JPS60218422A - Improvement of fatigue strength of structural parts for power transmission - Google Patents

Improvement of fatigue strength of structural parts for power transmission

Info

Publication number
JPS60218422A
JPS60218422A JP7299784A JP7299784A JPS60218422A JP S60218422 A JPS60218422 A JP S60218422A JP 7299784 A JP7299784 A JP 7299784A JP 7299784 A JP7299784 A JP 7299784A JP S60218422 A JPS60218422 A JP S60218422A
Authority
JP
Japan
Prior art keywords
fatigue strength
shot peening
power transmission
shot
hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7299784A
Other languages
Japanese (ja)
Inventor
Toru Yamaguchi
徹 山口
Masao Kikuchi
雅男 菊池
Hirotomo Komine
厚友 小峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP7299784A priority Critical patent/JPS60218422A/en
Publication of JPS60218422A publication Critical patent/JPS60218422A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve remarkably the fatigue strength of structural parts for power transmission and to enable easy working even when the parts have a complex shape by subjecting the parts tempered at a low temp. after carburization and hardening to shot peening under specified conditions. CONSTITUTION:Structural parts for power transmission tempered at 150-200 deg.C low temp. after carburization and hardening are subjected to shot peening under conditions including 0.3-1.0mm. diameter of shot, 5-40min projection time and 35-50m/sec projection speed. Much higher fatigue strength than fatigue strength (10<7> times) attained by a conventional method can be attained by combining carburization and hardening with shot peening and setting the tempering temp. and the shot peening conditions as mentioned above.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、動力伝達軸、歯車等の動力伝達用構成部品の
疲労強度を著しく高めることのできる処理法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a treatment method that can significantly increase the fatigue strength of power transmission components such as power transmission shafts and gears.

従来技術 従来、機械部品や構造部材の繰返し荷重に対する疲労強
度向上のため、表面層に圧縮残留応力を生ぜしめると同
時に表面層を硬化する方法としては、 &L) 浸炭、窒化、タフトライド処理、高周波焼入れ
等の各種熱処理、 (b) 表面圧延、ショットピーニング等の表面冷間加
工、 (C) オース7オーミング等の加工熱処理、が採用さ
れている。
Conventional technology Conventionally, in order to improve the fatigue strength of mechanical parts and structural members against repeated loads, methods of generating compressive residual stress in the surface layer and hardening the surface layer at the same time include carburizing, nitriding, tuftride treatment, and induction hardening. (b) Surface cold processing such as surface rolling and shot peening; (C) Processing heat treatment such as aus7 ohming.

しかしながら、オースフォーミングに代表される上記(
C)の加工熱処理は、強加工を施すため圧延等を行うの
で、動力伝達軸のような複雑な形状のものには加工し難
いという欠点があると共に、Cr等の含有量の多い高合
金鋼を使用するため高価であるという難点がある。
However, the above (as represented by ausforming)
Process heat treatment (C) involves rolling, etc. in order to apply strong working, so it has the disadvantage that it is difficult to process products with complex shapes such as power transmission shafts. The disadvantage is that it is expensive because it uses

一方、前記(α)及び(b)の表面硬化法は、加工の点
では問題はないが、回転曲げ疲労強度(10’回)が5
0〜90 by 7mm”程度であり、(C)ノ加工熱
処理法による場合の100〜++okg/m−に比べて
低いという問題がある。
On the other hand, the surface hardening methods (α) and (b) have no problems in terms of processing, but the rotational bending fatigue strength (10' times) is 5.
There is a problem that it is about 0 to 90 by 7 mm'', which is lower than 100 to ++okg/m- in the case of the processing heat treatment method (C).

