JPS60218423A - Improvement of fatigue strength of structural parts for power transmission - Google Patents

Improvement of fatigue strength of structural parts for power transmission

Info

Publication number
JPS60218423A
JPS60218423A JP7299884A JP7299884A JPS60218423A JP S60218423 A JPS60218423 A JP S60218423A JP 7299884 A JP7299884 A JP 7299884A JP 7299884 A JP7299884 A JP 7299884A JP S60218423 A JPS60218423 A JP S60218423A
Authority
JP
Japan
Prior art keywords
fatigue strength
power transmission
shot peening
tempering
shot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7299884A
Other languages
Japanese (ja)
Inventor
Toru Yamaguchi
徹 山口
Masao Kikuchi
雅男 菊池
Hirotomo Komine
厚友 小峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP7299884A priority Critical patent/JPS60218423A/en
Publication of JPS60218423A publication Critical patent/JPS60218423A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve further the fatigue strength of structural parts for power transmission and to enable easy working even when the parts have a complex shape by subjecting the parts tempered at a low temp. after heat treatment to shot peening and retempering at a specified temp. CONSTITUTION:Structural parts for power transmission tempered at about 150- 200 deg.C low temp. after heat treatment such as carburization are subjected to shot peening and retempering at a low temp. below said tempering temp., preferably at about 100 deg.C low temp. By the retempering, the fatigue strength of the parts subjected to the shot peening can be further improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、動力伝達軸、歯車等の動力伝達用構成部品の
疲労強度を著しく高めることのできる処理法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a treatment method that can significantly increase the fatigue strength of power transmission components such as power transmission shafts and gears.

従来技術 従来、機械部品や構造部材の繰返し荷重に対する疲労強
度向上のため、表面層に圧縮残留応力を生せしめると同
時に表面層を硬化する方法としては、 (a) 浸炭、窒化、タフトライド処理、高周波焼入れ
等の各種熱処理、 (b) 表面圧延、ショットピーニング等の表面冷間加
工、 (C) オースフォーミング等の加工熱処理、が採用さ
れている。
Conventional technology Conventionally, in order to improve the fatigue strength of mechanical parts and structural members against repeated loads, methods for generating compressive residual stress in the surface layer and hardening the surface layer at the same time include (a) carburizing, nitriding, tuftride treatment, and high frequency treatment. Various heat treatments such as quenching, (b) surface cold treatments such as surface rolling and shot peening, and (C) processing heat treatments such as ausforming are employed.

しかしながら、オースフォーミングに代表される上記(
C)の加工熱処理は、強加工を施すため圧延等を行なう
ので、動力伝達軸のような複雑な形状のものには加工し
難いという欠点があると共に、Cr等の含有量の多い高
合金鋼を使用するため高価であるという難点がある。
However, the above (as represented by ausforming)
Processing heat treatment (C) involves rolling, etc. to perform strong working, so it has the disadvantage that it is difficult to process products with complex shapes such as power transmission shafts. The disadvantage is that it is expensive because it uses

一方、前記(a)及び(b)の表面硬化法は、加工の点
では問題はないが、回転曲げ疲労強IJ((to7回)
が50〜90Kf/−程度であり、(C)の加工熱処理
法による場合の100〜ll0Kf/−に比べて低いと
いう問題がある。
On the other hand, the surface hardening methods (a) and (b) have no problems in terms of processing, but the rotational bending fatigue strength IJ ((to 7 times)
is about 50 to 90 Kf/-, which is lower than 100 to 10 Kf/- in the case of the processing heat treatment method (C).

