JPS60210628A - Supplementary solvent accelerator for converting polyamide-acid solution to polyimide - Google Patents

Supplementary solvent accelerator for converting polyamide-acid solution to polyimide

Info

Publication number
JPS60210628A
JPS60210628A JP4253185A JP4253185A JPS60210628A JP S60210628 A JPS60210628 A JP S60210628A JP 4253185 A JP4253185 A JP 4253185A JP 4253185 A JP4253185 A JP 4253185A JP S60210628 A JPS60210628 A JP S60210628A
Authority
JP
Japan
Prior art keywords
solvent
polyimide
polyamide
minutes
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4253185A
Other languages
Japanese (ja)
Inventor
ポール・デイ・フレイヤー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rogers Corp
Original Assignee
Rogers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rogers Corp filed Critical Rogers Corp
Publication of JPS60210628A publication Critical patent/JPS60210628A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/22Post-esterification treatments, including purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • C08G73/1032Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はポリアミド−酸溶液のポリイミドへの変換を促
進するポリアミド−酸溶液のための補助溶媒(co−s
olvent )促進剤に関する。かかるポリイミドに
はホモポリマーおよびコポリマー例えばポリアミド−イ
ミド、ポリエステル−イミド、ポリイミド−アミド−イ
ミド等のみならずかかるポリイミドの混合物を含む。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a co-solvent (co-s
(olvent) promoter. Such polyimides include homopolymers and copolymers such as polyamide-imides, polyester-imides, polyimide-amide-imides, etc., as well as mixtures of such polyimides.

ポリイミドはそれらの比較的高い耐熱性により広い用途
が見出されている。ポリイミドは270〜290℃の温
度を含むろう接条件への短時間曝露に耐えることができ
ることは良く知られている。更にポリイミドは、それか
適切に熱処理されている限り約260℃までの連続温度
を有する環境で通常使用できる。
Polyimides have found wide use due to their relatively high heat resistance. It is well known that polyimides can withstand short-term exposure to brazing conditions including temperatures of 270-290<0>C. Additionally, polyimide can normally be used in environments having continuous temperatures up to about 260°C, as long as it is properly heat treated.

典型的には縮合ポリイミドは溶媒中に溶解したポリアミ
ド−酸から作られる。溶媒は成形加工および/またはフ
ィルムまたは接着被覆を助けるが、不幸にして普通に使
用される溶媒は約150〜200℃で沸とうする。従っ
て適切に除去しない限り、残存溶媒が成形加工中または
その後(即ち150〜200℃以上の温度で)にガス発
生し、これは空洞、接着破壊および望ましがらぬ寸法変
化(収縮または歪)の如き欠陥を生ぜしめることがある
。例えばこの残存溶媒はろう接または他の高温適用中望
ましからぬガスの発生を生ぜしめる。結果として、長時
間および/または高温(しばしば少なくとも300℃ま
での)での厳格な乾燥が従来技術の代表的例である。ま
た大きさにおいて特に大面積(即ち100dまたはそれ
以上)のため、300”C付近でポリイミド結合した積
層体を作るとき圧力の均一性が問題となる。不幸にして
、不滑面を有する圧縮しうるプレスパッド例えばシリコ
ーンゴムは300℃の熱に耐えることができず、一方力
ラスマットは積層体表面に望ましがらぬ可視凹みを残す
。従って積層体製造のための必要結合温度を低下させる
ことは有利である。
Typically, condensed polyimides are made from polyamide-acid dissolved in a solvent. Solvents aid in the molding process and/or film or adhesive coating; unfortunately, commonly used solvents boil at about 150-200°C. Therefore, unless properly removed, residual solvent will outgas during or after the molding process (i.e. at temperatures above 150-200°C), which can lead to cavities, adhesive failure and undesired dimensional changes (shrinkage or distortion). This can lead to defects such as: For example, this residual solvent can cause undesirable gas evolution during brazing or other high temperature applications. As a result, rigorous drying for long periods of time and/or at high temperatures (often up to at least 300° C.) is typical of the prior art. Also, due to the particularly large area size (i.e. 100 d or more), pressure uniformity is an issue when making polyimide bonded laminates near 300"C. Press pads, such as silicone rubber, cannot withstand heat of 300°C, while press mats leave undesirable visible indentations on the laminate surface.Therefore, lowering the required bonding temperature for laminate production is not possible. It's advantageous.

