JPS60215572A - Manufacture of magnesia partially stabilized zirconia - Google Patents

Manufacture of magnesia partially stabilized zirconia

Info

Publication number
JPS60215572A
JPS60215572A JP59072181A JP7218184A JPS60215572A JP S60215572 A JPS60215572 A JP S60215572A JP 59072181 A JP59072181 A JP 59072181A JP 7218184 A JP7218184 A JP 7218184A JP S60215572 A JPS60215572 A JP S60215572A
Authority
JP
Japan
Prior art keywords
magnesia
zirconia
powder
raw material
partially stabilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59072181A
Other languages
Japanese (ja)
Inventor
豊和 松山
正人 斎藤
布施木 得雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP59072181A priority Critical patent/JPS60215572A/en
Publication of JPS60215572A publication Critical patent/JPS60215572A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はマグネシア部分安定化ジルコニアの製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing magnesia partially stabilized zirconia.

従来、マグネシア部分安定化ジルコニアは高純度(S 
i 020.03wt%以下)で、微細な(一般的には
平均粒径0.7gm以下の)原料粉を用い、これを焙焼
した後粉砕し、更に成形し、高温で焼成することにより
製造されている。
Conventionally, magnesia partially stabilized zirconia has a high purity (S
i020.03wt% or less) and fine (generally average particle size of 0.7gm or less) raw material powder, which is roasted, then crushed, further shaped, and then baked at a high temperature. has been done.

しかし、高純度で微細な原料粉を用いるため、高価にな
り、原料粉、焙焼粉の粉砕に時間がかかる等工業的な制
約が多く、成形時の取扱いも困難である。また、十分な
強度を得るためには、焼結後急冷し、時効を必要とする
ため焼成操作が複雑になっている。
However, since high-purity and fine raw material powder is used, it is expensive, has many industrial restrictions such as the time it takes to grind the raw material powder and roasted powder, and is difficult to handle during molding. Furthermore, in order to obtain sufficient strength, the sintering process is complicated because it requires rapid cooling and aging after sintering.

本発明は上記事情に鑑みてなされたものであり、高純度
で微細な原料粉を用いたり、時効処理を施したりしなく
ても、十分な強度を有するマグネシア部分安定化ジルコ
ニアを製造し得る方法を提供しようとするものである。
The present invention has been made in view of the above circumstances, and provides a method for producing magnesia partially stabilized zirconia having sufficient strength without using high-purity, fine raw material powder or without aging treatment. This is what we are trying to provide.

すなわち、本発明のマグネシア部分安定化ジルコニアの
製造方法は、平均粒径0.8〜10pmのジルコニア原
料粉とマグネシア原料粉とをマグネシア含有率が8〜1
3mo1%となるように乾式又は湿式混合し焙焼した後
、平均粒径が0.8〜1゜#Lmとなるように粉砕し、
更に成形し、1450〜1750℃で焼成した後、炉冷
することを特徴とするものである。
That is, in the method for producing magnesia partially stabilized zirconia of the present invention, a zirconia raw material powder with an average particle size of 0.8 to 10 pm and a magnesia raw material powder are mixed with a magnesia content of 8 to 1.
After dry or wet mixing and roasting to a concentration of 3 mo1%, pulverization to an average particle size of 0.8 to 1° #Lm,
It is characterized in that it is further molded, fired at 1450 to 1750°C, and then cooled in a furnace.

このような方法によれば、粗粒を用い、焼成後の時効処
理が不要となるにもかかわらず、従来と同程度の強度を
有するマグネシア部分安定化ジルコニアを製造すること
ができ、工業的な制約の減少、取扱いの容易さ、焼成操
作の簡便化などの効果を得ることができる。
According to this method, it is possible to produce magnesia partially stabilized zirconia having the same strength as conventional methods, even though coarse particles are used and aging treatment after firing is not required. Effects such as reduced restrictions, ease of handling, and simplified firing operation can be obtained.