発明の目的 従って、本発明の目的は、前記した従来法の欠点を改善
し、複雑な形状の部品にも容易に加工できると共に、動
力伝達軸、歯車等の動力伝連用構成部品などの疲労強度
を著しく高めることのできる処理法を提供することにあ
る。
OBJECTS OF THE INVENTION Accordingly, an object of the present invention is to improve the drawbacks of the conventional method described above, to enable easy processing of parts with complex shapes, and to improve the fatigue strength of power transmission components such as power transmission shafts and gears. The objective is to provide a processing method that can significantly increase the

発明の背景 本発明者らは、鉄系金属部品の疲労強度を向上させるた
め、前記(a)の熱処理と(b)のショットピーニング
を組み合わせた方法、すなわち、熱処理後にショットピ
ーニングを行ない、表面層の加工硬化と圧縮残留応力の
付与により疲労強度の向上を図ることができる処理法を
見い出し、別途特許出願している。
BACKGROUND OF THE INVENTION In order to improve the fatigue strength of ferrous metal parts, the present inventors have developed a method that combines the heat treatment (a) and the shot peening (b), that is, shot peening is performed after the heat treatment to improve the surface layer. We have discovered a treatment method that can improve fatigue strength by work-hardening and applying compressive residual stress, and have filed a separate patent application for this process.

ところで、この方法の基本構成は、低炭素低合金鋼(例
えば8CM415)に通常の浸炭焼入れ処理を行なった
後、150〜200℃の低温で焼戻し処理を施し、次い
で室温にてショットピーニングを行ない、浸炭中に生成
した約20μmの表面異常層(粒界酸化に伴なう不完全
焼入層)の硬さ゛の低下を補ない、表面近傍(約150
μm)の硬さ、圧縮残留応力を増加させ、浸炭焼入れの
除虫じた残留オーステナイトを減少させ、表面からの疲
労亀裂の発生を抑制するものである。
By the way, the basic structure of this method is to perform ordinary carburizing and quenching on low carbon low alloy steel (e.g. 8CM415), then tempering at a low temperature of 150 to 200°C, and then shot peening at room temperature. It compensates for the decrease in hardness of the approximately 20 μm abnormal surface layer (incompletely hardened layer due to grain boundary oxidation) generated during carburizing, and
It increases the hardness (μm) and compressive residual stress, reduces residual austenite that has been removed by carburizing and quenching, and suppresses the occurrence of fatigue cracks from the surface.

上記の処理においては、ショットピーニングの条件を適
正に選べば、通常浸炭材の約1.5倍の疲労強度が得ら
れる。
In the above treatment, if shot peening conditions are appropriately selected, fatigue strength about 1.5 times that of ordinary carburized materials can be obtained.

しかしながら、本発明者のさらに鋭意研究の結果、室温
でのショットピーニングに引き続き、浸炭等の熱処理後
の予備焼戻し温度未満の低温で再焼戻し処理を行なえば
、疲労強度はさらに向上することを見い出し、本発明を
完成するに至ったものである。
However, as a result of further intensive research by the present inventors, it was discovered that fatigue strength can be further improved if shot peening at room temperature is followed by re-tempering treatment at a low temperature lower than the preliminary tempering temperature after heat treatment such as carburizing. This has led to the completion of the present invention.

発明の#I成 本発明に係る動力伝達用構成部品の疲労強度向上法は、
浸炭等の熱処理後に低温で焼戻し処理を施した動力伝達
用構成部品にショットピーニングを施した後、引き続き
上記焼戻し温度未満の低温で再焼戻し処理を施すことを
特徴とするものである。
#I of the Invention The method for improving the fatigue strength of power transmission components according to the present invention is as follows:
It is characterized in that the power transmission component is subjected to shot peening, which has been tempered at a low temperature after heat treatment such as carburization, and then subsequently subjected to a re-tempering treatment at a low temperature below the above-mentioned tempering temperature.

発明の作用及び態様 本発明の動力伝達用構成部品の疲労強度向上法は、まず
浸炭等の熱処理後に150〜200℃の低温で焼戻し処
理を施し、引き続きショットピーニングを施す。この場
合の基本的作用・効果について、以下試験例を示しなが
ら説明する。
Effects and Modes of the Invention In the method of improving the fatigue strength of power transmission components according to the present invention, first, after heat treatment such as carburizing, a tempering treatment is performed at a low temperature of 150 to 200° C., and then shot peening is performed. The basic actions and effects in this case will be explained below with reference to test examples.

