JPS60211075A - Formation of electrically conductive alloy film pattern - Google Patents

Formation of electrically conductive alloy film pattern

Info

Publication number
JPS60211075A
JPS60211075A JP6795284A JP6795284A JPS60211075A JP S60211075 A JPS60211075 A JP S60211075A JP 6795284 A JP6795284 A JP 6795284A JP 6795284 A JP6795284 A JP 6795284A JP S60211075 A JPS60211075 A JP S60211075A
Authority
JP
Japan
Prior art keywords
substrate
mask
alloy
electrically conductive
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6795284A
Other languages
Japanese (ja)
Other versions
JPH0114314B2 (en
Inventor
Akinori Shimizu
了典 清水
Misao Saga
佐賀 操
Kazuo Matsuzaki
松崎 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP6795284A priority Critical patent/JPS60211075A/en
Publication of JPS60211075A publication Critical patent/JPS60211075A/en
Publication of JPH0114314B2 publication Critical patent/JPH0114314B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/047Coating on selected surface areas, e.g. using masks using irradiation by energy or particles

Abstract

PURPOSE:To form an electrically conductive alloy film due to reaction gas by bringing the reaction gas into contact with the surface of substrate and irradiating light energy via a mask having the same light transmission as a desired electrically conductive film pattern in case of forming the electrically conductive film pattern consisting of Al-Si alloy on the surface of Si substrate. CONSTITUTION:An Si substrate 1 coated with an SiO2 film of 1mum thickness is set in a reaction chamber 2 and a mask 3 is arranged at the position of 1mm. right above it. In the mask, a light transmitting pattern wherein a Cr film 31 is made a light shielding part is formed on a quartz plate as a distribution pattern. After evacuating the inside of reaction chamber, gaseous Al(CH3)3 6 and gaseous SiH4 as reaction gasses and He 8 as a carrier gas are supplied. Then, Ar laser beam 9 is focused on the substrate 1 through the mask 3 via a mirror 10 and a lens 11. The power on the mask 3 is extremely small in comparison with the power on the substrate 1 and the Al-Si alloy film is easily formed only on the Si substrate 1.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、例えばMと81の合金などからなる合金環k
mパターンを基体上に形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an alloy ring made of, for example, an alloy of M and 81.
The present invention relates to a method of forming an m pattern on a substrate.

〔従来技術とその問題点〕[Prior art and its problems]