発明の目的 従って、本発明の目的は、前記した従来法の欠点を改善
し、複雑な形状の部品にも容易に加工できると共に、動
力伝達軸、歯車等の動力伝達用構成部品などの疲労強度
を著しく高めることのできる処理法を提供することにあ
る。
OBJECTS OF THE INVENTION Accordingly, an object of the present invention is to improve the drawbacks of the conventional methods described above, to enable easy processing of parts with complex shapes, and to improve the fatigue strength of power transmission components such as power transmission shafts and gears. The objective is to provide a treatment method that can significantly increase the

発明の構成 本発明に係る動力伝達用構成部品の疲労強度向上法は、
前記目的を達成するため、浸炭焼入後に150〜200
°Cの低温で焼戻し処理を施した動力伝達用構成部品に
、ショット径0.3〜1.0mm、投射時間5〜40分
、投射速度35〜50シ4の条件でショットピーニング
を施すこトラ特徴とするものである。
Structure of the Invention The method for improving the fatigue strength of power transmission components according to the present invention is as follows:
In order to achieve the above purpose, after carburizing and quenching, the
Shot peening is applied to power transmission components that have been tempered at a low temperature of °C under the following conditions: shot diameter 0.3 to 1.0 mm, projection time 5 to 40 minutes, and projection speed 35 to 50 cm. This is a characteristic feature.

発明の作用及び態様 本発明に係る動力伝達用構成部品の疲労強度向上法は、
前記(g)の浸炭焼入れ処理と(勾のショットピーニン
グの各方法を組み合わせたものてあp1焼戻し温度及び
ショットピーニングの条件を特定範囲に設定することに
よシ、従来得られていた疲労強度(i o″回ンシも著
しく高い疲労強度を得る方法である。
Effects and Modes of the Invention The method for improving fatigue strength of power transmission components according to the present invention is as follows:
By setting the tempering temperature and shot peening conditions within specific ranges, the fatigue strength ( io'' rotation is also a method of obtaining significantly higher fatigue strength.

すなわち、本発明方法の基本構成は、低炭素低合金fi
l(例えばSCM415)に通常の浸炭焼入れ処理を行
なった後、150〜200°Cの低温で焼戻し処理を施
し、次いで室温にてショットピーニングを行ない、浸炭
中に生成した約20μmの表面異常層(粒界酸化に伴な
う不完全焼入れ層)の硬さの低下を補ない、表面近傍(
約150 pm )の硬さ、圧縮残留応力を増加させ、
浸炭焼入れの除虫じた残留オーステナイトを減少させ、
表面からの疲労亀裂の発生を抑制するものである。
That is, the basic configuration of the method of the present invention is that low carbon, low alloy fi
1 (for example, SCM415), followed by tempering at a low temperature of 150 to 200°C, followed by shot peening at room temperature to remove the approximately 20 μm abnormal surface layer (for example, SCM415) generated during carburization. It compensates for the decrease in hardness of the incompletely hardened layer (due to grain boundary oxidation), and improves hardness near the surface (
hardness of approximately 150 pm), increasing compressive residual stress,
Reducing residual austenite from carburizing and quenching,
This suppresses the occurrence of fatigue cracks from the surface.

本発明方法のように浸炭した部品にショットピーニング
を施した場合、ショットピーニングの条件により疲労寿
命の増加の程度はかなり異なり、最適条件で行なう必賛
がある。
When shot peening is applied to carburized parts as in the method of the present invention, the degree of increase in fatigue life varies considerably depending on the shot peening conditions, and it is essential to carry out shot peening under optimal conditions.

まず、シミツト粒径は、小さすぎると軸方向の圧縮残留
応力の影響層が浅く、従って疲労強度の増加が少なく、
一方、大きすぎると、実用上、動力伝達軸のような複雑
な形状物の応力集中部(例えば各種の溝などンへのピー
ニングが不可能となる。このため、0.3〜r、omm
tsましくは0.6〜Q、gmmの径のショットを用い
るのが良い。
First, if the grain size is too small, the influence layer of compressive residual stress in the axial direction will be shallow, and therefore the increase in fatigue strength will be small.
On the other hand, if it is too large, it is practically impossible to peen stress concentration parts (e.g. various grooves) of complex-shaped objects such as power transmission shafts.
It is preferable to use a shot having a diameter of ts, preferably 0.6 to Q, gmm.