試験例1 比較処理材C1の加工 低炭素低合金@8cM415に、常法に従って浸炭焼入
れ・焼戻し処理を施した。すなわち、930℃で6時間
(0,13%CO2含有浸炭性ガスで3.5時間、その
後0.2%CU2含有浸炭性ガスで2.5時間)浸炭を
行なった後さらに850℃で0.5時間(0,5% C
O2含有浸炭性ガス)行ない、油焼入れをした後、18
0℃で2時間焼戻した。このようにして通常浸炭材C1
を得た。
Test Example 1 Processing of Comparative Treatment Material C1 A low carbon low alloy @8cM415 was subjected to carburizing, quenching and tempering according to a conventional method. That is, after carburizing at 930°C for 6 hours (3.5 hours with carburizing gas containing 0.13% CO2 and then 2.5 hours with carburizing gas containing 0.2% CU2), carburizing was carried out at 850°C for 0.5 hours. 5 hours (0.5% C
O2-containing carburizing gas) and oil quenching, 18
It was tempered at 0°C for 2 hours. In this way, usually carburized material C1
I got it.

比較処理材81〜S4の加工 上記比較処理材C1と同様に浸炭焼入れ・焼戻し処理を
施した通常浸炭材に、さらにショット径0.3調(処理
材81)、0.6調(処理材8Q)、0.7mm(処理
材83 )及び0−gtnm(処理材S4ンに変えて、
投射速IK 46 m / s 、投射時間10分の条
件でショットピーニングを行ない、ショットピーニング
処理材5l−S、を得た。
Processing of Comparatively Treated Materials 81 to S4 A normal carburized material that was subjected to carburizing, quenching and tempering in the same manner as the Comparatively Treated Material C1 above was further subjected to shot diameters of 0.3 (treated material 81) and 0.6 (treated material 8Q). ), 0.7 mm (treated material 83) and 0-gtnm (treated material S4),
Shot peening was performed under the conditions of a projection speed IK of 46 m/s and a projection time of 10 minutes to obtain a shot peened material 5l-S.

上記各処理材C1、81〜S4の圧縮残留応力分布を第
1図に示す。第1図から、ショットピーニング処理によ
って表面近傍の圧縮残留応力が著しく増加しており、ま
た加工深さはショットの □粒径に影響されることが明
らかであり、ショク ニドの粒径が大きくなるにつれて
圧縮残留応力の影響層が深くなっている。
The compressive residual stress distribution of each of the treated materials C1, 81 to S4 is shown in FIG. From Figure 1, it is clear that the compressive residual stress near the surface increases significantly due to shot peening treatment, and it is clear that the machining depth is affected by the grain size of the shot, and the grain size of the shot peening increases. The influence layer of compressive residual stress becomes deeper.

また上記処理材82 (ショットピーニング灸件:φ0
.6閣、46pn/s、IQ分)の表面近傍 :の硬さ
分布を第2図に、残留オースブナイト景の分布を第3図
に、圧縮残留応力の分布を第4図に示す。なお、第2図
における斜線部領域は通常の浸炭処理によって得られる
硬さ分布の範囲を示し、また第3図及び第4図における
破綜は前記通常浸炭材C1のデータを示す。
In addition, the above treated material 82 (shot peening moxibustion case: φ0
.. Figure 2 shows the hardness distribution in the vicinity of the surface, Figure 3 shows the distribution of residual ausbunite, and Figure 4 shows the distribution of compressive residual stress. Note that the shaded area in FIG. 2 shows the range of hardness distribution obtained by normal carburizing treatment, and the broken edges in FIGS. 3 and 4 show data for the normal carburized material C1.

第2図から明らかなように、浸炭中に生成した約20μ
m程度までの表面異常層の硬さの低下(斜線部参照)は
、本発明に従ってショットピーニングを施すことによっ
て補なわれ、約150μm程度までの表面近傍において
硬さが増加しており、また表面層に急激な硬さの上昇が
見られる。また、第3図から明らかなように、浸炭焼入
れの際に生じた残留オーステナイト量は、本発明に従っ
てショットピーニングを施すことによって減少している
As is clear from Fig. 2, approximately 20μ was generated during carburizing.
The decrease in hardness of the surface abnormal layer up to about 150 μm (see the shaded area) is compensated for by shot peening according to the present invention, and the hardness increases near the surface up to about 150 μm. A rapid increase in hardness is observed in the layer. Moreover, as is clear from FIG. 3, the amount of retained austenite produced during carburizing and quenching is reduced by performing shot peening according to the present invention.