ポリイミドへのポリアミド−酸溶液の変換に伴う他の問
題も当業者には良く知られている。
Other problems associated with converting polyamide-acid solutions to polyimide are also well known to those skilled in the art.

例えば低温での反応速度(即ち処理時間)が望ましから
ぬ長いものである。米国特許第3410826号には、
ポリアミド−酸のポリイミドへの変換を促進するため脱
水剤を使用することが記載されている。しかしながらか
かる脱水剤は、少なくとも300℃の温度に加熱したと
き正常なポ。
For example, reaction rates (ie processing times) at low temperatures are undesirably long. U.S. Patent No. 3,410,826 includes
The use of dehydrating agents to promote the conversion of polyamide-acid to polyimide has been described. However, such dehydrating agents exhibit normal porosities when heated to temperatures of at least 300°C.

リイミドに容易に変化するポリイソイミドの実質的な割
合を生せしめることか見出された。それにも拘らずこの
特許は、何時間という時間の代りに何分という時間で、
ポリアミド−酸のポリイミドへの急速変換をするための
本発明にとって知られている唯一の方法を示している。
It has been found that a substantial proportion of polyisoimide can be easily converted to liimide. Nevertheless, this patent uses minutes instead of hours,
Figure 2 illustrates the only method known to the present invention for rapid conversion of polyamide-acid to polyimide.

この特許によって教示された方法では可塑剤は使用され
ていない。
No plasticizers are used in the method taught by this patent.

米国特許第3449193号には「ポリアミン酸」接着
剤を使用して二つのバリヤ一層(例えば銅箔に対するポ
リイミドフィルム)を結合する方法が記載されている。
US Pat. No. 3,449,193 describes a method of bonding two barrier layers (eg, polyimide film to copper foil) using a "polyamic acid" adhesive.

この記載では、同時に生起する溶媒除去と反応の相対速
度を均衡させる必要を強調している。特許に記載された
「後硬化」と称される時間を消費する工程は、約250
丁から450°Fへとゆつ(りとした速度で温度を上昇
させることを必要とし、上記曝露は3〜8時間継続させ
る必要がある。この特許によれば、これはポリイミド(
アミド)接着剤を硬化させ、残存溶媒を除去するのに充
分であり、残存溶媒は高温に曝露する前に除去しないと
結合面積部に破壊を拡大させる。
This description emphasizes the need to balance the relative rates of simultaneous solvent removal and reaction. The time-consuming step described in the patent, called "post-curing," takes about 250
This requires increasing the temperature at a slow rate from 100 to 450 degrees Fahrenheit, and the exposure must last from 3 to 8 hours. According to the patent, this
amide) is sufficient to cure the adhesive and remove any residual solvent, which, if not removed before exposure to high temperatures, will propagate failure to the bond area.

従って本発明の目的は成形加工中および加工後にガス発
生を防止するよう充分に高い沸点を有する処理補助溶媒
を提供することにある。
It is therefore an object of the present invention to provide a processing auxiliary solvent that has a sufficiently high boiling point to prevent gas evolution during and after the forming process.

本発明の別の目的は積層体を作るために必要な結合温度
を低下させる処理補助溶媒を提供することにある。
Another object of the present invention is to provide a processing aid solvent that reduces the bonding temperatures required to make the laminate.

更に本発明の別の目的は低沸点溶媒の除去速度を増大さ
せる処理補助溶媒を提供することにある。
Yet another object of the present invention is to provide a processing co-solvent that increases the rate of removal of low boiling point solvents.