U導電膜パターンは半導体装置のSi基板上の配線等に
多く用いられるが、Alがsiと合金してアロイスパイ
クが生じ、内部接合を貫通して所望の特性が得られない
ことがある0従って予めAJに81を合金させて導電膜
を形成し、基板の81が合金するのを防止することが行
われる◇あるいはAJはエレクトpマイグレーシ日ンを
起こしゃすいので、その対策としてAl−Cu合金ある
いはAl−8t−Cu合金によシ導電膜を形成すること
もある。このような合金導電膜の形成は、従来蒸着法や
スパッタリング法で行われるのが一般的であった◇しか
しスパッタリング位言うに及ばず、蒸着法でさえも導電
膜の構成原子がかなシ大きな運動エネルギーを持って基
板に衝突するために、基体に損傷を与えるという現象が
あり、特にシリコン基板の場合には基板に作シ込まれて
デバイスの特性を劣化させる問題がある。そのため、蒸
着あるいはスパッタリング工程後に必ずアニール工程を
施さねばならなかった0また、これらの方法で鉱、たと
えマスクを使用しても堆積粒子がマスクの下側にmn込
むため、μm11度の微細なパターンを堆積工程と同時
に形成することは不可能でアシ、堆積後のりソゲラフイ
エ程が必須であった。さらに、例えばSt基板上のAA
!−81合金導電膜パターンにおいては、基板との界面
における合金組成が重要で14)、Si濃度が高すぎる
と接触抵抗が高くなり、Si濃度が低いとアロイスパイ
クの発市咋−ことができないので、この領域の合金組成
を精密に制御しなければならず、それよシ上側の層では
電気抵抗の減少のためむしろ81濃度の低いことが望ま
しい。しかし従来の方法では、膜中の成分元素濃度をそ
のように微妙に変化させることは困難であった。
U conductive film patterns are often used for wiring on Si substrates of semiconductor devices, but aluminum alloys with Si, resulting in alloy spikes that may penetrate internal junctions and prevent desired characteristics from being obtained. A conductive film is formed by alloying 81 with AJ in advance to prevent 81 on the substrate from being alloyed.Alternatively, since AJ tends to cause electro-p migration, an Al-Cu alloy is used as a countermeasure. Alternatively, the conductive film may be formed using an Al-8t-Cu alloy. Formation of such alloy conductive films has conventionally been generally carried out by vapor deposition or sputtering methods◇However, not only sputtering, but even vapor deposition methods require large movements of the constituent atoms of the conductive film. Since it collides with the substrate with energy, there is a phenomenon in which it damages the substrate, and in the case of a silicon substrate in particular, there is a problem that it is etched into the substrate and deteriorates the characteristics of the device. Therefore, an annealing process must be performed after the evaporation or sputtering process.Also, even if a mask is used, the deposited particles get under the mask, making it difficult to create fine patterns of 11 μm. It was impossible to form reeds at the same time as the deposition process, so it was necessary to perform a process of reeding after deposition. Furthermore, for example, AA on the St substrate
! In the -81 alloy conductive film pattern, the alloy composition at the interface with the substrate is important14); if the Si concentration is too high, the contact resistance will be high, and if the Si concentration is low, the alloy spike will not be able to form. The alloy composition in this region must be precisely controlled, and a lower 81 concentration in the upper layer is preferable to reduce electrical resistance. However, with conventional methods, it has been difficult to make such subtle changes in the concentration of component elements in the film.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述の欠点を除去して基体上の合金導
電膜の微細なパターンを基体へ好ましくない影替を及は
すことな〈実施でき、また膜中の成分元素の濃度の微妙
な調整が可能な方法を提供することを目的とする。
It is an object of the present invention to eliminate the above-mentioned drawbacks, to make it possible to form a fine pattern of an alloy conductive film on a substrate without causing an undesirable effect on the substrate, and to make it possible to improve the fineness of the concentration of component elements in the film. The purpose is to provide a method that allows for precise adjustment.

〔発明の要点〕[Key points of the invention]

本発明は、基体表面に合金成分元素のすべてを含む反応
ガスを接触させ、所期の導電膜パターンと同一の透光パ
ターンを有するマスクを通して反応エネルギーを与える
光を基体上に照射することによシ、反応ガスよシ合金導
電膜を基体上に成長させることによって上記の目的を達
成するものである。照射光としては、必要な反応エネル
ギーに対応する波長よシ短いが、吸収が著しくなる#1
ど短くない光が望ましく、そのため1000〜6000
Aの波長の可視乃至紫外領域の光が有効に用いられる。
In the present invention, the surface of the substrate is brought into contact with a reactive gas containing all of the alloy component elements, and the substrate is irradiated with light that imparts reaction energy through a mask having the same light-transmitting pattern as the intended conductive film pattern. The above object is achieved by growing a conductive alloy film on a substrate using a reactive gas. The wavelength of the irradiation light is shorter than that corresponding to the required reaction energy, but the absorption is significant. #1
It is desirable to have a light that is not too short, so 1000 to 6000
Light of wavelength A in the visible to ultraviolet region is effectively used.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施のための装置を示す第1図を引用し
てシリコン基板上の酸化シリコン膜の上にシリコン合有
アルミニウム配線パターンを形成する実施例について説
明する01μm厚さの酸化シリコン膜を被着したシリコ
ン基板1を反応室2内に収容し、その直上1■の位置に
マスク3を配置する・マスク3は、例えば石英板にクロ
ム膜31を遮光部とする透光パターンが所望の配線パタ
ーンと同一形状を有するものである。反応室2内を真空
ポンプ4により排気し、他側よシマ4赤ン7 ’ローメ
ータ5によシ流量制御された1 00 ml/―のAJ
 (CH3) sガスをボンベ6よシ、10m1/mの
SiH4ガスをボンベ7より、またキャリヤガスとして
3000mAt/―のHeガスをボンベ8より導入して
100’l’orr前後の圧力に保つ。そこへArFエ
キシマレーザの波長1930Xの発振光9を鏡10、レ
ンズ11を経てマスク3を通して基板1上に5風肩のパ
ワー密度で焦点を結ぶように入射させる。マスク位置で
のパワー密度は、基板上でのパワー密度の1名。以下と
低いため、反応生成物はマスク3の上に紘堆積せず、シ
リコン基板1の上にのみマスクの透光パターン過多の1
%のシリコンを含むアルミニウム・シリコン合金からな
る配線パターンが形成される。
Hereinafter, an example of forming a silicon-containing aluminum wiring pattern on a silicon oxide film on a silicon substrate will be described with reference to FIG. 1 showing an apparatus for carrying out the present invention. The silicon substrate 1 coated with the silicon substrate 1 is placed in the reaction chamber 2, and the mask 3 is placed directly above it at a position 1. The mask 3 is preferably a light-transmitting pattern, for example, a quartz plate with a chromium film 31 as a light-shielding part. It has the same shape as the wiring pattern. The inside of the reaction chamber 2 was evacuated by a vacuum pump 4, and the flow rate was controlled by an AJ of 100 ml/- by a low meter 5 on the other side.
(CH3) S gas is introduced from cylinder 6, SiH4 gas of 10 m1/m is introduced from cylinder 7, and He gas of 3000 mAt/- is introduced as a carrier gas from cylinder 8, and the pressure is maintained at around 100'l'orr. The oscillation light 9 of ArF excimer laser having a wavelength of 1930X is made incident on the substrate 1 through a mirror 10, a lens 11, and a mask 3 so as to be focused at a power density of 5 degrees. The power density at the mask position is one person of the power density on the board. Because the reaction product is as low as
A wiring pattern made of an aluminum-silicon alloy containing 50% silicon is formed.

