JPS60215576A - Manufacture of sialon sintered body - Google Patents

Manufacture of sialon sintered body

Info

Publication number
JPS60215576A
JPS60215576A JP59070655A JP7065584A JPS60215576A JP S60215576 A JPS60215576 A JP S60215576A JP 59070655 A JP59070655 A JP 59070655A JP 7065584 A JP7065584 A JP 7065584A JP S60215576 A JPS60215576 A JP S60215576A
Authority
JP
Japan
Prior art keywords
volume
sintered body
silicon
silicon nitride
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59070655A
Other languages
Japanese (ja)
Other versions
JPS6337073B2 (en
Inventor
信彦 渡辺
順治 田中
高志 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP59070655A priority Critical patent/JPS60215576A/en
Publication of JPS60215576A publication Critical patent/JPS60215576A/en
Publication of JPS6337073B2 publication Critical patent/JPS6337073B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はサイアロン焼結体の製造方法に関し、更に詳し
くは同一出願人の特許[1358−122747号の改
良に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a sialon sintered body, and more particularly to an improvement of patent [1358-122747] of the same applicant.

特願昭58−122747号の製造方法は珪素と窒化珪
素との含量が80体積%以下で、アルミナ10〜35体
積%、マグネシアO〜15体積%からなる籾未混合物を
成形し、この成形体を非酸化性含窒素雰囲気において1
500〜1800℃で焼成してサイアロン焼結体を得る
ものである。
The manufacturing method disclosed in Japanese Patent Application No. 58-122747 involves molding an unmixed rice mixture containing 80% by volume or less of silicon and silicon nitride, 10 to 35% by volume of alumina, and 15% to 15% by volume of magnesia O. 1 in a non-oxidizing nitrogen-containing atmosphere
A sialon sintered body is obtained by firing at 500 to 1800°C.

即ち、この製造方法は5LSL3N4 AQ203系の
サイアロン焼結体及び5L−SL3N4−八ρ203−
MgO系のサイアロン焼結体の製造方法を包含している
ものである。
That is, this manufacturing method uses 5LSL3N4 AQ203-based sialon sintered body and 5L-SL3N4-8ρ203-
This includes a method for producing an MgO-based sialon sintered body.

ところが、この方法は量産においていくつかの問題を含
んでいる。
However, this method involves several problems in mass production.

第1の、5L−SL3N4 #203系のサイアロン焼
結体の場合には緻密質焼結体を得るのに、1700℃以
上の焼成温度が必要で、そのため炉材の消耗が激しいこ
と、焼成炉が高価となることに、量産上問題がある。
In the case of the first 5L-SL3N4 #203 series sialon sintered body, a firing temperature of 1700°C or higher is required to obtain a dense sintered body, which causes severe consumption of the furnace material. There is a problem in mass production because it is expensive.

第2の、5L−3L3N4 Ad203−−○系のサイ
アロン焼結体の場合にはMgOの作用により緻密化温度
を1650℃以下に低下でき、上記問題は解消できるが
、マグネシウム塩を用いるため、鋳込成形を行なう場合
泥漿性質が不安定になる問題がある。即ちマグネシウム
塩を加えるために鋳込成形においては泥漿の解膠が不安
定になり、重要な高密度の成形体を再現性よく得ること
ができない。
In the case of the second sialon sintered body of 5L-3L3N4 Ad203--○ system, the densification temperature can be lowered to 1650°C or less by the action of MgO, and the above problem can be solved, but since magnesium salt is used, When molding is performed, there is a problem that the properties of the slurry become unstable. That is, the peptization of the slurry becomes unstable during cast molding due to the addition of magnesium salt, making it impossible to obtain an important high-density molded body with good reproducibility.

泥漿の解膠には可溶性塩類が重要で、特にCa2+イオ
ン、Mg2+イオンは泥漿を凝集させる効果が大きい。
Soluble salts are important for peptizing the slurry, and in particular, Ca2+ ions and Mg2+ ions have a great effect on flocculating the slurry.