試験例2 前記比較処理材C1と同様に浸炭焼入れ・焼戻し処理を
施した浸炭材に、ショット径を0.6ml+。
Test Example 2 A shot diameter of 0.6 ml+ was applied to a carburized material that had been subjected to carburizing, quenching and tempering treatment in the same manner as the comparison treated material C1.

投射速度を46 m / sに設定し、投射時間を0.
5分、1分、3分、5分及び10分に変えてショットピ
ーニングを行ない、疲労強度と投射時間との関係を調べ
た。その結果を第5図に示す。
The projection speed was set to 46 m/s, and the projection time was set to 0.
Shot peening was performed for 5 minutes, 1 minute, 3 minutes, 5 minutes, and 10 minutes, and the relationship between fatigue strength and shot time was investigated. The results are shown in FIG.

第5図から、投射時間5分までは疲労強度は投射時間に
応じて増加しているが、投射時間5分で飽和値に達して
いる。従って、この試験結果から、浸炭後のショットピ
ーニングは5分の投射時間が必要なことがわかる。
From FIG. 5, the fatigue strength increases as the projection time increases until the projection time reaches 5 minutes, but reaches a saturation value at the projection time of 5 minutes. Therefore, from this test result, it can be seen that shot peening after carburization requires a projection time of 5 minutes.

試験例3 上記比較処理材C1と同様に浸炭焼入れ・焼戻し処理を
施した通常浸炭材に、ショット径及び投射速度を変えて
投射時間10分の条件でショットピーニングを行ない、
加工深さと投射速度との関係を調べた。その結果を第6
図に示す。
Test Example 3 A normal carburized material that had been carburized and quenched and tempered in the same manner as the comparative treated material C1 was subjected to shot peening under conditions of varying the shot diameter and projection speed and for a projection time of 10 minutes.
The relationship between machining depth and projection speed was investigated. The result is the 6th
As shown in the figure.

第6図から、投射速度が大きい程加工深さは深くなるこ
とがわかる。
From FIG. 6, it can be seen that the higher the projection speed, the deeper the machining depth.

上、記各試験例からも明らかなように、ショットピーニ
ングの条件により疲労寿命の増加の程度はかなり異なり
、最適条件で行なう必要がある。
As is clear from the above test examples, the degree of increase in fatigue life varies considerably depending on shot peening conditions, and it is necessary to perform shot peening under optimal conditions.

まず、ショツト粒径は、小さすぎると軸方向の圧縮残留
応力の影響層が浅く、従って疲労強度の増加か少なく、
一方、大きすぎると、実用上、動力伝達軸のような複雑
な形状物の応力集中部(例えば各種の溝など)へのピー
ニングが不可能となる。このため、0.3〜1.Omn
好、ましくけ0.6〜0.8mの径のショットを用いる
のが良い。
First, if the shot grain size is too small, the influence layer of compressive residual stress in the axial direction is shallow, and therefore the fatigue strength increases or decreases.
On the other hand, if it is too large, it becomes practically impossible to peen stress concentration parts (for example, various grooves) of a complex-shaped object such as a power transmission shaft. For this reason, 0.3 to 1. Omn
It is best to use a shot with a diameter of 0.6 to 0.8 m.

また、ショットの投射時間は、添附第5図から明らかな
ように、5分間の投射時間までは時間が長い方が疲労強
度向上するが、それ以降は飽和する傾向にある。このた
め、投射時間は5〜40分の範囲が好ましい。
Further, as is clear from FIG. 5, the longer the shot projection time is, the more the fatigue strength is improved until the shot projection time is 5 minutes, but thereafter it tends to be saturated. For this reason, the projection time is preferably in the range of 5 to 40 minutes.