本発明の上記およびその他の目的および利点は以下の説
明を見て容易に理解されるであろう。
The above and other objects and advantages of the present invention will be readily understood upon review of the following description.

最近まで、極性非プロトン(即ち活性水素原子に欠ける
)溶媒(それぞれ使用される)がポリアミド−酸のポリ
イミドへの変換中普通に使用されていた。代表的な例に
は、ジメチルホルムアミド(DMF、沸点153℃)、
ジメチルアセトアミド(DMA0.沸点165℃)、ジ
メチルスルホキサイド(DMSO,沸点189℃)、お
よびN−メチル−2−ピロリドン(NMP、沸点202
℃)を含んでいた。しかしながらかかる溶媒の大部分は
それらの沸点以上で毒性煙霧を放出することが見出され
た。
Until recently, polar aprotic (ie, lacking active hydrogen atoms) solvents, respectively, were commonly used during the conversion of polyamide-acids to polyimides. Typical examples include dimethylformamide (DMF, boiling point 153°C);
Dimethylacetamide (DMA0, boiling point 165°C), dimethyl sulfoxide (DMSO, boiling point 189°C), and N-methyl-2-pyrrolidone (NMP, boiling point 202°C).
℃). However, it has been found that most such solvents emit toxic fumes above their boiling points.

更に最近、代表的なより極性な溶媒よりも容易に揮発す
る溶媒として毒性の少ないエーテル° が発表された。
More recently, less toxic ethers have been introduced as solvents that volatilize more easily than typical more polar solvents.

例えば米国特許第4065345号にはエーテル溶媒を
使用してポリイミド接着結合を作る方法が記載されてい
る。
For example, US Pat. No. 4,065,345 describes a method for making polyimide adhesive bonds using ether solvents.

米国特許第4094862号には、典型的には250℃
より高いそのガラス転移温度以上で更に処理でき(即ち
熱および圧力で流動せしめる)、空隙なしに熱可塑性ポ
リイミドフィルムを作るため、ジメチルホルムアミド(
DMr )または14 、 N−ジメチルアセトアミド
(DMA、 )の如き極性溶媒を使用する方法が記載さ
れている。
U.S. Pat. No. 4,094,862 typically states that
Dimethylformamide (
Methods using polar solvents such as DMr) or 14,N-dimethylacetamide (DMA, ) have been described.

全体の処理時間は約4時間を越える。The total processing time is approximately over 4 hours.

以上述べた先行技術の全てが単一溶媒ベースを利用する
ポリアミド−酸のポリイミド変換反応へを含んでいるこ
とが認められるであろう。
It will be appreciated that all of the prior art described above involves polyamide-acid to polyimide conversion reactions utilizing a single solvent base.

本発明によれば、主成分としてエーテル溶媒を基にした
ポリアミド−酸溶液に一定の極性非プロトン溶媒を添加
すると、発泡またはブリスター形成することなく低沸点
溶媒(即ちエーテル)の除去速度を増大し、ポリイミド
への変換速度を大きく増大することを意外にも見出した
。従って本発明は成形加工中および後にガス発生を阻止
するよう充分に高い沸点も有する補助溶媒促進剤を含む
。本発明の補助溶媒促進剤はまた例えば積1一体の結合
中成彫加工温度を低下させる。従って従来の反応系とは
異なり、本発明は2溶媒系を提供する。
According to the present invention, the addition of a polar aprotic solvent to a polyamide-acid solution based on an ether solvent as the main component increases the removal rate of low-boiling solvents (i.e., ethers) without foaming or blistering. , it was surprisingly found that the rate of conversion to polyimide is greatly increased. Accordingly, the present invention includes a cosolvent promoter that also has a sufficiently high boiling point to prevent gas generation during and after the molding process. The co-solvent promoters of the present invention also reduce processing temperatures during bonding, for example, in integral parts. Therefore, unlike conventional reaction systems, the present invention provides a two-solvent system.

