JPH0114314B2 - - Google Patents

Info

Publication number
JPH0114314B2
JPH0114314B2 JP59067952A JP6795284A JPH0114314B2 JP H0114314 B2 JPH0114314 B2 JP H0114314B2 JP 59067952 A JP59067952 A JP 59067952A JP 6795284 A JP6795284 A JP 6795284A JP H0114314 B2 JPH0114314 B2 JP H0114314B2
Authority
JP
Japan
Prior art keywords
substrate
conductive film
alloy
light
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59067952A
Other languages
Japanese (ja)
Other versions
JPS60211075A (en
Inventor
Akinori Shimizu
Misao Saga
Kazuo Matsuzaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP6795284A priority Critical patent/JPS60211075A/en
Publication of JPS60211075A publication Critical patent/JPS60211075A/en
Publication of JPH0114314B2 publication Critical patent/JPH0114314B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/047Coating on selected surface areas, e.g. using masks using irradiation by energy or particles

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、例えばAlとSiの合金などからなる
合金導電膜パターンを基体上に形成する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a method for forming an alloy conductive film pattern made of, for example, an alloy of Al and Si on a substrate.

〔従来技術とその問題点〕[Prior art and its problems]

Al導電膜パターンは半導体装置のSi基板上の
配線等に多く用いられるが、AlがSiと合金して
アロイスパイクが生じ、内部接合を貫通して所望
の特性が得られないことがある。従つて予めAl
にSiを合金させて導電膜を形成し、基板のSiが合
金するのを防止することが行われる。あるいは
Alはエレクトロマイグレーシヨンを起こしやす
いので、その対策としてAl−Cu合金あるいはAl
−Si−Cu合金により導電膜を形成することもあ
る。このような合金導電膜の形成は、従来蒸着法
やスパツタリング法で行われるのが一般的であつ
た。しかしスパツタリングは言うに及ばず、蒸着
法でさえも導電膜の構成原子がかなり大きな運動
エネルギーを持つて基体に衝突するために、基体
に損傷を与えるという現象があり、特にシリコン
基体の場合には基板に作り込まれてデバイスの特
性を劣化させる問題がある。そのため、蒸着ある
いはスパツタリング工程後に必ずアニール工程を
施さねばならなかつた。また、これらの方法で
は、たとえマスクを使用しても堆積粒子がマスク
の下側に廻り込むため、μm程度の微細なパター
ンを堆積工程と同時に形成することは不可能であ
り、堆積後のリングライフ工程が必須であつた。
さらに、例えばSi基板上のAl−Si合金導電膜パ
ターンにおいては、基板との界面における合金組
成が重要であり、Si濃度が高すぎると接触抵抗が
高くなり、Si濃度が低いとアロイスパイクの発生
を阻止することができないので、この領域の合金
組成を精密に制御しなければならず、それより上
側の層では電気抵抗の減少のためむしろSi濃度の
低いことが望ましい。しかし従来の方法では、膜
中の成分元素濃度をそのように微妙に変化させる
ことは困難であつた。
Al conductive film patterns are often used for wiring on Si substrates of semiconductor devices, but alloy spikes occur when Al alloys with Si, which may penetrate internal junctions and make it impossible to obtain desired characteristics. Therefore, Al in advance
A conductive film is formed by alloying Si with Si to prevent the Si of the substrate from being alloyed. or
Al is prone to electromigration, so as a countermeasure, use Al-Cu alloy or Al
-A conductive film may be formed using a Si-Cu alloy. Formation of such an alloy conductive film has conventionally been generally performed by a vapor deposition method or a sputtering method. However, not to mention sputtering, but even with vapor deposition, the constituent atoms of the conductive film collide with the substrate with considerable kinetic energy, causing damage to the substrate, especially in the case of silicon substrates. There is a problem that it is built into the substrate and deteriorates the characteristics of the device. Therefore, an annealing process must be performed after the vapor deposition or sputtering process. In addition, in these methods, even if a mask is used, the deposited particles go around under the mask, so it is impossible to form micrometer-sized patterns at the same time as the deposition process. Life processes were essential.
Furthermore, for example, in an Al-Si alloy conductive film pattern on a Si substrate, the alloy composition at the interface with the substrate is important; if the Si concentration is too high, the contact resistance will be high, and if the Si concentration is low, alloy spikes will occur. Therefore, the alloy composition in this region must be precisely controlled, and it is preferable that the Si concentration in the layer above it be low in order to reduce electrical resistance. However, with conventional methods, it has been difficult to subtly change the concentration of component elements in the film.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述の欠点を除去して基体上
の合金導電膜の微細なパターンを基体へ好ましく
ない影響を及ぼすことなく実施でき、また膜中の
成分元素の濃度の微妙な調整が可能な方法を提供
することを目的とする。
It is an object of the present invention to eliminate the above-mentioned drawbacks, to make it possible to form a fine pattern of an alloy conductive film on a substrate without adversely affecting the substrate, and to make it possible to finely adjust the concentration of component elements in the film. The purpose is to provide a method for