この為、焼結助剤として−0を用いる場合には一化合物
で溶M一度が小さくまた化合物中の1の割合が多い点か
らMa(OH)2が多く用いられている。しかしMa(
OH)2は空気中のCO2ガスを吸収して炭酸塩を生成
し易く、炭酸塩は水に若干溶解する為、泥漿性質にバラ
付きが生じ常時安定した鋳込成形体を得ることができな
い。
For this reason, when -0 is used as a sintering aid, Ma(OH)2 is often used because it has a small dissolved M in one compound and has a large proportion of 1 in the compound. However, Ma(
OH)2 easily absorbs CO2 gas in the air and generates carbonates, and carbonates are slightly soluble in water, resulting in variations in slurry properties and making it impossible to obtain consistently stable castings.

本発明者は、前記製造方法の改良を鋭意研究した結果、
1%塩の代りにZrO2(ジルコニア)を用いるならば
、緻密化温度を1650℃以下に低下できると共に、泥
漿性質を安定化できそれによって問題が解決できること
を見出した。
As a result of intensive research into improving the manufacturing method, the present inventor found that
It has been found that if ZrO2 (zirconia) is used instead of 1% salt, the densification temperature can be lowered to below 1650°C, and the properties of the slurry can be stabilized, thereby solving the problem.

さらにMa塩をZrO2に代えることにより、さらに優
れた焼結体性質が得られることを見出しIこ 。
Furthermore, we discovered that even better properties of the sintered body could be obtained by replacing Ma salt with ZrO2.

即ち、本発明は珪素と窒化珪素との含量が90体積%以
下で、アルミナ10〜35体積%、ジルコニア0.5〜
5体積%からなる粉末混合物を成形し、この成形体を非
酸化性含窒素雰囲気で1500〜1700’C:で焼成
してサイアロン焼結体を得ることを特徴とするものであ
る。
That is, in the present invention, the content of silicon and silicon nitride is 90% by volume or less, alumina is 10-35% by volume, and zirconia is 0.5-35% by volume.
The method is characterized in that a powder mixture consisting of 5% by volume is molded and the molded body is fired at 1500 to 1700'C in a non-oxidizing nitrogen-containing atmosphere to obtain a sialon sintered body.

以下、本発明を説明する。The present invention will be explained below.

本発明において窒化珪素の混合惜は珪素との含量に対し
て10〜80体積%が必要である。
In the present invention, it is necessary to mix silicon nitride in an amount of 10 to 80% by volume based on the content of silicon.

窒化珪素量が増大するにしたがって窒化反応は容易にな
り焼成時間が短縮できるが、反面焼成収縮が増大し焼結
体の寸法精度が悪くなることし、焼結体中にX相など望
ましくない結晶相が増大し、物性が低下すること、原料
コストが上昇することなどの欠点を起因せしめるからで
ある。
As the amount of silicon nitride increases, the nitriding reaction becomes easier and the firing time can be shortened, but on the other hand, the firing shrinkage increases, the dimensional accuracy of the sintered body deteriorates, and undesirable crystals such as X phase are formed in the sintered body. This is because it causes disadvantages such as an increase in phases, a decrease in physical properties, and an increase in raw material cost.

3− また、アルミナはフィラーとしてSLの窒化を容易にす
ると共に、生成した5L3N4、混合した5L3N4 
と反応してサイアロンを生成する。
3- In addition, alumina acts as a filler to facilitate the nitriding of SL, and the generated 5L3N4 and mixed 5L3N4
Reacts with to produce Sialon.