また、ショットの投射時間は、添附第5図から明らかな
ように、5分間の投射時間までは時間が長い方が疲労強
度は向上するが、それ以降紘飽和する傾向にある。この
ため、投射時間は5〜40分の範囲が好ましい。
As for the shot projection time, as is clear from FIG. 5, the longer the shot projection time is, the better the fatigue strength is, but the fatigue strength tends to be saturated after that. For this reason, the projection time is preferably in the range of 5 to 40 minutes.

さらに、ショットの投射速度(遠心式の装置では別車の
回転数に対応)は、小さすぎるとその効果が現われず、
また大きすぎても表面粗さが増したり、表面に微小亀裂
を発生させるため、35〜507ψの範囲が好ましく、
マた最も好ましいのは45〜5 Q m/zの範囲であ
る。
Furthermore, if the shot projection speed (corresponding to the rotation speed of another car in a centrifugal device) is too low, the effect will not be apparent.
Also, if it is too large, the surface roughness will increase and micro-cracks will occur on the surface, so the range of 35 to 507 ψ is preferable.
The most preferred range is from 45 to 5 Q m/z.

実施例 以下、実施例及び比較例を示して本発明について具体的
に説明するが、゛禾発明が下記実施例に限定されるもの
でないことはもとよりである。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples; however, it goes without saying that the invention is not limited to the following Examples.

比較例 低炭素低合金鋼SCM415に、常法に従って浸炭焼入
れ・焼戻し処理を施した。すなわち、9300Cで6時
間(0,13%Cへ 含有浸炭性ガスで3.5時間、そ
の後0.2 ToCO,含有浸炭性ガスで2.5′時間
)浸炭を行なった後さらK 8500Cで0.5時間(
Q、5 % CO雪金含有浸炭性ガス行ない、油焼入れ
をした後、150〜2000Cに焼戻しだ。このようK
して通常浸炭材CIを得た。
Comparative Example Low-carbon, low-alloy steel SCM415 was subjected to carburizing, quenching and tempering according to a conventional method. That is, after carburizing at 9300C for 6 hours (3.5 hours with carburizing gas containing 0.13% C, then 2.5 hours with carburizing gas containing 0.2 ToCO), further carburizing at 8500C with 0. .5 hours (
Q: After quenching with carburizing gas containing 5% CO and oil, tempering at 150-2000C. K like this
A conventional carburized material CI was obtained.

実施例1〜4 上記比較例と同様に浸炭焼入れ・焼戻し処理を施した通
常浸炭材に、さらに本発明に従って、ショット径を0.
3mm(実権例1)、0.6mm (実施例2)、0.
7m1rL(実施例3)及びQ、gmm(実施例4)に
変えて、投射速度46m/s 、投射時間10分の条件
でショットピーニングを行ない、本発明材Pパ実施例I
)、P黛(実施例2)、Ps(実施例3)及びP4(実
施例4)を得た。
Examples 1 to 4 A normal carburized material that had been subjected to carburizing, quenching and tempering in the same manner as in the comparative example above was further treated with a shot diameter of 0.
3mm (actual example 1), 0.6mm (example 2), 0.
7m1rL (Example 3) and Q, gmm (Example 4), shot peening was performed under the conditions of a projection speed of 46 m/s and a projection time of 10 minutes, and the present invention material P Example I
), P Mayuzumi (Example 2), Ps (Example 3) and P4 (Example 4) were obtained.

上記通常浸炭材CI及び各本発明材P、〜への圧縮残留
応力分布を第1図に示す。第1図から、本発明の処理に
よって表面近傍の圧縮残留応力が著しく増加しており、
また加工深さはショットの粒径に影響されることが明ら
かであり、ショットの粒径が大きくなるにつれて圧縮残
留応力の影響層が深くなっている。
The compressive residual stress distribution in the above-mentioned conventional carburized material CI and each of the present invention materials P and - is shown in FIG. From Figure 1, the treatment of the present invention significantly increases the compressive residual stress near the surface.
It is also clear that the machining depth is affected by the grain size of the shot, and as the grain size of the shot increases, the layer affected by compressive residual stress becomes deeper.