さらに、ショットの投射速度(遠心式の装置では別車の
回転数に対応)は、小さすぎるとその効果が現われず、
また大きすぎても表面粗さが増したり、表面に微小亀裂
を発生させるため、35〜50 m / sの範囲が好
ましく、蓋た最も好ましいのは45〜50m/sの範囲
である。
Furthermore, if the shot projection speed (corresponding to the rotation speed of another car in a centrifugal device) is too low, the effect will not be apparent.
Moreover, if it is too large, the surface roughness increases or microcracks are generated on the surface, so the range is preferably 35 to 50 m/s, and the most preferable range is 45 to 50 m/s.

本発明によれば、以上のようにショットピーニングを施
した後、引き続き浸炭等の燃処理後の焼戻し温度未満の
低温、好ましくは90〜140℃、最も好ましくは10
0℃前後の低温で再焼戻しを施す。
According to the present invention, after shot peening is performed as described above, the temperature is lower than the tempering temperature after combustion treatment such as carburizing, preferably 90 to 140°C, most preferably 10°C.
Re-tempering is performed at a low temperature of around 0°C.

この低温再焼戻しを施すことによって、ショットピーニ
ング処理材の疲労強度はさらに向上する。但し、この場
合、再焼戻し温度が浸炭等の熱処理後の焼戻し温度以上
の場合には、添附第7図に示す各棟温度で焼戻しだ場合
の回転曲げ疲労試験結果からも明4らかなように、室温
でのショットピーニング処理材よりも疲労強度がむしろ
低下するため、再焼戻しは好ましくは90〜140℃、
最も好ましくは100℃前後で行なう。
By performing this low temperature re-tempering, the fatigue strength of the shot peened material is further improved. However, in this case, if the re-tempering temperature is higher than the tempering temperature after heat treatment such as carburizing, it is clear from the rotary bending fatigue test results when tempering was performed at each ridge temperature shown in attached Figure 7. Since the fatigue strength is rather lower than that of the shot peened material at room temperature, re-tempering is preferably performed at 90 to 140°C,
Most preferably, it is carried out at around 100°C.

この再焼戻しによる疲労強度向上の詳細な理由祉不明で
あるが、100℃前後の焼戻し温度が高炭素マルテンサ
イトの焼戻し第1段階にあたり、基地と整合に析出した
ε炭化物が、ショットピーニングにより導入された転位
上に析出することと関連していると思われる。
Although the detailed reason for this improvement in fatigue strength due to re-tempering is unknown, the tempering temperature of around 100°C is the first stage of tempering high-carbon martensite, and ε carbides precipitated in alignment with the matrix are introduced by shot peening. This seems to be related to the precipitation on the dislocations.

実施例 以下、実施例及び比較例を示して本発明について具体的
に説明するが、本発明が下記実施例に限定されるもので
ないことはもとよりである。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but it goes without saying that the present invention is not limited to the following Examples.

実施例1 前記試験例1における比較処理材C1と同様に浸炭焼入
れ・焼戻し処理を施した通常浸炭材に、ショット径0.
8鱈、投射速度46m/s、投射時間10分の条件でシ
ョットピーニングを行ない、引き続きこれを100℃に
2時間再焼戻し、本発明材P1を得た。
Example 1 A normal carburized material that had been subjected to carburizing, quenching and tempering in the same manner as the comparatively treated material C1 in Test Example 1 was given a shot diameter of 0.
Shot peening was carried out under the conditions of 8 cod, a projection speed of 46 m/s, and a projection time of 10 minutes, followed by re-tempering at 100° C. for 2 hours to obtain material P1 of the present invention.

比較例1 再焼戻し温度を180℃とする以外は前記実施例1と全
く同様に処理して処理材C2を得た。
Comparative Example 1 A treated material C2 was obtained in the same manner as in Example 1 except that the re-tempering temperature was 180°C.