その添加量が10〜35体積5混合せしめる理由は窒化
反応を容易にし焼成時間の短縮化を図るフィラーとして
機能するも35体積%以上では焼成体中にX相が多量に
存在するようになり、物性上好ましくなく、10体積%
以下ではフィラーとしての効果が不足で珪素の窒化が均
一に生じにくく、焼成素地中に珪素の凝集領域が存在し
たり、空洞が発生するからである。
The reason why it is mixed in an amount of 10 to 35 volume 5 is that it functions as a filler to facilitate the nitriding reaction and shorten the firing time, but if it exceeds 35 volume %, a large amount of X phase will exist in the fired product. Unfavorable in terms of physical properties, 10% by volume
This is because the effect as a filler is insufficient and silicon nitridation is difficult to occur uniformly, resulting in the presence of silicon agglomeration regions or cavities in the fired base.

ジルコニア(Zl’ 02 )は緻密化温度を1650
℃以下に低下させると共に鋳込成形において泥漿の性質
を安定化する性質がある。この理由はzr 02が水に
対して不溶であるからであり、そ″の添加量は0.5〜
5体積%、望ましくは1〜3体積%が適当である。0.
5体積%以下では緻密化温度が低下せず、5体積%以上
では焼結体中に多量のZr 02 、Zr Nが存在す
るようになり、焼結体強度が低下する。
Zirconia (Zl' 02) has a densification temperature of 1650
It has the property of lowering the temperature below ℃ and stabilizing the properties of the slurry during casting. The reason for this is that zr02 is insoluble in water, and the amount added is 0.5~
A suitable amount is 5% by volume, preferably 1 to 3% by volume. 0.
If it is less than 5% by volume, the densification temperature will not be lowered, and if it is more than 5% by volume, a large amount of Zr 02 and Zr N will be present in the sintered body, resulting in a decrease in the strength of the sintered body.

4− Mg塩の代りにZr 02を用いることは上記の如く鋳
込泥漿を安定化させるだけでなく、さらに高温強度、耐
クリープ性、耐酸化性、耐酸耐アルカリ性を向上させる
効果がある。したがって本発明は鋳込成形に有用である
だけでなく、プレス成形、押出し成形、射出成形などの
他の成形法に用いても効果がある。
4- Using Zr 02 instead of Mg salt not only stabilizes the casting slurry as described above, but also has the effect of improving high temperature strength, creep resistance, oxidation resistance, and acid and alkali resistance. Therefore, the present invention is not only useful for cast molding, but also effective for use in other molding methods such as press molding, extrusion molding, and injection molding.

而して、本発明は先ず、合量で90体積%以下の珪素及
び窒化珪素、10〜35体積%のアルミナ、0.5〜5
体積%のジルコニアを十分に混合し、必要であればこれ
を粉砕する。
Therefore, the present invention first includes silicon and silicon nitride in a total amount of 90% by volume or less, 10 to 35% by volume of alumina, and 0.5 to 5% by volume.
Thoroughly mix the volume percent zirconia and grind it if necessary.

粉砕にはアルミナボールを用い、乾式粉砕あるいは湿式
粉砕を行なう。湿式粉砕では珪素が水と反応して水素ガ
スを発生する為、アルコール、ベンゼン、トルエンなど
の有機溶媒の使用が望ましい。得られた微粒混合粉末に
、および解膠剤を加えて鋳込成形可能な泥漿とし、この
泥漿を用いて成形を行なう。
Alumina balls are used for pulverization, and dry pulverization or wet pulverization is performed. In wet grinding, silicon reacts with water to generate hydrogen gas, so it is desirable to use an organic solvent such as alcohol, benzene, or toluene. A peptizing agent is added to the resulting fine mixed powder to form a slurry that can be cast, and this slurry is used to perform molding.

乾燥した成形体は、炉内に入れ、窒素又は窒素と水素と
の混合ガス、アンモニアガスなどの非酸化性含窒素雰囲
気で1150〜1400℃間を徐々に温度を昇温させて
窒化焼成する。
The dried compact is placed in a furnace and nitrided by gradually increasing the temperature from 1150 to 1400° C. in a non-oxidizing nitrogen-containing atmosphere such as nitrogen, a mixed gas of nitrogen and hydrogen, or ammonia gas.