〔発明の要点〕[Key points of the invention]

本発明は、基体表面に合金成分元素のすべてを
含む反応ガスを接触させ、所期の導電膜パターン
と同一の透光パターンを有するマスクを通して反
応エネルギーを与える光を基体上に照射すること
により、反応ガスより合金導電膜を基体上に成長
させることによつて上記の目的を達成するもので
ある。照射光としては、必要な反応エネルギーに
対応する波長より短いが、吸収が著しくなるほど
短くない光が望ましく、そのため1000〜6000Åの
波長の可視乃至紫外領域の光が有効に用いられ
る。
In the present invention, the surface of the substrate is brought into contact with a reactive gas containing all of the alloy component elements, and the substrate is irradiated with light that imparts reaction energy through a mask having the same light-transmitting pattern as the intended conductive film pattern. The above object is achieved by growing an alloy conductive film on a substrate using a reactive gas. As the irradiation light, it is desirable that the wavelength be shorter than the wavelength corresponding to the required reaction energy, but not so short that absorption becomes significant. Therefore, light in the visible to ultraviolet region with a wavelength of 1000 to 6000 Å is effectively used.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施のための装置を示す第1図
を引用してシリコン基体上の酸化シリコン膜の上
にシリコン合有アルミニウム配線パターンを形成
する実施例について説明する。1μm厚さの酸化
シリコン膜を被着したシリコン基板1を反応室2
内に収容し、その直上1mmの位置にマスク3を配
置する。マスク3は、例えば石英板にクロム膜3
1を遮光部とする透光パターンが所望の配線パタ
ーンと同一形状を有するものである。反応室2内
を真空ポンプ4により排気し、他側よりマスフロ
ーメータ5により流量制御された100ml/minの
Al(CH33ガスをボンベ6より、10ml/minの
SiH4ガスをボンベ7より、またキヤリヤガスと
して3000ml/minのHeガスをボンベ8より導入
して100Torr前後の圧力に保つ。そこへArFエキ
シマレーザの波長1930Åの発振光9を鏡10、レ
ンズ11を経てマスク3を通して基板1上に
5MW/cm2のパワー密度で焦点を結ぶように入射
させる。マスク位置でのパワー密度は、基板上で
のパワー密度の1/10以下と低いため、反応生成物
はマスク3の上には堆積せず、シリコン基板1の
上にのみマスクの透光パターン通りの1%のシリ
コンを含むアルミニウム・シリコン合金からなる
配線パターンが形成される。
Hereinafter, an embodiment in which a silicon-containing aluminum wiring pattern is formed on a silicon oxide film on a silicon substrate will be described with reference to FIG. 1 showing an apparatus for implementing the present invention. A silicon substrate 1 coated with a 1 μm thick silicon oxide film is placed in a reaction chamber 2.
The mask 3 is placed 1 mm directly above the mask. The mask 3 is, for example, a chromium film 3 on a quartz plate.
A light-transmitting pattern with 1 as a light-shielding portion has the same shape as a desired wiring pattern. The inside of the reaction chamber 2 is evacuated by a vacuum pump 4, and a flow rate of 100 ml/min is controlled by a mass flow meter 5 from the other side.
Al(CH 3 ) 3 gas from cylinder 6 at 10ml/min
SiH 4 gas is introduced from cylinder 7, and He gas at 3000 ml/min as a carrier gas is introduced from cylinder 8, and the pressure is maintained at around 100 Torr. Then, the oscillation light 9 of the ArF excimer laser with a wavelength of 1930 Å is passed through the mirror 10, the lens 11, and the mask 3 onto the substrate 1.
The beam is focused at a power density of 5MW/cm 2 . Since the power density at the mask position is low, less than 1/10 of the power density on the substrate, the reaction products are not deposited on the mask 3 and are only deposited on the silicon substrate 1 according to the transparent pattern of the mask. A wiring pattern made of an aluminum-silicon alloy containing 1% silicon is formed.