現在まで上述した意外なそして望ましい結果を提供する
ことが見出された補助溶媒には、N。
Cosolvents that have been found to date to provide the unexpected and desirable results described above include N.

N−ジメチルアセトアミド(DMAc)およびピロリド
ン基溶媒例えば250℃以上の正常沸点を有するN−メ
チル−2−ピロリドン(IIIMP )、特にN−シク
ロへキシル−2−ピロリドン(CHP)を含む。
N-dimethylacetamide (DMAc) and pyrrolidone-based solvents such as N-methyl-2-pyrrolidone (IIIMP) with a normal boiling point above 250°C, especially N-cyclohexyl-2-pyrrolidone (CHP).

本発明においてポリイミドなる語は、ホモポリマーおよ
びコポリマー例えばポリイミド−イミド、ポリアミド−
イミド、ポリエステル−イミド、ポリイミド−アミド−
イミド等のみならずかかるポリイミドの混合物を包含さ
せるため意味することは理解すべきである。
In the present invention, the term polyimide refers to homopolymers and copolymers such as polyimide-imide, polyamide-
imide, polyester-imide, polyimide-amide
It is to be understood that what is meant to include mixtures of such polyimides as well as imides and the like.

更に使用する高沸点溶媒促進剤の量は、約0.5〜約1
0重鰍%、好ましくは約3〜約10重量%、更に好まし
くは5〜10屯量%であるべきであることも判った。
Additionally, the amount of high boiling solvent promoter used ranges from about 0.5 to about 1
It has also been found that there should be 0 weight percent, preferably about 3 to about 10 weight percent, more preferably 5 to 10 weight percent.

ここに示したより極性の非プロトン溶媒の中、CUPが
好ましい、何故ならばそれは低揮発性高温処理助剤とし
ても作用するからである。これについては1983年1
1月14日出願の米国特許出願第550784号を参照
されたい、この出願明細書の記載は引用してここに組入
る。
Among the more polar aprotic solvents listed here, CUP is preferred because it also acts as a low volatility high temperature processing aid. Regarding this, 1983
See US Patent Application No. 550,784, filed January 14, the disclosure of which is incorporated herein by reference.

エーテル溶媒基ポリアミド−酸のポリイミドへの変換に
関する限り、IMFとCUPの間に大きな差は見られな
かったこと知るべきである。しかしながら現時点ではC
UPがその尚沸点および続く成形加工操作中のその望ま
しい可塑化効果のため尚好ましい− 下記実施例は本発明を更に説明するために掲げる。ポリ
アミド−酸(LARC−2ポリアミド−酸)を、一つが
低沸点溶媒である非プロトンエーテル溶媒の混合物中に
作った。例えはテトラヒドロフラン(THF、沸点66
℃)およびジグリム(DG、沸点162℃)の1:1混
合物は、温度が反応開始まで上昇する前に、約半分のエ
ーテル溶媒の容易な除去を可能にした。しかしながら本
発明の補助溶媒促進剤の望ましい効果および予期せさる
結果は、TOPを使用しなかったとき、即ちジグリムの
みのときでも観察された。
It should be noted that no significant difference was observed between IMF and CUP as far as the conversion of ether solvent group polyamide-acid to polyimide is concerned. However, at present C.
UP is even more preferred due to its higher boiling point and its desirable plasticizing effect during subsequent molding operations - the following examples are included to further illustrate the invention. A polyamide-acid (LARC-2 polyamide-acid) was made in a mixture of aprotic ether solvents, one of which is a low boiling point solvent. For example, tetrahydrofuran (THF, boiling point 66
A 1:1 mixture of diglyme (DG, boiling point 162°C) allowed easy removal of about half of the ether solvent before the temperature rose to the start of the reaction. However, the desired effects and expected results of the cosolvent promoters of the present invention were also observed when TOP was not used, ie, diglyme alone.