1150〜1400℃での処理時間は肉厚によって変化
するが、2〜20時間が適当である。
The processing time at 1150 to 1400°C varies depending on the wall thickness, but 2 to 20 hours is appropriate.

成形体は炉中でそのまま更に昇温させ、1500〜17
00℃で焼結させる。窒化過程で生成した窒化珪素とア
ルミナとの反応は1500℃以上ではじまり、β′サイ
アロン相が形成され、成形体は緻密化する。
The molded body is further heated in the furnace to a temperature of 1500 to 17
Sinter at 00°C. The reaction between silicon nitride produced in the nitriding process and alumina begins at 1500°C or higher, a β'sialon phase is formed, and the compact becomes dense.

この際、窒化珪素あるいはβ′サイアロン相の熱分解に
よる重量損失をおさえる為、成形体を窒化珪素粉体中に
埋設して使用するのが好ましい。
At this time, in order to suppress weight loss due to thermal decomposition of the silicon nitride or β' sialon phase, it is preferable to use the compact by embedding it in the silicon nitride powder.

次に本発明の理解を高める為、実施例ついて説明する。Next, in order to enhance the understanding of the present invention, examples will be described.

(実施例■) 市販の金属珪素53.3体積%、窒化珪素21.2体積
%、アルミナ25.5体積%からなる粉体混合物に市販
のZr0z(試薬)を下表のように配合し、各種温度で
焼成し、緻密化温度とその時の物性を測定した。
(Example ■) Commercially available Zr0z (reagent) was mixed as shown in the table below to a powder mixture consisting of commercially available metal silicon 53.3% by volume, silicon nitride 21.2% by volume, and alumina 25.5% by volume, It was fired at various temperatures, and the densification temperature and physical properties at that time were measured.

これによると、ZrO2(ジルコニア)が0%の場合に
は緻密化温度が1700℃を越し、10体積%の場合に
は曲げ強度が著しく低下することが裏付けされ、その中
間の添加量の場合には緻密化温度を1650℃まで低下
できること、優れた強度が得られることが認められた。
According to this, it is confirmed that when ZrO2 (zirconia) is 0%, the densification temperature exceeds 1700°C, and when ZrO2 (zirconia) is 10% by volume, the bending strength is significantly reduced. It was recognized that the densification temperature could be lowered to 1650°C and that excellent strength could be obtained.

(実施例■) 金属珪素52.8体積%、窒化珪素21.0体積%、ア
ルミナ25.2体積%、ジルコニア1体積%を調合し、
鋳込成形後焼成して1650℃で1時間保持して焼結さ
せた本発明のものと、金属珪素51.6体積%、窒化珪
素20.67一 体積%、アルミナ24.1体積%、水酸化マグネシウム
3.8体積%を調合し、同様に焼結させた従来例のもの
の高温特性を下記のグラフ族に示した。
(Example ■) 52.8% by volume of silicon metal, 21.0% by volume of silicon nitride, 25.2% by volume of alumina, and 1% by volume of zirconia,
The present invention which was cast and then fired and held at 1650°C for 1 hour and sintered, 51.6% by volume of metal silicon, 20.67% by volume of silicon nitride, 24.1% by volume of alumina, and water. The high-temperature characteristics of a conventional example prepared with 3.8 volume % of magnesium oxide and sintered in the same manner are shown in the graph group below.

また、2種の素地について、空気中1200℃で加熱し
た場合の耐酸化性、および40%鴎0日水溶液中で煮沸
した場合の耐アルカリ性を比較したところZr 02を
用いた焼結体が優れていることがわかった。
In addition, when two types of substrates were compared in terms of oxidation resistance when heated in air at 1200°C and alkali resistance when boiled in a 40% aqueous solution, the sintered body using Zr02 was superior. I found out that

8− (実施例■) 実施例■の2種の素地についてロットが異なる多数の泥
漿による鋳込成形体の粒子充填率を測定した結果は下記
のグラフ族の通りである。
8- (Example ■) The results of measuring the particle filling rate of the cast molded body using a large number of slurries from different lots for the two types of substrates of Example ■ are as shown in the graph group below.

