JPS60213053A - Semiconductor memory element - Google Patents

Semiconductor memory element

Info

Publication number
JPS60213053A
JPS60213053A JP59069048A JP6904884A JPS60213053A JP S60213053 A JPS60213053 A JP S60213053A JP 59069048 A JP59069048 A JP 59069048A JP 6904884 A JP6904884 A JP 6904884A JP S60213053 A JPS60213053 A JP S60213053A
Authority
JP
Japan
Prior art keywords
layer
capacitor
oxide film
resist
diffused
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59069048A
Other languages
Japanese (ja)
Inventor
Akio Kita
北 明夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP59069048A priority Critical patent/JPS60213053A/en
Publication of JPS60213053A publication Critical patent/JPS60213053A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To improve the degree of integration through a simple process by forming a capacitor consisting of a second conduction type layer, to which an impurity in specific concentration is diffused, a dielectric layer shaped on the second conduction type layer and polysilicon formed on the dielectric layer on the inner wall of a groove shaped to a first conduction type semiconductor substrate. CONSTITUTION:A field oxide film 3 and a channel stop P<+> layer 2 are formed on a P type silicon semiconductor substrate 1. A resist 51 is patterned, and a groove 4 is shaped through anisotropic etching while using the resist 51 as a mask. The resist 51 is removed, an oxide film 52 is grown on the surface of the silicon substrate 1, the oxide film 52 in a region in which an N type impurity is diffused is removed, and phosphorus is diffused to shape an N<+> layer 5. The substrate surface concentration of phosphorus is brought to 1X10<19>cm<-3> or more at that time. A silicon nitride film 6 as a dielectric for a capacitor is deposited on the whole surface. Polysilicon 7 as a grounding electrode for the capacitor is deposited on the whole surface. The polysilicon 7 is etched, the silicon nitride film 6 is also etched, and the oxide film 52 is removed, thus forming the capacitor C1.

Description

【発明の詳細な説明】 (技術分野) この発明は半導体メモリ素子、詳しくはMISダイナミ
ックメモリ素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to semiconductor memory devices, and more particularly to MIS dynamic memory devices.

(従来技術) 従来より1トランノスタ1キヤノぐシタ型のMOSダイ
ナミックメモリは高集積化に適している為、広く用いら
れているがIMビット級のいわゆる超超LSIでは最早
、平面的なキヤ・ぞシタでは充分な容量が得られず、実
現が困難な状況にある。そこで立体的にキャノ9シタを
形成し容量を増加させる方法の1つとして半導体基板に
溝を堀って溝側面にもMOSキャノヤシタを形成する提
案がなされている。しかしながら、この方法では、溝形
成の際のエツチングによるダメージや応力によって良質
の酸化膜が得られない欠点があった。
(Prior art) MOS dynamic memory with one transistor and one transistor has been widely used because it is suitable for high integration, but in IM bit class so-called super-ultra LSIs, planar capacitors are no longer used. It is difficult to realize this because sufficient capacity cannot be obtained in the city. Therefore, as one method for increasing the capacitance by three-dimensionally forming a canopy, a proposal has been made to dig a groove in a semiconductor substrate and form a MOS canopy on the side surface of the groove. However, this method has the disadvantage that a good quality oxide film cannot be obtained due to damage and stress caused by etching during trench formation.

これを改善するため、日経エレクトロニクス1982.
12.20 P 74〜75に開示されているように絶
縁層をs io 2/S t !、N4/s !02 
という3層構造にしたものがある。しかし、試作結果は
リフレッシュ時間のばらつきが大きく、従来の七ルより
も短いというものでアシ、絶縁層が3層で製造上簡単で
ないという欠点があった。
To improve this, Nikkei Electronics 1982.
12.20 P74-75, the insulating layer is sio2/St! , N4/s! 02
There is one that has a three-layer structure. However, the prototype results showed that the refresh time varied widely, was shorter than the conventional 7-layer, and had the drawbacks that it was not easy to manufacture because it had three layers of insulation.

(発明の目的) この発明の目的は高集積化が可能で、しかも簡単な工程
で製造することができる半導体メモリ素子を実現するこ
とにある。
(Objective of the Invention) An object of the present invention is to realize a semiconductor memory element that can be highly integrated and manufactured in a simple process.