また、上記本発明材P雪(ショットピーニング条件:φ
QJ1mm、46m/l、to分)の表面近傍の硬さ分
布を第2図に、残留オーステナイト量の分布を第3図に
、圧縮残留応力の分布を第4図に示す。なお、第2図に
おける斜線部領域は通常の浸炭処理によって得られる硬
さ分布の範囲を示し、また、第3図及び第4図における
破線は前記通常浸炭材C宜のデータを示す。
In addition, the above-mentioned invention material P snow (shot peening conditions: φ
Figure 2 shows the hardness distribution near the surface of QJ1mm, 46m/l, to minutes), Figure 3 shows the distribution of the amount of retained austenite, and Figure 4 shows the distribution of compressive residual stress. Note that the shaded area in FIG. 2 shows the range of hardness distribution obtained by normal carburizing treatment, and the broken lines in FIGS. 3 and 4 show data for the normal carburized material C.

第2図から明らかなように、浸炭中に生成した約20μ
m程度までの表面異常層の硬さの低下(斜線部参照)は
、本発明に従ってショットピーニングを施すことによっ
て補なわれ、約150pm程度までの表面近傍において
硬さが増加しており、また表面層に急激な硬さの上昇が
見られる。また、第3図から明らかなように、浸炭焼入
れの際に生じた残留オーステナイト量は、本発明に従っ
てショットピーニングを施すこトニよって減少している
As is clear from Fig. 2, approximately 20μ was generated during carburizing.
The decrease in hardness of the surface abnormal layer up to about 150 pm (see the shaded area) is compensated for by shot peening according to the present invention, and the hardness increases near the surface up to about 150 pm, and the surface A rapid increase in hardness is observed in the layer. Furthermore, as is clear from FIG. 3, the amount of residual austenite produced during carburizing and quenching is reduced by shot peening according to the present invention.

試験例1 前記比較例と同様に浸炭焼入れe焼戻し処理を施した浸
炭材に、ショット径をQ、Omm、投射速度を467に
/#に設定し、投射時間を0.5分、1分、3分、5分
及び10分に変えてショットピーニングを行ない、疲労
強度と投射時間との関係を調べた。その結果を第5図に
示す。第5図から、投射時間5分までは疲労強度は投射
時間に応じて増加しているが、投射時間5分で飽和値に
達している。従って、この試験結果から、浸炭後のショ
ットピーニングは、少なくとも5分の投射時間が必要な
ことがわかる。
Test Example 1 The shot diameter was set to Q, Omm, the projection speed was set to 467/#, and the projection time was set to 0.5 minutes, 1 minute, Shot peening was performed for 3 minutes, 5 minutes, and 10 minutes to examine the relationship between fatigue strength and shot time. The results are shown in FIG. From FIG. 5, the fatigue strength increases as the projection time increases until the projection time reaches 5 minutes, but reaches a saturation value at the projection time of 5 minutes. Therefore, from this test result, it can be seen that shot peening after carburization requires a projection time of at least 5 minutes.

試験例2 上記比較例と同様に浸炭焼入れ・焼戻し処理を施した通
常浸炭材に、ショット径及び投射速度を変えて、投射時
間10分の条件でショットピーニングを行ない、加工深
さと投射速度との関係を調べた。その結果を第6図に示
す。第6図から、投射速度が大きい程加工深さは深くな
ることがわかる。
Test Example 2 A normal carburized material that had been carburized, quenched and tempered in the same manner as the comparative example above was subjected to shot peening for 10 minutes by changing the shot diameter and projection speed. I investigated the relationship. The results are shown in FIG. From FIG. 6, it can be seen that the higher the projection speed, the deeper the machining depth.

試験例3 上記比較例と同様に浸炭焼入れ・焼戻し処理を施した通
常浸炭材に、ショット径をQ 、3mm 。
Test Example 3 A normal carburized material was subjected to carburizing, quenching and tempering in the same manner as in the above comparative example, and the shot diameter was set to Q and 3 mm.