/23Q倉(91)?z6#Iza〜lμzj−外iξ
口V)− Mq(OH,)2を用いた従来泥漿の鋳込成形品は粒子
充填率が著しく変動し量産上問題があるが、7rO2を
用いた本発明の成形品では安定した粒子充填率の得られ
ることが示された。
/23Q Kura (91)? z6#Iza~lμzz-outside iξ
V) - Conventional slurry cast molded products using Mq(OH,)2 have a problem in mass production because the particle filling rate fluctuates significantly, but the molded product of the present invention using 7rO2 has a stable particle filling rate. It was shown that it was possible to obtain

これによると焼結助剤にMg(OH)zを用いた場合に
は高温での強度低下が大きく、1300°Cでの強度は
室温強度の35%程度にまで低下してしまうが、Zr 
02を用いた場合には室温強度はMg(OH)2添加の
場合と同じながら1300℃まで殆んど強度の低下が見
られず、優れた高温特性が得られる。
According to this, when Mg(OH)z is used as a sintering aid, the strength decreases significantly at high temperatures, and the strength at 1300°C decreases to about 35% of the room temperature strength.
When using 02, the room temperature strength is the same as when Mg(OH)2 is added, but there is almost no decrease in strength up to 1300°C, and excellent high temperature properties are obtained.

以上、実施例で明らかなように本発明により鋳込成形時
の泥漿の解膠が安定で高密度の鋳込成形体が再現性良く
得ることができること、焼成温度の低下により、焼成の
低減を期待できること高温強度、耐酸化性・耐食性など
の焼結体性質の向上がはかれることから工業原料として
豊富な金属珪素、窒化珪素、アルミナを用いて特願昭5
8−122747号の方法に比べ、より優れた焼結体を
より安価に、より安定して量産することが可能になる。
As is clear from the examples above, according to the present invention, a cast body with stable peptization of slurry during cast molding and high density can be obtained with good reproducibility, and by lowering the firing temperature, the firing can be reduced. What can be expected Since the properties of sintered bodies such as high-temperature strength, oxidation resistance, and corrosion resistance can be improved, a patent application was made in 1973 using metal silicon, silicon nitride, and alumina, which are abundant as industrial raw materials.
Compared to the method of No. 8-122747, it becomes possible to mass-produce better sintered bodies at a lower cost and more stably.

特許出願人 東陶機器株式会社 手続ネ1n正書 昭和59年 8月zb日 1、事件の表示 昭和59年特許願第70655号 2、発明の名称 氏名(名称) (AO8)東陶機器株式会社昭和 年 
月 日 6、補正の対象 明細書の発明の詳細な説明の欄 11− 補 正 書 (1) 明細書第4頁第16行目乃至第17行目の「・
・・ことし、・・・」を1・・・こと、・・・」に補正
する。
Patent Applicant Toto Kiki Co., Ltd. Procedure No. 1 n Official Book August zb, 1981 1, Indication of Case Patent Application No. 70655, 1988 2, Name of Invention Name (Name) (AO8) Toto Kiki Co., Ltd. Showa year
Month, Day 6, Column 11 of Detailed Description of the Invention of the Specification Subject to Amendment - Amendment (1) "・
Correct "...this year..." to "1...this year...".

(2) 明細書第5頁第4行目の「・・・体積5・・・
」を[・・・体積%・・・]に補正する。
(2) “...Volume 5...” on page 5, line 4 of the specification
" is corrected to [...volume%...].

(3) 明細書第6頁第15行目の「・・・に、および
」を「・・・に水および」に補正する。
(3) "...ni, and" on page 6, line 15 of the specification is amended to "...ni, water and".

(4) 明細書第9頁第1行目乃至第11頁第12行目
の[体積・・・になる。]を下記の如く補正する。
(4) [Volume...] from page 9, line 1 to page 11, line 12 of the specification. ] is corrected as follows.