(発明の構成) 本発明は第1導電型の半導体基板に設けられた溝の内壁
に2X1019cm−’以上の濃度の第2導電型の不純
物を拡散した第2導電型層と、この第2導電型層上に設
けられた誘電体層と、この誘電体層上に設けられたノリ
ンリコンとからなるキヤ・ぐシタを有したことを特徴と
する半導体メモリ素子にある。
(Structure of the Invention) The present invention includes a second conductivity type layer in which impurities of a second conductivity type with a concentration of 2X1019 cm-' or more are diffused into the inner wall of a groove provided in a semiconductor substrate of a first conductivity type; A semiconductor memory element is characterized in that it has a capacitor made up of a dielectric layer provided on a mold layer and a non-contact layer provided on the dielectric layer.

(実施例) 以下この発明の一実施例を説明するO 第1図はこの発明の一実施例を説明する平面図、第2図
は第1図のX −X/線における断面図である。
(Embodiment) An embodiment of the present invention will be described below. FIG. 1 is a plan view illustrating an embodiment of the invention, and FIG. 2 is a sectional view taken along the line X-X/ in FIG. 1.

ここで、1はP型シリコン単結晶基板、2はチャネルス
トップP+層、3はフィールド酸化膜、4はキヤ・ぐシ
タ用の溝である。溝の内壁は1刈020d3の濃度のす
層となっており、キヤ・ぞシタC1の一方の電極を形成
し、トランスファケ°−トトランジスタT、の一方の拡
散層10に接続されている。
Here, 1 is a P-type silicon single crystal substrate, 2 is a channel stop P+ layer, 3 is a field oxide film, and 4 is a groove for a capacitor. The inner wall of the groove is a layer having a concentration of 020d3, which forms one electrode of the capacitor C1 and is connected to one diffusion layer 10 of the transfer transistor T.

キャパシタC1は1層5、誘電体である窒化シリコン膜
6及び接地電極であるぼりシリコン7から形成されてい
る。トランスファケ゛−トトランジスタTlのキャノe
シタ自と反対側の1層10はコンタクトホール12を介
してビット線13に接続されている。トランスフアク9
−トトランノスタT。
The capacitor C1 is formed of a single layer 5, a silicon nitride film 6 as a dielectric, and a silicon nitride film 7 as a ground electrode. Canon e of transfer gate transistor Tl
One layer 10 on the side opposite to the top layer 10 is connected to a bit line 13 via a contact hole 12. Transfac 9
-Totrannosta T.

のケ°−ト電極9はアドレス線としても働き、このアド
レス線がハイレベルになるとトランスフアク0−トトラ
ンノスタT1が導通し、ビット線ノ3の情報がキャパシ
タC+に書きこまれ、又逆にキヤ・ぐシタC1の内容が
ビット線13に読み出される。
The gate electrode 9 also works as an address line, and when this address line becomes high level, the transfer transistor T1 becomes conductive, and the information on the bit line No. 3 is written to the capacitor C+, and vice versa. - The contents of the data register C1 are read out to the bit line 13.

第3図に第2図の電気的等価回路図を示す。第3図にお
けるC2は1層5と基板との間に形成されるPN接合容
量である。
FIG. 3 shows an electrical equivalent circuit diagram of FIG. 2. C2 in FIG. 3 is a PN junction capacitance formed between the first layer 5 and the substrate.

次に上述したダイナミックメモリ素子の製造方法につい
て説明する。第4図(A) −(E)は本実施例の製造
工程説明図である。P型シリコン半導体基板1上に選択
酸化法を用いて、フィールド酸化膜3、及びチャネルス
トップP+層2を形成する。(第4図(4)参照)次に
溝4を形成する為、レノスト5ノをノやターニングシ、
このレノストノやターンをマスクにしてCB r F 
sガスを用いた反応性イオンエツチング装置によシ異方
性エツチングを行い深さ2μmの溝4を形成する(第4
図(B)参照)。レノス) 51を除去後、熱酸化によ
り300乃至500Xの酸化膜52をシリコン基板表面
に成長させ、N型不純物を拡散させる領域の酸化膜52
を取り除き、POCl2を拡散源として酸化膜52の開
孔部よシリン(P)を拡散させて1層5を形成する。こ
の時温度は850℃、キャリアガスはN2と02で、リ
ンの基板表面濃度は1×1O20cIIL−6とする。
Next, a method of manufacturing the above-mentioned dynamic memory element will be explained. FIGS. 4A to 4E are explanatory diagrams of the manufacturing process of this embodiment. A field oxide film 3 and a channel stop P+ layer 2 are formed on a P-type silicon semiconductor substrate 1 using a selective oxidation method. (See Figure 4 (4)) Next, in order to form the groove 4, cut the renost 5 and turn the grooves.
CB r F using this lens and turn as a mask
Anisotropic etching is performed using a reactive ion etching device using s gas to form grooves 4 with a depth of 2 μm (fourth
(See figure (B)). After removing the oxide film 51 (Renos) 51, a 300 to 500X oxide film 52 is grown on the silicon substrate surface by thermal oxidation, and the oxide film 52 is grown in the region where N-type impurities are to be diffused.
is removed, and syringe (P) is diffused through the openings of the oxide film 52 using POCl2 as a diffusion source to form one layer 5. At this time, the temperature is 850° C., the carrier gas is N2 and 02, and the substrate surface concentration of phosphorus is 1×1 O20cIIL-6.