本発明は上記の実施例にとどまらず、使用ガ
ス、使用光源を変えることにより、Al−Si−Cu
合金、Al−Cu合金あるいはその他の各種金属の
組合せからなる合金の導電膜パターンを容易に形
成することができる。反応ガスとしては、各成分
金属をそれぞれ構成元素とするアルキル金属ガス
を混合することが有効である。膜厚方向において
合金成分濃度を変化させようとするときは、各成
分金属に対する配合ガスの混合比、すなわち流量
比を調整することにより容易に可能である。
The present invention is not limited to the above embodiments, but by changing the gas and light source used, Al-Si-Cu
A conductive film pattern of an alloy, an Al-Cu alloy, or a combination of various other metals can be easily formed. As the reaction gas, it is effective to mix alkyl metal gases having each component metal as a constituent element. When attempting to change the alloy component concentration in the film thickness direction, this can be easily done by adjusting the mixing ratio of the blended gas, that is, the flow rate ratio, for each component metal.

〔発明の効果〕〔Effect of the invention〕

本発明は、所望パータンを透光パターンとする
マスクを透過した光を励起光源とする光CVDを
用いて微細な合金導電膜パターンも堆積と同時に
形成可能にしたもので、合金の構成原子が基体に
衝突しないので損傷を与えることもなく、また生
ずる導電膜は段差被覆性が優れているため、半導
体装置をはじめ各種製品の製造に極めて有効に適
用できる。
The present invention makes it possible to form fine alloy conductive film patterns at the same time as deposition using optical CVD using light transmitted through a mask with a desired pattern as a light-transmitting pattern as an excitation light source. Since the conductive film does not collide with other objects, no damage is caused, and the resulting conductive film has excellent step coverage, so it can be extremely effectively applied to the manufacture of various products including semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のための装置の断面
図である。 1……シリコン基板、2……反応室、3……マ
スク、31……クロム膜、6……Al(CH33ボン
ベ、7……SiH4ボンベ、8……Heボンベ、9…
…ArFエキシマレーザ光。
FIG. 1 is a cross-sectional view of an apparatus for one embodiment of the invention. 1...Silicon substrate, 2...Reaction chamber, 3...Mask, 31...Chromium film, 6...Al(CH 3 ) 3 cylinder, 7...SiH 4 cylinder, 8...He cylinder, 9...
...ArF excimer laser light.