本発明は上記の実施例にとどまらず、使用ガス、使用光
源を変えることによLAX−81−Cu合金、M−Cu
合金あるいはその他の各種金属の組合せからなる合金の
導電膜パターンを容易に形成することができる。反応ガ
スとしては、各成分金属をそれぞれ構成元素とするアル
キル金属ガスを混合することが有効である0膜厚方向に
おいて合金成分濃度を変化させようとするときは、各成
分金属に対する配合ガスの混合比、すなわち流量比を調
整することにより容易に可能である。
The present invention is not limited to the above-mentioned embodiments, but can be applied to LAX-81-Cu alloy, M-Cu alloy, etc. by changing the gas and light source used.
A conductive film pattern made of an alloy or a combination of various other metals can be easily formed. As a reaction gas, it is effective to mix alkyl metal gases each having each of the component metals as constituent elements.0 When trying to change the alloy component concentration in the film thickness direction, mixing the gas mixture for each component metal is effective. This is easily possible by adjusting the ratio, that is, the flow rate ratio.

〔発明の効果〕〔Effect of the invention〕

本発明は、所望パータンを透光パターンとするマスクを
透過した光を励起光源とする光CVDを用いて微細な合
金導電膜パターンも堆積と同時に形成可能にしたもので
、合金の構成原子が基体に衝突しないので損傷を与える
こともなく、また生ずる導電膜祉段差被覆性が優れてい
るため、半導体装置をはじめ各種製品の製造に極めて有
効に適用できる。
The present invention makes it possible to form a fine alloy conductive film pattern at the same time as deposition using optical CVD using light transmitted through a mask with a desired pattern as a light-transmitting pattern as an excitation light source. Since it does not collide with other objects, it does not cause damage, and the resulting conductive film has excellent step coverage, so it can be extremely effectively applied to the manufacture of various products including semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のための装置の断面図である
。 1・・・・・・シリコン基板、2・・・・・・反応室、
3・・・・・・マスク、31・・・・・・クロム膜、6
・・・・・・kl (CH3) 3ボンベ、7・・・・
・・S iH4ボンベ、8・・・・・・Heボンベ、9
・・・・・・ArFエキシマレーザ光。
FIG. 1 is a cross-sectional view of an apparatus for one embodiment of the invention. 1...Silicon substrate, 2...Reaction chamber,
3...Mask, 31...Chromium film, 6
...kl (CH3) 3 cylinders, 7...
...SiH4 cylinder, 8...He cylinder, 9
...ArF excimer laser light.