リン拡散時にシリコン表面につく図示しない薄い酸化膜
を取り除くと第4図(C)のような形状となる。次にキ
ャパシタの誘電体となる窒化シリコン膜6を減圧CVD
法(化学的気相成長法)により200乃至500Xの膜
厚で全面に堆積させる。
If a thin oxide film (not shown) that is formed on the silicon surface during phosphorus diffusion is removed, a shape as shown in FIG. 4(C) is obtained. Next, the silicon nitride film 6, which will become the dielectric of the capacitor, is deposited by low pressure CVD.
(chemical vapor deposition method) to a film thickness of 200 to 500× over the entire surface.

窒化シリコン膜のリーク電流を減少させる為、850乃
至950°Cウェット酸素雰囲気で窒化シリコン膜上に
図示しない20乃至40Xの酸化膜をつける。続いてキ
ヤ・ぐシタの接地電極となるリン(P)あるいはヒ素(
A8)を高濃度にドープした71?リシリコン7を減圧
CVD法により全面に堆積させる。この時、溝4が完全
に埋まるように膜厚を設定し、全面を異方性エツチング
し、溝4以外の部分で必要な膜厚となるようにする。こ
の後図示しないレジストをパクーニングし、このレノス
トパターンをマスクにして、CF4及び02ガスを用い
たドライエツチング装置でIリシリコン7をエツチング
し、窒化シリコン膜6上の図示しない酸化膜を緩衝フッ
酸溶液でエツチングし、更にト°ライエツチング装置で
窒化シリコン膜6をエツチングする。図示しないレジス
ト及びN型不純物拡散時にマスクに使用した酸化膜52
を除去すると第4図(至)の形状となる。以上の工程で
キヤ・PシタC1が形成されて、続いてトランスファダ
ートT1を形成する。熱酸化により、300乃至500
Xのケゝ−ト酸化膜8を成長させ、その上にトランスフ
ァr−)電極及びアドレス線となるモリブデン7リサイ
ド(MO3+2) 9をス・ぐツタ法により300X被
着させ、″図示しないレノストをノやターニングしこの
レジストノやターンをマスクにして、CF4及び02ガ
スを用いたドライエツチング装置でエツチングする。図
示しないレジストパターンを除去後、Iリシリコン7及
びシリサイド9をマスクにしてA8を5XlOtons
、そiのドーズ量でイオン注入してr層ノ0を形成する
。(第4図(F:)参照)絶縁膜1ノとしてPSG (
リンシリカガラス)をCVD法によりM厚8000X堆
積させ、コンタクトホールノ2を必要な場所に開孔し、
アルミをスノぞツタ法によシ膜厚10000Xつけツク
ターニングを行いビット線13とする。最後に保護膜1
4としてPSGをつけメモリ素子形成を完了する。(第
2図参照)以上説明した本実施例ではP型シリコン基板
を用いたNチャネルプロセスであったがN型基板あるい
は絶縁基板中に設けられたPウェル中にメモリセルを形
成する事や不純物及び電源の陰性を適当に反転させるこ
とによりPチャネルプロセスでも可能である。また、1
層5として本実施例では濃度を1×1020cm−3と
したが、2 X 10”cm−3以上の高濃度ならばよ
い。
In order to reduce the leakage current of the silicon nitride film, a 20 to 40X oxide film (not shown) is formed on the silicon nitride film in a wet oxygen atmosphere at 850 to 950°C. Next, phosphorus (P) or arsenic (
71 which is highly doped with A8)? Silicon 7 is deposited over the entire surface by low pressure CVD. At this time, the film thickness is set so that the groove 4 is completely filled, and the entire surface is anisotropically etched so that the required film thickness is obtained in the portions other than the groove 4. Thereafter, a resist (not shown) is patterned, and using this renost pattern as a mask, the I-resilicon 7 is etched using a dry etching device using CF4 and 02 gases, and the oxide film (not shown) on the silicon nitride film 6 is etched with buffered hydrofluoric acid. Etching is performed using a solution, and the silicon nitride film 6 is further etched using a etching device. Oxide film 52 used as a mask during resist and N-type impurity diffusion (not shown)
When is removed, the shape shown in FIG. 4 (to) is obtained. Through the above steps, the carrier/Pitter C1 is formed, and then the transfer dart T1 is formed. 300 to 500 by thermal oxidation
A gate oxide film 8 of Using the resist holes and turns as a mask, etching is performed using a dry etching device using CF4 and 02 gas.After removing the resist pattern (not shown), using I silicon 7 and silicide 9 as masks, A8 is etched with 5XlOtons.
, the ion implantation is performed at a dose of i to form the r layer No0. (See Figure 4 (F:)) PSG (
phosphorous silica glass) was deposited to a thickness of 8000× by the CVD method, and contact holes No. 2 were opened at the required locations.
A film of 10,000× of aluminum was applied using the snow vine method and then turned to form the bit line 13. Finally, protective film 1
At step 4, PSG is attached to complete the memory element formation. (See Figure 2) Although this embodiment described above was an N-channel process using a P-type silicon substrate, it was not possible to form a memory cell in a P-well provided in an N-type substrate or an insulating substrate, or to use impurities. Also possible is a P-channel process by suitably reversing the negative power supply. Also, 1
In this embodiment, the concentration of the layer 5 is 1 x 1020 cm-3, but it may be as high as 2 x 10'' cm-3 or higher.