本発明において、原料粉の平均粒径を0.8〜LO11
,mの範囲に限定したのは、上記範囲を逸脱すると、焼
結体の強度が低下するためである。
In the present invention, the average particle size of the raw material powder is 0.8 to LO11.
, m because the strength of the sintered body decreases if it deviates from the above range.

また、本発明において、ジルコニア原料粉とマグネシア
原料粉とをマグネシア含有率が8〜13IIloI%と
なるように混合するのは、上記範囲を逸脱すると、単斜
晶相の多い結晶組成となり、やはり焼結体の強度が減少
するためである。
In addition, in the present invention, the zirconia raw material powder and the magnesia raw material powder are mixed so that the magnesia content is 8 to 13IIloI%. If the above range is exceeded, the crystal composition will be rich in monoclinic phase, which will also result in sintering. This is because the strength of the solid body decreases.

また、本発明において、成形体を1450〜1750 
’Cの焼成温度で焼成するのは、焼成温度が上記範囲を
逸脱すると、やはり焼結体の強度が低下するためである
In addition, in the present invention, the molded body has a temperature of 1450 to 1750
The reason for firing at a firing temperature of 'C' is that if the firing temperature deviates from the above range, the strength of the sintered body will decrease.

なお、本発明においてジルコこア原料粉としては高純度
ジルコニア粉又は低純度バデライト粉のいずれを用いて
もよい。
In the present invention, the zirconia raw material powder may be either high-purity zirconia powder or low-purity baddellite powder.

また、マグネシア原料粉としては高純度マグネシア−ジ
ルコニア共沈粉又は低純度の塩基性炭酸マグネシウムも
しくは′@酸マグネシウムのいずれを用いてもよい。
Further, as the magnesia raw material powder, either high-purity magnesia-zirconia co-precipitated powder or low-purity basic magnesium carbonate or magnesium chloride may be used.

これらの原料粉のほかに第3成分として例えばアルミナ
を添加してもよい。
In addition to these raw material powders, for example, alumina may be added as a third component.

これら原料粉の焙焼条件は700〜1300’0で0.
5〜5時間であることが望ましい。また、成形体の焼成
時間は1〜10時間であることが望ましい。
The roasting conditions for these raw material powders are 700 to 1300'0.
It is desirable that the time be 5 to 5 hours. Moreover, the baking time of the molded body is preferably 1 to 10 hours.

このような方法により製造されるマグネシア部分安定化
ジルコニアは、マグネシア含有率8〜13%、平均結晶
粒径10gm以上で結晶粒径の均一性がよい粗粒の組織
を有し、かつ結晶組成が単斜晶相20〜40重量%、正
方晶相10〜30重量%、立方晶相30〜70重量%と
なる。
Magnesia partially stabilized zirconia produced by such a method has a magnesia content of 8 to 13%, an average crystal grain size of 10 gm or more, a coarse grain structure with good crystal grain size uniformity, and a crystal composition of The monoclinic phase is 20 to 40% by weight, the tetragonal phase is 10 to 30% by weight, and the cubic phase is 30 to 70% by weight.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

まず、原料粉として平均粒径0.5〜12JLmのバデ
ライト粉とマグネシア−ジルコニア共沈粉をを用い、こ
れらを混合し焙焼した後、粉砕し、更に成形して150
0℃で2時間又は1700℃で2時間焼成した後、炉冷
して試験片を得た。上記バデライト粉の平均粒径と試験
片の曲げ強さとの関係を第1図に示す。
First, baddellite powder and magnesia-zirconia co-precipitated powder with an average particle size of 0.5 to 12 JLm were used as raw material powders, and after mixing and roasting them, they were crushed, further molded, and
After firing at 0°C for 2 hours or at 1700°C for 2 hours, the sample was cooled in a furnace to obtain a test piece. FIG. 1 shows the relationship between the average particle diameter of the baddellite powder and the bending strength of the test piece.