[体積%、アルミナ24.1体積%、水酸化マグネシウ
ム3.8体積%を調合し、同様に焼結させた従来例のも
のの高温特性を下記のグラフに示した。
The graph below shows the high temperature characteristics of a conventional example in which 24.1 volume % of alumina and 3.8 volume % of magnesium hydroxide were mixed and sintered in the same manner.

 1− 7、補正の内容 別紙の通り これによると焼結助剤にt%x(OH)zを用いた場合
には高温での強度低下が大きく、1300℃での強度は
室温強度の35%程度にまで低下してしまうが、ZrO
2を用いた場合には室温強度はl’に+(OH)2添加
の場合と同じながら1300℃まで殆んど強度の低下が
見られず、優れた高温特性が得られる。
1-7. Details of the correction As shown in the attached sheet, according to this, when t%x(OH)z is used as a sintering aid, the strength decreases significantly at high temperatures, and the strength at 1300℃ is 35% of the room temperature strength. However, ZrO
When using 2, the room temperature strength is the same as when +(OH)2 is added to l', but there is almost no decrease in strength up to 1300°C, and excellent high temperature properties are obtained.

ま′た、2種の素地について、空気中1200℃で加熱
した場合の耐酸化性、および40%賜−2− 01−1水溶液中で煮沸した場合の耐アルカリ性を比較
したところZr 02を用いた焼結体が優れていること
がわかった。
In addition, we compared the oxidation resistance when heated in air at 1200°C and the alkali resistance when boiled in a 40% aqueous solution of Zr 02 for two types of substrates. The sintered body was found to be superior.

(実施例■) 実施例Hの2種の素地についてロットが異なる多数の泥
漿による鋳込成形体の粒子充填率を測定した結果は下記
のグラフ表の通りである。
(Example ■) The results of measuring the particle filling rate of the cast molded body using a large number of slurries from different lots for the two types of substrates of Example H are shown in the graph table below.

コ5厄檗D −y ’p ffi(OH)2を用いた従来泥漿の鋳込成形品は粒子
充填率が著しく変動し量産上問題があるが、7rO2を
用いた本発明の成形品では安定した粒子充填率の得られ
ることが示された。
Conventional slurry cast molded products using D-y 'p ffi(OH)2 have a problem in mass production due to significant fluctuations in particle filling ratio, but the molded products of the present invention using 7rO2 are stable. It was shown that it is possible to obtain a particle filling rate of

以上、実施例で明らかなように本発明により鋳込成形時
の泥漿の解膠が安定で高密度の鋳込成形体が再現性良く
得ることができること、焼成温度の低下にJ:す、焼成
費の低減を期待できること、高温強度、耐酸化性・耐食
性などの焼結体性質の向上がはかれることから工業原料
として豊富な金属珪素、窒化珪素、アルミナを用いて特
願昭58−122747号の方法に比べ、より優れた焼
結体をより安価に、より安定して量産することが可能に
なる。」 特許出願人 東陶機器株式会社
As is clear from the examples above, according to the present invention, it is possible to obtain a cast molded body with stable peptization of slurry during cast molding and high density with good reproducibility, and that the firing temperature can be lowered. Patent Application No. 122,747/1982 uses metallic silicon, silicon nitride, and alumina, which are abundant as industrial raw materials, because they can be expected to reduce costs and improve the properties of sintered bodies such as high-temperature strength, oxidation resistance, and corrosion resistance. Compared to conventional methods, it is possible to mass-produce superior sintered bodies at a lower cost and more stably. ” Patent applicant: Totokiki Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)珪素と窒化珪素との含量が90体積%以下で、ア
ルミナ10〜35体積%、ジルコニア0.5〜5体積%
からなる粉末混合物を成形し、この成形体を非酸化性含
窒素雰囲気において1500〜1700℃で焼成して焼
結体を得ることを特徴とするサイアロン焼結体の製造方
法。
(1) The content of silicon and silicon nitride is 90% by volume or less, alumina 10-35% by volume, zirconia 0.5-5% by volume
1. A method for producing a sialon sintered body, which comprises molding a powder mixture consisting of the following: and firing the molded body at 1500 to 1700°C in a non-oxidizing nitrogen-containing atmosphere to obtain a sintered body.
(2)上記珪素と窒化珪素との混合割合が珪素90〜2
0体積%、窒化珪素10〜80体積%である前記特許請
求の範囲第1項記載のサイアロン焼結体の製造方法。
(2) The mixing ratio of the silicon and silicon nitride is silicon 90-2
The method for producing a sialon sintered body according to claim 1, wherein the content is 0% by volume and 10 to 80% by volume of silicon nitride.
JP59070655A 1984-04-07 1984-04-07 Manufacture of sialon sintered body Granted JPS60215576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59070655A JPS60215576A (en) 1984-04-07 1984-04-07 Manufacture of sialon sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59070655A JPS60215576A (en) 1984-04-07 1984-04-07 Manufacture of sialon sintered body