さらに、誘電体としては窒化シリコン膜以外にS + 
02やS i O2と窒化シリコン膜の複合膜等を使用
することも可能である。又、アドレス線としては抵抗が
低ければポリシリコンやポリサイド構造、更に低抵抗が
必要な場合にはタングステン等の高融点金属を用いても
よい。
Furthermore, as a dielectric material, S +
It is also possible to use a composite film of 02 or S i O2 and a silicon nitride film. Further, as the address line, a polysilicon or polycide structure may be used if the resistance is low, and a high melting point metal such as tungsten may be used if an even lower resistance is required.

(発明の効果) この発明では2 X 10”C!IL””以上の濃度に
ドープされたN+叶層を基板に堀られた溝の内壁に形成
して、キャパシタの一方の電極とし、接地電極としてポ
リシリコンを使用している為、次のような利点がある。
(Effects of the Invention) In this invention, an N+ layer doped to a concentration of 2 x 10"C!IL"" or higher is formed on the inner wall of a groove dug in the substrate, and serves as one electrode of the capacitor, and as a ground electrode. Since polysilicon is used as the material, it has the following advantages.

キヤ・ぐシタの一方の電極は高濃度にドープされたシリ
コン基板であるため、半導体は縮退した状態にあり、導
体的性質を示す。この為キヤ・eシタはMIS構造でな
く誘電体を2つの導体ではさんだ構造と考えられ、ダイ
ナミックメモリのキヤ・9シタとしてMISキャパシタ
を用いる場合、特に考慮しなくてはならない半導体、絶
縁体界面の準位等は問題とならず、従って界面準位の少
ないシリコン−8i O2の紹み合せ以外に窒化シリコ
ン等の高誘電体の使用が容易に可能となる利点がある。
One electrode of the capacitor is a heavily doped silicon substrate, so the semiconductor is in a degenerate state and exhibits conductive properties. For this reason, a capacitor/e-capacitor is considered to have a structure in which a dielectric material is sandwiched between two conductors, rather than an MIS structure, and when using a MIS capacitor as a capacitor in a dynamic memory, special consideration must be given to the interface between the semiconductor and the insulator. The level of , etc. is not a problem, and therefore, there is an advantage that a high dielectric material such as silicon nitride can be easily used in addition to the introduction of silicon-8i O2, which has few interface states.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明する平面図、第2図は
第1図のx −x’線における断面図、第3図は第2図
の電気的等価回路図、第4図囚〜(匂は本発明の一実施
例の製造工程説明図である。 ・ぐシタ用の溝、5・・・1層、6・・・窒化シリコン
膜、2・・・ぼりシリコン、8・・・ケ°−ト酸化膜、
9・・・ケ゛−ト電極、)0・・・1層、1ノ・・絶縁
膜、12・・コンタクトホール、13・・・ビット線、
14・・・保護膜、輸・・・キャパシタ、C2・・容量
、Tl・・・トランスファグートトランノスタ。 特許出願人 沖電気工業株式会社 第3図 C8 第4図 第4図
FIG. 1 is a plan view illustrating an embodiment of the present invention, FIG. 2 is a sectional view taken along line x-x' in FIG. 1, FIG. 3 is an electrical equivalent circuit diagram of FIG. 2, and FIG. 4 (The odor is an explanatory diagram of the manufacturing process of an embodiment of the present invention. Groove for groove, 5... 1 layer, 6... silicon nitride film, 2... silicon nitride, 8...・・Keto oxide film,
9...Kate electrode, )0...1 layer, 1...Insulating film, 12...Contact hole, 13...Bit line,
14...Protective film, transfer...capacitor, C2...capacitance, Tl...transfergate trannostar. Patent applicant Oki Electric Industry Co., Ltd. Figure 3 C8 Figure 4 Figure 4

Claims (1)

【特許請求の範囲】 第1導電型の半導体基板に設けられた溝の内壁に2X1
0 cm 以上の濃度の第2導電型の不純物を拡散した
第2導電型層と、 この第2導電型層上に設けられた誘電体層と、この誘電
体層上に設けられたポリシリコンとからなるキャieシ
タを有したことを特徴とする半導体メモリ素子。
[Claims] The inner wall of the groove provided in the semiconductor substrate of the first conductivity type is