第1図から明らかなように、平均粒径が0.8pm未満
又は10pLmを超えると、曲げ強さが著しく低下して
いる。平均粒径が0.8gm未満になると曲げ強さが低
下するのは、試験片中の結晶粒が混粒になるためである
と考えられる。
As is clear from FIG. 1, when the average particle size is less than 0.8 pm or more than 10 pLm, the bending strength is significantly reduced. The reason why the bending strength decreases when the average grain size is less than 0.8 gm is considered to be because the crystal grains in the test piece become mixed grains.

次に、原料粉として平均粒径がそれぞれ1.071m、
1.8gm及び8.2pLmのバデライト粉とマグネシ
ア−ジルコニア共沈粉とを用い、これらを混合した後、
粉砕し、更に成形してそれぞれ1400 ’01150
0°C及び1700’Cで2時間焼成した後、炉冷して
試験片を得た。上記焼成温度と試験片の曲げ強さとの関
係を第2図に示す。
Next, as raw material powder, the average particle size was 1.071 m,
After mixing 1.8 gm and 8.2 pLm baddellite powder and magnesia-zirconia co-precipitated powder,
Crushed and further molded to 1400 '01150 each
After firing at 0°C and 1700'C for 2 hours, the sample was cooled in a furnace to obtain a test piece. FIG. 2 shows the relationship between the above firing temperature and the bending strength of the test piece.

第2図から明らかなように、1450℃未満、すなわち
t 400 ’C!では曲げ強さが著しく低下している
。また、平均粒径8.2p、rnのものを除き、170
0 ’(!における焼成で最も曲げ強さが高くなってい
る。
As is clear from Figure 2, it is less than 1450°C, that is, t 400'C! The bending strength is significantly reduced. In addition, except for those with an average particle size of 8.2p and rn, 170
The bending strength is highest when fired at 0'(!).

以上の試験のほかに第3成分の影響を調べるために以下
のような試験を行なった。
In addition to the above tests, the following tests were conducted to investigate the influence of the third component.

すなわち、原料粉として高純度ジルコニア粉とマグネシ
ア−ジルコニア共沈粉とを用い、これらにアルミナを添
加して混合し焙焼した後、粉砕し、更に成形して150
0°Cで2時間焼成した。
That is, high-purity zirconia powder and magnesia-zirconia co-precipitated powder are used as raw material powders, and alumina is added to these powders, mixed, roasted, crushed, and further molded to form a powder with a diameter of 150 mm.
It was baked at 0°C for 2 hours.

得られた焼結体は炉冷又はtooo℃もしくは800℃
から空冷して試験片を得た。
The obtained sintered body is cooled in a furnace or at too high or 800°C.
A test piece was obtained by air cooling.

上記アルミナ添加量と曲げ強さとの関係を第3図に示す
FIG. 3 shows the relationship between the amount of alumina added and the bending strength.

第3図から明らかなように、アルミナ添加量が3mo1
%を超える場合には、原料粉の平均粒径が所定の範囲内
であっても焼結体の結晶粒が混粒となり易いため試験片
の強度が低下している。
As is clear from Figure 3, the amount of alumina added is 3mol1.
%, even if the average particle size of the raw material powder is within a predetermined range, the crystal grains of the sintered body tend to become mixed grains, resulting in a decrease in the strength of the test piece.

なお、焼結体中の単斜晶相の量は1000 ’Oあるい
は800 ’Cがら空冷した場合でも炉冷した場合でも
大差がなかった。これは、おそらく原料粉が粗粒である
ため正方晶から単斜晶への熱変態を急冷によって回避す
ることが困難なためであると考えられる。逆に、あまり
急激に冷却すると、かえって熱歪による割れを生じるお
それがある。
There was no significant difference in the amount of monoclinic phase in the sintered body whether the sintered body was air cooled at 1000'O or 800'C or cooled in a furnace. This is probably because the raw material powder is coarse grained, making it difficult to avoid thermal transformation from tetragonal to monoclinic by rapid cooling. On the other hand, if the material is cooled too quickly, cracks may occur due to thermal strain.

