand 2, and use the exhaust device to remove the deposition chamber 1.
The inside was evacuated and the pressure was reduced to 10-6 Torr. At the substrate temperature shown in Table 1, 110 SCCM of the silicon halide compound, which is in a gaseous state.

水素ガスを40SCCMの流量で堆積室内に導入し、室
内の気圧を0. I Torrに保ちつつ低圧水銀灯を
光強度100 mW/Jで基板に垂直に照射して、膜厚
4000XのI型a−81膜を形成した。成膜速度は、
肘1/s e cであった。
Hydrogen gas was introduced into the deposition chamber at a flow rate of 40 SCCM, and the atmospheric pressure in the chamber was reduced to 0. A low-pressure mercury lamp was irradiated perpendicularly to the substrate at a light intensity of 100 mW/J while maintaining the temperature at I Torr to form a type I a-81 film having a thickness of 4000×. The film formation speed is
The elbow was 1/sec.

比較のため、512H6を用いて同様にしてa−81膜
を形成した。成膜速度は/J’ X/seeであった。
For comparison, an a-81 film was formed in the same manner using 512H6. The film formation rate was /J'X/see.

次いで、得られた各a−8t膜試料を蒸着槽に入れ、1
 (1”Torrまで引いた後真空度10−5Torr
 、成膜速度201/seeでAtを1500X蒸着し
、クシ型のAtギャップ電極(長さ250μ、巾51m
)を形成した後、印加電圧10vで光t 流(AMl 
、100mW/m2)と暗電流を測定し、光導電率σp
1σpと暗導電率σdとの比σp/σdをめて、a−8
t膜を評価した。結果を第1表に示した。
Next, each obtained a-8t film sample was placed in a vapor deposition tank and 1
(Vacuum level 10-5 Torr after pulling down to 1” Torr
, At 1500X was deposited at a deposition rate of 201/see, and a comb-shaped At gap electrode (length 250μ, width 51m
), the light t current (AMl
, 100 mW/m2), and the photoconductivity σp
Taking the ratio σp/σd of 1σp and dark conductivity σd, a-8
The t membrane was evaluated. The results are shown in Table 1.

第1表から、本発明によるa−8t膜は従来品に比べ、
低い基板温度でもσp及びσp/σdが向上している。
From Table 1, compared to the conventional product, the a-8t film according to the present invention has
σp and σp/σd are improved even at low substrate temperatures.

実施例2 光源及び光強度をArFエキシマレーザ、15 mJ/
パルスとし、前記一般式の環状ケイ素化合物として、前
記例示化合物(3)、 (9) 、αI 、(14) 
、(ト)、■)、■)を用いた以外は、実施例1と同様
にa−8t膜を形成し、σp及びσVσdをめた。結果
を第2表に示した。
Example 2 The light source and light intensity were ArF excimer laser, 15 mJ/
As a pulse, as a cyclic silicon compound of the general formula, the exemplified compounds (3), (9), αI, (14)
An a-8t film was formed in the same manner as in Example 1, except that , (G), ■), and ■) were used, and σp and σVσd were determined. The results are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、低い基体温度でしかも高い成膜速度に
よりて高品質のシリコンを含有する堆積膜を形成するこ
とができる。その上、形成する膜が広面積、厚膜の場合
においても、均一な電気的・光学的特性が得られ、品質
の安定性も確保できるという従来にない格別の効果が奏
される。また、ほかにも、基体の高温加熱が不要である
ためエネルギーの節約になる、耐熱性の乏しい基体上に
も成膜できる、低温処理によって工程の短縮化を図れる
、原料化合物が容易に合成でき、安価でしかも安定性に
優れ取扱上の危険も少ない、といつた効果が発揮される
According to the present invention, a deposited film containing high quality silicon can be formed at a low substrate temperature and at a high film formation rate. Moreover, even when the film to be formed has a wide area and is thick, uniform electrical and optical characteristics can be obtained and quality stability can be ensured, which is an unprecedented and exceptional effect. In addition, it saves energy because it does not require high-temperature heating of the substrate, it can form a film even on substrates with poor heat resistance, the process can be shortened by low-temperature treatment, and the raw material compound can be easily synthesized. It is inexpensive, has excellent stability, and has few handling risks.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明で使用する光エネルギー照射型堆積膜形
成装の1例を示した概略構成図である。 1・・・堆積室、2・・・基体支持台、3・・・基体、
4・・・ヒータ、6〜9・・・ガス供給源、10・・・
ガス導入管、12・・・ガス排気管、14・・・光エネ
ルギー発生装置。
The drawing is a schematic configuration diagram showing an example of a light energy irradiation type deposited film forming apparatus used in the present invention. DESCRIPTION OF SYMBOLS 1... Deposition chamber, 2... Substrate support stand, 3... Substrate,
4... Heater, 6-9... Gas supply source, 10...
Gas inlet pipe, 12... Gas exhaust pipe, 14... Light energy generator.