A second conductivity type layer having a second conductivity type impurity diffused at a concentration of 0 cm or more, a dielectric layer provided on the second conductivity type layer, and a polysilicon layer provided on the dielectric layer. What is claimed is: 1. A semiconductor memory device characterized by having a capacitor consisting of a capacitor.
JP59069048A 1984-04-09 1984-04-09 Semiconductor memory element Pending JPS60213053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59069048A JPS60213053A (en) 1984-04-09 1984-04-09 Semiconductor memory element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59069048A JPS60213053A (en) 1984-04-09 1984-04-09 Semiconductor memory element

Publications (1)

Publication Number Publication Date
JPS60213053A true JPS60213053A (en) 1985-10-25

Family

ID=13391300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59069048A Pending JPS60213053A (en) 1984-04-09 1984-04-09 Semiconductor memory element

Country Status (1)

Country Link
JP (1) JPS60213053A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE33261E (en) * 1984-07-03 1990-07-10 Texas Instruments, Incorporated Trench capacitor for high density dynamic RAM
US4958206A (en) * 1988-06-28 1990-09-18 Texas Instruments Incorporated Diffused bit line trench capacitor dram cell
US4978634A (en) * 1989-07-25 1990-12-18 Texas Instruments, Incorporated Method of making trench DRAM cell with stacked capacitor and buried lateral contact
US5013676A (en) * 1987-04-27 1991-05-07 Nec Corporation Structure of MIS-type field effect transistor and process of fabrication thereof
US5017506A (en) * 1989-07-25 1991-05-21 Texas Instruments Incorporated Method for fabricating a trench DRAM
US5057887A (en) * 1989-05-14 1991-10-15 Texas Instruments Incorporated High density dynamic ram cell
US5066609A (en) * 1988-07-25 1991-11-19 Kabushiki Kaisha Toshiba Method of manufacturing a semiconductor device including a trench capacitor
US5089868A (en) * 1989-05-22 1992-02-18 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device with improved groove capacitor
US5102817A (en) * 1985-03-21 1992-04-07 Texas Instruments Incorporated Vertical DRAM cell and method
US5105245A (en) * 1988-06-28 1992-04-14 Texas Instruments Incorporated Trench capacitor DRAM cell with diffused bit lines adjacent to a trench
US5109259A (en) * 1987-09-22 1992-04-28 Texas Instruments Incorporated Multiple DRAM cells in a trench
US5111259A (en) * 1989-07-25 1992-05-05 Texas Instruments Incorporated Trench capacitor memory cell with curved capacitors
US5208657A (en) * 1984-08-31 1993-05-04 Texas Instruments Incorporated DRAM Cell with trench capacitor and vertical channel in substrate
US5225363A (en) * 1988-06-28 1993-07-06 Texas Instruments Incorporated Trench capacitor DRAM cell and method of manufacture
US5545290A (en) * 1987-07-09 1996-08-13 Texas Instruments Incorporated Etching method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137245A (en) * 1982-02-10 1983-08-15 Hitachi Ltd Semiconductor memory and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137245A (en) * 1982-02-10 1983-08-15 Hitachi Ltd Semiconductor memory and its manufacture