このようなことから、更に強度を向上させる手段として
は、第3成分の微細析出を利用し得る可能性がある。
For this reason, there is a possibility that fine precipitation of the third component can be used as a means to further improve the strength.

ただし、アルミナはMgとAlを含む化合物となり、マ
トリックス中のMg濃度を下げることから正方晶の安定
性を低下させ、単斜晶相の量を所定の範囲以上に増加さ
せるので、変態歪による割れを発生し易くする原因とな
る。したがって、焼結体の強度を向上させるための第3
成分としてアルミナを用いることは不適当であると考え
られる。なお、現在のところ適当な第3成分は見つかっ
ていない。
However, alumina becomes a compound containing Mg and Al, which lowers the Mg concentration in the matrix, lowers the stability of the tetragonal crystal, and increases the amount of monoclinic phase beyond a specified range, causing cracks due to transformation strain. This can make it more likely to occur. Therefore, the third method for improving the strength of the sintered body is
It is considered inappropriate to use alumina as a component. Note that no suitable third component has been found at present.

以上詳述した如く本発明のマグネシア部分安定化ジルコ
ニアの製造方法によれば、高純度で微細な原料粉を用い
たり、時効処理を施したりしなくても、十分な強度を有
するマグネシア部分安定化ジルコニアを製造することが
でき、工業的な制約が少ないうえに成形時の取扱いが容
易であり、焼成操作も簡便になる等顕著な効果を奏する
ものである。
As detailed above, according to the method for producing magnesia partially stabilized zirconia of the present invention, magnesia partially stabilized zirconia having sufficient strength can be produced without using high-purity, fine raw material powder or without aging treatment. It is possible to produce zirconia, has few industrial restrictions, is easy to handle during molding, and has remarkable effects such as simplifying the firing operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原料粉の一つであるバデライト粉の平均粒径と
試験片の曲げ強さとの関係を示す特性図、第2図は焼成
温度と試験片の曲げ強さとの関係を示す特性図、第3図
はアルミナの添加量と試験片の曲げ強さとの関係を示す
特性図である。 第2図 達べ1度じC) 第3図 アし5す碧鋤n量(mo?、%)
Figure 1 is a characteristic diagram showing the relationship between the average particle size of baddellite powder, which is one of the raw material powders, and the bending strength of the test piece. Figure 2 is a characteristic diagram showing the relationship between the firing temperature and the bending strength of the test piece. , FIG. 3 is a characteristic diagram showing the relationship between the amount of alumina added and the bending strength of the test piece. Fig. 2: 1 degree C) Fig. 3: A 5 S Hekisho n amount (mo?, %)

Claims (4)

【特許請求の範囲】[Claims] (1) 平均粒径0.8〜1107tのジルコニア原料
粉とマグネシア原料粉とをマグネシア含有率が8〜13
mo1%となるように乾式又は湿式混合し焙焼した後、
平均粒径が0.8〜10ILmとなるように粉砕し、更
に成形し、1450〜1750°Cで焼成した後、炉冷
することを特徴とするマグネシア部分安定化ジルコニア
の製造方法。
(1) Zirconia raw material powder with an average particle size of 0.8 to 1107 t and magnesia raw material powder with a magnesia content of 8 to 13
After dry or wet mixing and roasting to a mo of 1%,
A method for producing magnesia partially stabilized zirconia, which comprises pulverizing the powder to have an average particle size of 0.8 to 10 ILm, further molding, firing at 1450 to 1750°C, and then cooling in a furnace.
(2) ジルコニア原料粉として高純度ジルコニア粉又
は低純度バデライト粉を用いる特許請求の範囲第1項記
載のマグネシア部分安定化ジルコニアの製造方法。
(2) The method for producing partially stabilized magnesia zirconia according to claim 1, in which high-purity zirconia powder or low-purity baddellite powder is used as the zirconia raw material powder.
(3) マグネシア原料粉として高純度マグネシア−ジ
ルコニア共沈粉又は低純度の塩基性炭酸マグネシウムも
しくは硫酸マグネシウムを用いる特許請求の範囲第1項
記載のマグネシア部分安定化ジルコニアの製造方法。
(3) The method for producing magnesia partially stabilized zirconia according to claim 1, in which high purity magnesia-zirconia co-precipitated powder or low purity basic magnesium carbonate or magnesium sulfate is used as the magnesia raw material powder.
(4) 第3成分としてアルミナを3mo1%以下添加
する特許請求の範囲第1項記載のマグネシア部分安定化
ジルコニアの製造方法。
(4) The method for producing magnesia partially stabilized zirconia according to claim 1, wherein 3 mo1% or less of alumina is added as a third component.
JP59072181A 1984-04-11 1984-04-11 Manufacture of magnesia partially stabilized zirconia Pending JPS60215572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59072181A JPS60215572A (en) 1984-04-11 1984-04-11 Manufacture of magnesia partially stabilized zirconia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59072181A JPS60215572A (en) 1984-04-11 1984-04-11 Manufacture of magnesia partially stabilized zirconia