上記各処理材P1.C2及び前記ショットピーニング処
理材S4、通常浸炭材C1から得たJIS 2号試験片
をそれぞれ用いて、小野式回転曲げ疲労試験を行なった
。その結果を第7図に示す。第7図から、本発明の方法
によってショットピーニング処理後に再焼戻しを施すこ
とにより、疲労強度が著しく向上することがわかる。
Each of the above treated materials P1. Ono rotary bending fatigue tests were conducted using JIS No. 2 test pieces obtained from C2, the shot peened material S4, and the normal carburized material C1, respectively. The results are shown in FIG. From FIG. 7, it can be seen that fatigue strength is significantly improved by performing re-tempering after shot peening treatment according to the method of the present invention.

発明の効果 以上のように、本発明の方法は、浸炭等の熱処理後に低
温で焼戻し処理を施した動力伝達用構成部品にショット
ピーニングを施した後、引き続き上記焼戻し温度未満の
低温で再焼戻し処理を施すものであるから、高価な高合
金鋼を使用する必要がなく、また浸炭等の熱処理後に室
温でのショットピーニングによる効果、すなわち、浸炭
中に生成した約20μm程度の表面異常層の硬さの低下
を補ない、約150μm程度までの表面近傍の硬さ、圧
縮残留応力を増加させ、また浸炭焼入れの際に生じた残
留オーステナイトを減少させ、表面からの疲労亀裂の発
生を抑制でき、それによって疲労強度の大巾な向上が図
れるという基本的効果の他に、上記室温でのショットピ
ーニングに引続いてさらに低温で再焼戻しを施すことに
より、さらに疲労強度の大巾な向上が図れるという格別
の効果を有する。また、ショットピーニングを用いるか
ら複雑な形状のものにも容易に適用できるという利点が
得られる。
Effects of the Invention As described above, the method of the present invention applies shot peening to a power transmission component that has been tempered at a low temperature after heat treatment such as carburization, and then subsequently re-tempered at a low temperature below the above-mentioned tempering temperature. There is no need to use expensive high-alloy steel, and the effect of shot peening at room temperature after heat treatment such as carburization, that is, the hardness of the abnormal surface layer of approximately 20 μm formed during carburization. It compensates for the decrease in surface hardness, increases the hardness and compressive residual stress near the surface up to about 150 μm, and also reduces retained austenite generated during carburizing and quenching, suppressing the occurrence of fatigue cracks from the surface. In addition to the basic effect of greatly improving fatigue strength, the shot peening at room temperature is followed by re-tempering at a lower temperature, which makes it possible to further improve fatigue strength. It has the effect of Further, since shot peening is used, there is an advantage that it can be easily applied to objects with complicated shapes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は各種処理材の圧縮残留応力の分布を示すグラフ
、第2図はショットピーニング処理材の硬さ分布を示す
グラフ、第3図は残留オーステナイト鎗の分布を示すグ
ラフ、第4図は圧縮残留応力の分布を示すグラフ、第5
図は投射時間と疲労強度の関係を示すグラフ、第6図は
投射速度と加工深さの関係を示すグラフ、第7図は各種
処理材の回転曲げ疲労試験結果を示すグラフである。 第1図 第2図 表面ρ・ゾ;釆z+pm) 第3図 第4図 層面ガウク尿乏 (pml −第6図 〜C う く 即 第6図 墜 lLtw’rnKi (7ml 第7図
Figure 1 is a graph showing the distribution of compressive residual stress of various treated materials, Figure 2 is a graph showing the hardness distribution of shot peened materials, Figure 3 is a graph showing the distribution of retained austenite spears, and Figure 4 is a graph showing the distribution of residual austenite. Graph showing the distribution of compressive residual stress, 5th
Figure 6 is a graph showing the relationship between projection time and fatigue strength, Figure 6 is a graph showing the relationship between projection speed and processing depth, and Figure 7 is a graph showing the results of rotary bending fatigue tests of various treated materials. Fig. 1 Fig. 2 Surface ρ・zo; button z+pm) Fig. 3 Fig. 4 Layer surface gawk urine deficiency (pml - Fig. 6~C

Claims (1)