Q 、 6 mm及び0.gmmに変えて、投射速度4
6m1g、投N時間10分の条件でショットピーニング
を行ない、各処理材を得た。これらから得たJIS2号
試験片をそれぞれ用いて、小野式回転曲げ疲労試験を行
なった。その結果を第7図に示す。なお、第7図中破線
は通常浸炭材C3についての結果である。第7図から、
本発明の方法によって処理した場合には、疲労強度が著
しく向上する 4゜ことがわかる。
Q, 6 mm and 0. Change to gmm, projection speed 4
Shot peening was carried out under the conditions of 6 ml of 1 g and N throwing time of 10 minutes to obtain each treated material. Using the JIS No. 2 test pieces obtained from these, an Ono rotary bending fatigue test was conducted. The results are shown in FIG. Note that the broken line in FIG. 7 is the result for the normal carburized material C3. From Figure 7,
It can be seen that when treated by the method of the present invention, the fatigue strength is significantly improved by 4°.

発明の効果 以上のように、本発明の方法は、浸炭焼入れ後に低温焼
戻し処理を施した動力伝達用構成部品に特定の条件でシ
ョットピーニングを施すものであり、浸炭焼入れによっ
て表面層の炭素濃度が晶く表面硬さも高くなることから
、素材として高価な高合金鋼を使用する必要がなく、ま
た150〜2008Cの低温で焼戻し処理を施した後、
室温で特定の条件でショットピーニング1lifことか
ら、浸炭中に生成した約20μm程度の表面異常層の硬
さの低下を補ない、約150μm程度までの表面近傍の
硬さ、圧縮残留応力を増加させ、また浸炭焼入れの際に
生じた残留オーステナイトを減少させ、表面からの疲労
亀裂の発生を抑制でき、それによって顕著な疲労強度の
向上が図れる。また、ショットピーニングを用いるから
複雑な形状のものにも容易に適用することができる。
Effects of the Invention As described above, the method of the present invention applies shot peening under specific conditions to power transmission components that have been carburized and quenched and then tempered at a low temperature. Since the crystallized surface hardness increases, there is no need to use expensive high alloy steel as a material, and after tempering at a low temperature of 150 to 2008C,
Since shot peening is carried out for 1 life at room temperature under specific conditions, it compensates for the decrease in hardness of the surface abnormal layer of about 20 μm generated during carburizing, and increases the hardness and compressive residual stress near the surface up to about 150 μm. In addition, it is possible to reduce residual austenite generated during carburizing and quenching, suppress the occurrence of fatigue cracks from the surface, and thereby significantly improve fatigue strength. Furthermore, since shot peening is used, it can be easily applied to objects with complex shapes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種処理材の圧縮残留応力の分布を示すグラフ
、第2図は本発明の方法によって処理した処理材の硬さ
分布を示すグラフ、第3図は残留オーステナイト量の分
布を示すグラフ、第4図は圧縮残留応力の分布を示すグ
ラフ、第5図は投射時間と疲労強度の関係を示すグラフ
、第6図は投射速度と加工深さの関係を示すグラフ、第
7図は各種処理材の回転曲げ疲労試験結果を示すグラフ
である。 第1図 第2図 第3図 第4図 J 111ttう4[ttPm+ 第5図 喀 第6図 Jlf16”う/)’J!” (J”’)第7図 練工1(しず欠 (ロ)
Figure 1 is a graph showing the distribution of compressive residual stress of various treated materials, Figure 2 is a graph showing the hardness distribution of treated materials treated by the method of the present invention, and Figure 3 is a graph showing the distribution of retained austenite amount. , Figure 4 is a graph showing the distribution of compressive residual stress, Figure 5 is a graph showing the relationship between blasting time and fatigue strength, Figure 6 is a graph showing the relationship between blasting speed and machining depth, and Figure 7 is a graph showing the relationship between blasting time and fatigue strength. 2 is a graph showing the results of a rotating bending fatigue test of treated materials. Fig. 1 Fig. 2 Fig. 3 Fig. 4 B)

Claims (1)