Claims (1)

【特許請求の範囲】 ゛ 基体を収容した室内に、一般式:Slnす□(式中
、Xはハロゲン原子、nは3以上の整数、m及びtは1
以上の整数で’) ’) 、m−)−t=2nである。 但し、tが2以上のとき複数個のXはそれぞれ異なるハ
ロゲン原子であってもよい。)で表わされる環状ケイ素
化合物の気体状雰囲気を形成し、この化合物に励起エネ
ルギーを作用させることにより、前記基体上にシリコン
を含有する堆積膜を形成することを特徴とする堆積膜形
成方法。
[Claims] ゛ In a chamber containing a substrate, a compound of the general formula: Sln (wherein, X is a halogen atom, n is an integer of 3 or more, m and t are 1
In the above integers, ')'), m-)-t=2n. However, when t is 2 or more, the plurality of Xs may be different halogen atoms. ) A deposited film forming method comprising forming a deposited film containing silicon on the substrate by forming a gaseous atmosphere of a cyclic silicon compound represented by the formula and applying excitation energy to the compound.
JP7492284A 1984-04-16 1984-04-16 Formation of deposited film Pending JPS60218827A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7492284A JPS60218827A (en) 1984-04-16 1984-04-16 Formation of deposited film
US06/722,468 US4683147A (en) 1984-04-16 1985-04-12 Method of forming deposition film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7492284A JPS60218827A (en) 1984-04-16 1984-04-16 Formation of deposited film

Publications (1)

Publication Number Publication Date
JPS60218827A true JPS60218827A (en) 1985-11-01

Family

ID=13561345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7492284A Pending JPS60218827A (en) 1984-04-16 1984-04-16 Formation of deposited film

Country Status (1)

Country Link
JP (1) JPS60218827A (en)

Similar Documents

Publication Publication Date Title
JPH02197117A (en) Manufacture of carbon-containing amorphous silicon thin film
JPS60242612A (en) Deposition film forming method
JPS60218827A (en) Formation of deposited film
JPH0670970B2 (en) Deposited film formation method
JPH0587171B2 (en)
JP3084395B2 (en) Semiconductor thin film deposition method
JPS60218828A (en) Formation of deposited film
JPS60218836A (en) Deposited film forming method
JPS60218830A (en) Deposited film forming method
JPH0682616B2 (en) Deposited film formation method
JPS60218838A (en) Deposited film forming method
JPS60218833A (en) Deposited film forming method
JPS60218473A (en) Formation of deposited film
JPS61170573A (en) Photo cvd device
JPS60218840A (en) Deposited film forming method
JPH0626185B2 (en) Method for producing hydrogenated amorphous silicon / carbon film
JPS60219728A (en) Forming method of deposited film
JPS61170574A (en) Deposited film forming device
JPS60218835A (en) Deposited film forming method
JPS6296675A (en) Formation of deposited film
JPH05275354A (en) Manufacture of silicon film
JPS60218837A (en) Deposited film forming method
JPS6247945B2 (en)
JPS60218841A (en) Formation of deposited film
JPS60218829A (en) Formation of deposited film