【特許請求の範囲】[Claims] 熱処理後に低温で焼戻し処理を施した動力伝達用構成部
品にショットピーニングを施した仇引き続き上記焼戻し
温度未満の低温で再焼戻し処理を施すことを特徴とする
動力伝達用構成部品の疲労強度向上法。
A method for improving the fatigue strength of a power transmission component, which comprises subjecting the power transmission component that has been tempered at a low temperature after heat treatment to shot peening, and subsequently subjecting the power transmission component to a re-tempering treatment at a low temperature lower than the above-mentioned tempering temperature.
JP7299884A 1984-04-13 1984-04-13 Improvement of fatigue strength of structural parts for power transmission Pending JPS60218423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7299884A JPS60218423A (en) 1984-04-13 1984-04-13 Improvement of fatigue strength of structural parts for power transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7299884A JPS60218423A (en) 1984-04-13 1984-04-13 Improvement of fatigue strength of structural parts for power transmission

Publications (1)

Publication Number Publication Date
JPS60218423A true JPS60218423A (en) 1985-11-01

Family

ID=13505591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7299884A Pending JPS60218423A (en) 1984-04-13 1984-04-13 Improvement of fatigue strength of structural parts for power transmission

Country Status (1)

Country Link
JP (1) JPS60218423A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207822A (en) * 1986-03-06 1987-09-12 Mazda Motor Corp Improvement of strength of gear
US5019182A (en) * 1988-09-27 1991-05-28 Mazda Motor Corporation Method of forming hard steels by case hardening, shot-peening and aging without tempering
JP2006304842A (en) * 2005-04-26 2006-11-09 Juki Corp Sliding mechanism, looper mechanism of sewing machine, and needle bar driving mechanism of sewing machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207822A (en) * 1986-03-06 1987-09-12 Mazda Motor Corp Improvement of strength of gear
US5019182A (en) * 1988-09-27 1991-05-28 Mazda Motor Corporation Method of forming hard steels by case hardening, shot-peening and aging without tempering
JP2006304842A (en) * 2005-04-26 2006-11-09 Juki Corp Sliding mechanism, looper mechanism of sewing machine, and needle bar driving mechanism of sewing machine

Similar Documents

Publication Publication Date Title
JP4627776B2 (en) High concentration carburizing / low strain quenching member and method of manufacturing the same
US4415378A (en) Case hardening method for steel parts
JPH02138554A (en) Highly strenghtened gear
JP3006034B2 (en) High strength mechanical structural members with excellent surface pressure strength
JPS60218423A (en) Improvement of fatigue strength of structural parts for power transmission
Molian Fatigue characteristics of laser surface-hardened cast irons
JP3395252B2 (en) Manufacturing method of steel with excellent fatigue strength
JPS60162726A (en) Method for surface-hardening toothed part of ring gear of flywheel
JP3436459B2 (en) Heat treatment method for steel
JPS60218422A (en) Improvement of fatigue strength of structural parts for power transmission
JPS60162727A (en) Mechanical heat treating method
JPH02294462A (en) Carburizing quenching method for steel member
JPS6179719A (en) Thermo-mechanical treatment
JP2003055711A (en) Surface treatment method for steel member, and hardened component thereof
JPH0754050A (en) High strength gear excellent in root of tooth bending fatigue strength and tooth surface pitching resistance and manufacture therefor
JP3283900B2 (en) Heat treatment method for strengthening steel
JP3303171B2 (en) Manufacturing method of steel for bearing race
JPH0324258A (en) Surface hardening treatment of carburized steel parts
JPS62253723A (en) Production of gear
JP2000176586A (en) Production of high bearing pressure drive resistant part and high bearing pressure drive resistant part
JPS62185826A (en) Production of high-strength gear
CN112695269B (en) Heat treatment process of 18Cr2Ni4WA workpiece
JPS60155618A (en) Method for improving fatigue strength of carburized and hardened member having notch
JPS6270512A (en) Surface hardening method for carburized product
JPH06108148A (en) Steel member excellent in piping resistance and fatigue strength and its production