【特許請求の範囲】[Claims] 浸炭焼入れ後に150〜200°Cの低温で焼戻し処理
を施した動力伝達用構成部品に、ショット径0.3〜+
、Omm、投射時間5〜40分、投射速度35〜5 、
Q m/sの条件でショットピーニングを施すことを特
徴とする動力伝達用構成部品の疲労強度向上法。
Shot diameters of 0.3 to +
, Omm, projection time 5-40 minutes, projection speed 35-5,
A method for improving the fatigue strength of power transmission components, characterized by performing shot peening under conditions of Q m/s.
JP7299784A 1984-04-13 1984-04-13 Improvement of fatigue strength of structural parts for power transmission Pending JPS60218422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7299784A JPS60218422A (en) 1984-04-13 1984-04-13 Improvement of fatigue strength of structural parts for power transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7299784A JPS60218422A (en) 1984-04-13 1984-04-13 Improvement of fatigue strength of structural parts for power transmission

Publications (1)

Publication Number Publication Date
JPS60218422A true JPS60218422A (en) 1985-11-01

Family

ID=13505564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7299784A Pending JPS60218422A (en) 1984-04-13 1984-04-13 Improvement of fatigue strength of structural parts for power transmission

Country Status (1)

Country Link
JP (1) JPS60218422A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196322A (en) * 1986-02-20 1987-08-29 Sumitomo Metal Ind Ltd Manufacture of parts for mechanical structure
JPS62253722A (en) * 1986-04-25 1987-11-05 Mazda Motor Corp Production of gear
JPS63227791A (en) * 1987-03-16 1988-09-22 Mazda Motor Corp Surface treatment for steel member
US5816088A (en) * 1996-04-15 1998-10-06 Suncall Corporation Surface treatment method for a steel workpiece using high speed shot peening

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196322A (en) * 1986-02-20 1987-08-29 Sumitomo Metal Ind Ltd Manufacture of parts for mechanical structure
JPS62253722A (en) * 1986-04-25 1987-11-05 Mazda Motor Corp Production of gear
JPS63227791A (en) * 1987-03-16 1988-09-22 Mazda Motor Corp Surface treatment for steel member
US5816088A (en) * 1996-04-15 1998-10-06 Suncall Corporation Surface treatment method for a steel workpiece using high speed shot peening

Similar Documents

Publication Publication Date Title
US3885995A (en) Process for carburizing high alloy steels
JPH0288714A (en) Manufacture of steel member
US3117041A (en) Heat treated steel article
JP3006034B2 (en) High strength mechanical structural members with excellent surface pressure strength
JP3321862B2 (en) Outer race for constant velocity joints
JP2001065576A (en) Bearing part material
JPS60218422A (en) Improvement of fatigue strength of structural parts for power transmission
US3216869A (en) Method of heat treating steel
JPS60218423A (en) Improvement of fatigue strength of structural parts for power transmission
JPH02149616A (en) Manufacture of nitrided steel member
JPS6179719A (en) Thermo-mechanical treatment
JP4114901B2 (en) Integral connecting rod for internal combustion engine and manufacturing method of integrated connecting rod for internal combustion engine
JP3303171B2 (en) Manufacturing method of steel for bearing race
JP4198268B2 (en) Iron alloy parts
JPS60162727A (en) Mechanical heat treating method
JPH02294462A (en) Carburizing quenching method for steel member
JPH0324258A (en) Surface hardening treatment of carburized steel parts
JP3283900B2 (en) Heat treatment method for strengthening steel
JPH0754050A (en) High strength gear excellent in root of tooth bending fatigue strength and tooth surface pitching resistance and manufacture therefor
JP2003055711A (en) Surface treatment method for steel member, and hardened component thereof
JPS62253722A (en) Production of gear
JPS60155618A (en) Method for improving fatigue strength of carburized and hardened member having notch
JPS6270512A (en) Surface hardening method for carburized product
JPS6393821A (en) Improvement of fatigue strength of soft-nitrided product
JPS62185826A (en) Production of high-strength gear