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE33261E (en) * 1984-07-03 1990-07-10 Texas Instruments, Incorporated Trench capacitor for high density dynamic RAM
US5208657A (en) * 1984-08-31 1993-05-04 Texas Instruments Incorporated DRAM Cell with trench capacitor and vertical channel in substrate
US5102817A (en) * 1985-03-21 1992-04-07 Texas Instruments Incorporated Vertical DRAM cell and method
US5013676A (en) * 1987-04-27 1991-05-07 Nec Corporation Structure of MIS-type field effect transistor and process of fabrication thereof
US5545290A (en) * 1987-07-09 1996-08-13 Texas Instruments Incorporated Etching method
US5109259A (en) * 1987-09-22 1992-04-28 Texas Instruments Incorporated Multiple DRAM cells in a trench
US5105245A (en) * 1988-06-28 1992-04-14 Texas Instruments Incorporated Trench capacitor DRAM cell with diffused bit lines adjacent to a trench
US5225363A (en) * 1988-06-28 1993-07-06 Texas Instruments Incorporated Trench capacitor DRAM cell and method of manufacture
US4958206A (en) * 1988-06-28 1990-09-18 Texas Instruments Incorporated Diffused bit line trench capacitor dram cell
US5066609A (en) * 1988-07-25 1991-11-19 Kabushiki Kaisha Toshiba Method of manufacturing a semiconductor device including a trench capacitor
US5057887A (en) * 1989-05-14 1991-10-15 Texas Instruments Incorporated High density dynamic ram cell
US5089868A (en) * 1989-05-22 1992-02-18 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device with improved groove capacitor
US5017506A (en) * 1989-07-25 1991-05-21 Texas Instruments Incorporated Method for fabricating a trench DRAM
US5111259A (en) * 1989-07-25 1992-05-05 Texas Instruments Incorporated Trench capacitor memory cell with curved capacitors
US4978634A (en) * 1989-07-25 1990-12-18 Texas Instruments, Incorporated Method of making trench DRAM cell with stacked capacitor and buried lateral contact

Similar Documents

Publication Publication Date Title
JP2889137B2 (en) Method of fabricating a low leakage substrate plate trench DRAM cell and device formed thereby
US4397075A (en) FET Memory cell structure and process
US5346834A (en) Method for manufacturing a semiconductor device and a semiconductor memory device
US5041887A (en) Semiconductor memory device
JPS60213053A (en) Semiconductor memory element
JPH07211799A (en) Manufacture of dram cell
JPS60152056A (en) Semiconductor memory device
KR960006718B1 (en) Memory capacitor in semiconductor device and the method for fabricating the same
JPS6156445A (en) Semiconductor device
JPS60113460A (en) Dynamic memory element
JP2772375B2 (en) Semiconductor storage device
JPS61107768A (en) Semiconductor memory device
KR960015525B1 (en) Method for manufacturing semiconductor device
JPH0329186B2 (en)
JPS6156444A (en) Semiconductor device
JPS60213054A (en) Semiconductor memory element
JPS60113461A (en) Manufacture of semiconductor device
JP3535542B2 (en) Semiconductor memory device and method of manufacturing the same
JPS6240765A (en) Read-only semiconductor memory and manufacture thereof
JPS61225851A (en) Semiconductor device and manufacture thereof
KR960006716B1 (en) Semiconductor integrated circuit device fabrication process
JPH02267962A (en) Semiconductor memory cell and its manufacture
KR910004504B1 (en) Method of manufacturing dram cell having space wall oxide
JPS6379370A (en) Semiconductor storage device and manufacture thereof
JPH0266967A (en) Cell structure of dynamic random-access memory