Claims (1)

【特許請求の範囲】 1 基体表面に合金成分元素のすべてを含む反応
ガスを接触させ、所期の導電膜パターンと同一の
透光パターンを有するマスクを通して反応エネル
ギーを与える光を基体上に照射することにより、
反応ガスより合金導電膜を基体上に成長させるこ
とを特徴とする合金導電膜パターンの形成方法。 2 特許請求の範囲第1項記載の方法において、
照射される光が1000ないし6000Åの波長を有する
可視ないし紫外光であることを特徴とする合金導
電膜パターンの形成方法。
[Claims] 1. The surface of the substrate is brought into contact with a reactive gas containing all of the alloying elements, and the substrate is irradiated with light that imparts reaction energy through a mask having the same light-transmitting pattern as the intended conductive film pattern. By this,
A method for forming an alloy conductive film pattern, which comprises growing an alloy conductive film on a substrate using a reactive gas. 2. In the method described in claim 1,
A method for forming an alloy conductive film pattern, characterized in that the irradiated light is visible or ultraviolet light having a wavelength of 1000 to 6000 Å.
JP6795284A 1984-04-05 1984-04-05 Formation of electrically conductive alloy film pattern Granted JPS60211075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6795284A JPS60211075A (en) 1984-04-05 1984-04-05 Formation of electrically conductive alloy film pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6795284A JPS60211075A (en) 1984-04-05 1984-04-05 Formation of electrically conductive alloy film pattern

Publications (2)

Publication Number Publication Date
JPS60211075A JPS60211075A (en) 1985-10-23
JPH0114314B2 true JPH0114314B2 (en) 1989-03-10

Family

ID=13359791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6795284A Granted JPS60211075A (en) 1984-04-05 1984-04-05 Formation of electrically conductive alloy film pattern

Country Status (1)

Country Link
JP (1) JPS60211075A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4924807A (en) * 1986-07-26 1990-05-15 Nihon Shinku Gijutsu Kabushiki Kaisha Apparatus for chemical vapor deposition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LASER PHOTO DEPOSITION OF METAL FILMS WITH MICROSCOPIC FEATURES T. F. DEUTSCH ETAL=1979 *
VACCUM ULTRAVIOLET DRIVEN CHEMICAL VAPOR DESPOSITION OF LOCALIZED ALUMINUM THIN FILMS A. R. CALLOWAY. ET AL=1983 *

Also Published As

Publication number Publication date
JPS60211075A (en) 1985-10-23

Similar Documents

Publication Publication Date Title
US4615904A (en) Maskless growth of patterned films
US4608117A (en) Maskless growth of patterned films
US4948623A (en) Method of chemical vapor deposition of copper, silver, and gold using a cyclopentadienyl/metal complex
EP0097819B1 (en) Photo deposition of metals onto substrates
US5459098A (en) Maskless laser writing of microscopic metallic interconnects
EP0909985A1 (en) Photolithographic processing method and apparatus
Dupuy et al. Laser induced deposition of copper from (triethylphosphine) cyclopentadienylcopper (I)
JPH0627327B2 (en) Method for depositing Group IB metal
EP0466320B1 (en) Process for preparing a semiconductor device including the selective deposition of a metal
JPH0114314B2 (en)
JPS6066896A (en) Method of bonding metal copper on substrate
JPH036992B2 (en)
US4859279A (en) Method for prescribed, structured deposition of micro-structures with laser light
JPH0851072A (en) Forming method of resist pattern and antireflection film
JPH0363209B2 (en)
JPS60211076A (en) Formation of electrically conductive multilayer film pattern
JPS60211860A (en) Forming method of multilayer conductive film pattern
JPH0855791A (en) Resist pattern formation method and reflection preventive film formation method
JPH0855790A (en) Resist pattern formation method and reflection preventive film formation method
JP2763658B2 (en) Metal thin film formation method
JPH0654756B2 (en) Thin film formation method
JPH08115903A (en) Manufacture of semiconductor, and plasma etching device
EP0459700A2 (en) Wiring forming method for semiconducteur device
JP3110472B2 (en) Selective metal deposition method
JP2897691B2 (en) Resist pattern forming method, antireflection film forming method, antireflection film, and semiconductor device