Publications (1)

Publication Number Publication Date
JPS60215572A true JPS60215572A (en) 1985-10-28

Family

ID=13481792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59072181A Pending JPS60215572A (en) 1984-04-11 1984-04-11 Manufacture of magnesia partially stabilized zirconia

Country Status (1)

Country Link
JP (1) JPS60215572A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201065A (en) * 1987-09-29 1989-08-14 Ube Ind Ltd High-strength magnesia sintered material and production thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918906A (en) * 1972-04-11 1974-02-19
JPS5827230A (en) * 1981-08-11 1983-02-17 Nippon Telegr & Teleph Corp <Ntt> Partial erasing method for picture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918906A (en) * 1972-04-11 1974-02-19
JPS5827230A (en) * 1981-08-11 1983-02-17 Nippon Telegr & Teleph Corp <Ntt> Partial erasing method for picture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201065A (en) * 1987-09-29 1989-08-14 Ube Ind Ltd High-strength magnesia sintered material and production thereof
JPH0672042B2 (en) * 1987-09-29 1994-09-14 宇部興産株式会社 High strength magnesia sintered body and its manufacturing method

Similar Documents

Publication Publication Date Title
US4587067A (en) Method of manufacturing low thermal expansion modified cordierite ceramics
JP3865970B2 (en) Porcelain composition
JPS6065726A (en) Partially stabilized ziroconia body
JPS60215572A (en) Manufacture of magnesia partially stabilized zirconia
US3804765A (en) Adjusting ferroelectric ceramic characteristics during formation thereof
JPS6217071A (en) Stabilized zirconia sintered body
JP3153637B2 (en) Method for producing calcia clinker
JPH11307336A (en) Manufacture of soft magnetic ferrite
JP3103165B2 (en) Method of manufacturing piezoelectric body
JPS6081062A (en) High strength ceramic material
JPS5849667A (en) Manufacture of sialon sintered body
JPS6353130B2 (en)
JPH06325920A (en) Low-loss magnetic material and manufacture thereof
JP2749662B2 (en) Magnesia clinker and manufacturing method thereof
JPH0380149A (en) Production of alumina/zirconia sintered body
JPS6045147B2 (en) Transparent polycrystalline alumina composition and method for producing the same
JPH0653020A (en) Oxide permanent magnet
JPH03141611A (en) Fineparticle organization mn-zn ferrite material and its manufacture
JPH03153570A (en) Polycrystalline spinel sintered body
JP2577155B2 (en) Silicon nitride sintered body
JPH07211515A (en) Production of thermistor element
JPH0335260B2 (en)
JP3219112B2 (en) Method for producing calcium aluminate ceramic sintered body
JPH11260615A (en) Manufacture of oxide permanent magnet
JPH0765857A (en) Beta alumina electrolyte