Publications (2)

Publication Number Publication Date
JPS60215576A true JPS60215576A (en) 1985-10-28
JPS6337073B2 JPS6337073B2 (en) 1988-07-22

Family

ID=13437882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59070655A Granted JPS60215576A (en) 1984-04-07 1984-04-07 Manufacture of sialon sintered body

Country Status (1)

Country Link
JP (1) JPS60215576A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308561A (en) * 1991-01-30 1994-05-03 Bayer Ag Process for production of a Si3 N4, based material
CN108840687A (en) * 2018-07-26 2018-11-20 深圳市东川技术研究有限公司 A kind of high-intensitive sintering process for matching grand new material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993004997A1 (en) * 1991-09-04 1993-03-18 Shinagawa Refractories Co., Ltd. HIGHLY CORROSION-RESISTANT α-SIALON SINTER AND PRODUCTION THEREOF

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308561A (en) * 1991-01-30 1994-05-03 Bayer Ag Process for production of a Si3 N4, based material
CN108840687A (en) * 2018-07-26 2018-11-20 深圳市东川技术研究有限公司 A kind of high-intensitive sintering process for matching grand new material

Also Published As

Publication number Publication date
JPS6337073B2 (en) 1988-07-22

Similar Documents

Publication Publication Date Title
JPS60215576A (en) Manufacture of sialon sintered body
JPS5864269A (en) Silicon nitride sintered body and manufacture
JPS6077174A (en) Manufacture of silicon nitride sintered body
JPS5891065A (en) Manufacture of silicon carbide ceramic sintered body
JP2845983B2 (en) Boron nitride powder
JPS61101465A (en) Manufacture of silicon nitride bonded silicon carbide sintered body
JPS62123070A (en) Manufacture of boron nitride base sintered body
JPS5891059A (en) Composite ceramic sintered body and manufacture
JPH06279124A (en) Production of silicon nitride sintered compact
JPH01264914A (en) Production of aluminum nitride powder and powder composition
JPH0283265A (en) Production of silicon nitride
JPS6256368A (en) Manufacture of silicon carbide sintered body
JPH01157467A (en) Silicon nitride powder
JPS61155209A (en) Preparation of easily sinterable aluminum nitride powder
JPS6126558A (en) Manufacture of thermal shock resistant alumina ceramic
JPS6270267A (en) Producton of silicon nitride sintered body
JPS6016870A (en) Manufacture of sialon sintered body
JPS63236765A (en) Aluminum nitride sintered body
JPS623076A (en) Manufacture of silicon nitride base sintered body
JPS6126566A (en) Method of sintering sic composite body
JPS6229365B2 (en)
JPS62108776A (en) Manufacture of tough sialon
JPH0575716B2 (en)
JPS62241876A (en) Silicon nitride sintered body and manufacture
JPS6212669A (en) Sintered body whose surface is titanium oxide and inside is titanium oxynitirde