Claims (1)

【特許請求の範囲】 1)基体表面に合金成分元素のすべてを含む反応ガスを
接触させ、所期の導電膜パターンと同一の透光パターン
を有するマスクを通して反応エネルギーを与える光を基
体上に照射することによル、反応ガスよシ合金導電膜を
基体上に成長させることを特徴とする合金導電膜パター
ンの形成方法。 2、特許請求の範囲第1項記載の方法において、照射さ
れる光が1000ないし5oooAの波長を有する可視
ないし紫外光であることを特徴とする合金導電膜パター
ンの形成方法◇
[Claims] 1) Contacting the surface of the substrate with a reactive gas containing all of the alloy component elements, and irradiating the substrate with light that imparts reaction energy through a mask having a transparent pattern identical to the intended conductive film pattern. 1. A method for forming an alloy conductive film pattern, which comprises growing an alloy conductive film on a substrate using a reactive gas. 2. A method for forming an alloy conductive film pattern according to claim 1, wherein the irradiated light is visible to ultraviolet light having a wavelength of 1000 to 500A.◇
JP6795284A 1984-04-05 1984-04-05 Formation of electrically conductive alloy film pattern Granted JPS60211075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6795284A JPS60211075A (en) 1984-04-05 1984-04-05 Formation of electrically conductive alloy film pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6795284A JPS60211075A (en) 1984-04-05 1984-04-05 Formation of electrically conductive alloy film pattern

Publications (2)

Publication Number Publication Date
JPS60211075A true JPS60211075A (en) 1985-10-23
JPH0114314B2 JPH0114314B2 (en) 1989-03-10

Family

ID=13359791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6795284A Granted JPS60211075A (en) 1984-04-05 1984-04-05 Formation of electrically conductive alloy film pattern

Country Status (1)

Country Link
JP (1) JPS60211075A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0255454A2 (en) * 1986-07-26 1988-02-03 Nihon Shinku Gijutsu Kabushiki Kaisha Apparatus for chemical vapor deposition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LASER PHOTO DEPOSITION OF METAL FILMS WITH MICROSCOPIC FEATURES T. F. DEUTSCH ETAL=1979 *
VACCUM ULTRAVIOLET DRIVEN CHEMICAL VAPOR DESPOSITION OF LOCALIZED ALUMINUM THIN FILMS A. R. CALLOWAY. ET AL=1983 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0255454A2 (en) * 1986-07-26 1988-02-03 Nihon Shinku Gijutsu Kabushiki Kaisha Apparatus for chemical vapor deposition

Also Published As

Publication number Publication date
JPH0114314B2 (en) 1989-03-10

Similar Documents

Publication Publication Date Title
US4615904A (en) Maskless growth of patterned films
JP2527890B2 (en) Mask, manufacturing method thereof, and method of laser processing target substrate
JP2002169265A (en) Photomask blank and method of manufacturing photomask blank
EP0020455A1 (en) Arrangement with radiation window or mask structure.
JPS5851412B2 (en) Microfabrication method for semiconductor devices
JPS60211075A (en) Formation of electrically conductive alloy film pattern
US5082695A (en) Method of fabricating an x-ray exposure mask
JPH04370925A (en) Mask for laser annealing, laser annealing method and device
JPS59208065A (en) Depositing method of metal by laser
JPS60211076A (en) Formation of electrically conductive multilayer film pattern
JPS60211077A (en) Formation of electrically conductive alloy film
JPH01104776A (en) Precipitation of predetermined fine structure by laser beam
JPH0855790A (en) Resist pattern formation method and reflection preventive film formation method
JPS60211860A (en) Forming method of multilayer conductive film pattern
US5177773A (en) X-ray mask and method for producing same
US4936252A (en) Equipment for manufacturing semiconductor devices
GB2131608A (en) Fabricating semiconductor circuits
JPH0855791A (en) Resist pattern formation method and reflection preventive film formation method
JPH0915831A (en) Manufacture of exposing mask
JPH0114313B2 (en)
JPS60178622A (en) Manufacture of semiconductor device
Donaghey et al. Characterization of GaAs substrates and epitaxial GaAs 1− x P x layers by divergent x-ray beam diffraction
JP2763658B2 (en) Metal thin film formation method
JPS6112868A (en) Formation of thin film by irradiation of laser
JP2897691B2 (en) Resist pattern forming method, antireflection film forming method, antireflection film, and semiconductor device