入手したままの、成る場合には表面処理したカプトン(
KAPTON ) フィルムを接着剤で被覆し、種々な
速度で加熱した。離形紙上のフィルムキャストを加熱す
ることによって同様に処理した。
Kapton (as received, with surface treatment if available)
KAPTON) films were coated with adhesive and heated at various speeds. A similar process was performed by heating the film cast on release paper.

下記に示す如く、初期(アミド−酸)基一つについて例
えばl COP分子の理論量より多(加えることは、不
必要であり無駄であることが判った、何故ならば一定の
反応時間および温度での過剰量は蒸発によって単に失わ
れるからである。ポリイミド変換機残存する高沸点補助
溶媒促進剤の蓋は、特に5〜10%の好ましい範囲での
cupにとって、加えた初期の量よりも処理条件によっ
て決る。残存する補助溶媒促進剤の量は、その固有の低
揮発性のため自己限定性にする傾向がある。この自己限
定性現象は、形成される高ガラス転移温度ポリイミドが
その易動度を更に低下させるため提供される。最後に重
合体中での相互作用性溶媒分子の拡散は濃度依存性であ
るため、補助溶媒の拡散速度は濃度の低下と共に低下す
る。
As shown below, adding more than the stoichiometric amount of e.g. This is because the excess amount in the polyimide converter is simply lost by evaporation. The amount of cosolvent promoter that remains tends to be self-limiting due to its inherent low volatility. This self-limiting phenomenon is due to the high glass transition temperature polyimide that is formed due to its mobility. Finally, since the diffusion of interactive solvent molecules in the polymer is concentration dependent, the diffusion rate of the cosolvent decreases with decreasing concentration.

表1〜3は溶媒損失についてのCHPji5よびDMA
oの効果を定量し、恒温条件下でのポリエーテルへの変
換は標準赤外分光分析法で測定する。
Tables 1-3 show CHPji5 and DMA for solvent loss.
The effect of o is quantified and the conversion to polyether under isothermal conditions is determined by standard infrared spectroscopy.

DMAcを用いたより大なる溶媒損失はDMAC自体お
よびジグリムの損失によって生せしめられ、エーテル溶
媒を除去するに当ってcapより有効であるためではな
い。しかしながら少蓋のより極性の溶媒の存在はエーテ
ル溶媒を除去するのをより容易にすると結論できる。
The greater solvent loss with DMAc is caused by the loss of DMAC itself and diglyme, and not because it is more effective than cap in removing ether solvent. However, it can be concluded that the presence of a smaller amount of more polar solvent makes it easier to remove the ether solvent.

例えば表1は補助溶媒促進剤の添加無しの溶媒損失%詔
よび変換%を示し、一方表2および3は本発明によりそ
れぞれDMA010%およびCUP I Q%に対する
溶媒損失%および変換%を示す。
For example, Table 1 shows the % solvent loss and % conversion without the addition of co-solvent promoter, while Tables 2 and 3 show the % solvent loss and % conversion for DMA010% and CUP IQ%, respectively, according to the present invention.

表 1 1 85℃ 20分 00.0 2.02 155℃ 
24分 24.0 20.23 155℃ 120分 
37.0 35.84 165℃ 12分 31.7 
26.05 165℃ 30分 40.0 23.36
 175℃ 6分 43.4 41.27 175℃ 
15分 53.4 48.4表 2 8 85℃ 20分 00.0 2.09 155℃ 
24分 61.5 65.310 155℃ 120分
 71.7 72.311 165℃ 12分 67.
3 75.212 165℃ 30分 73,4 79
.013 175℃ 6分 69.0 74.714 
175℃ 15分 77.5 84.9表 3 15 85℃ 20分 00.0 2.016 155
℃ 24分 56.4 73.617 155℃ 12
0分 70.0 B6.218 165℃ 12分 6
0.1 80.319 165℃ 30分 68.0 
85.520 175℃ 6分 59.1 78.72
1 175℃ 15分 70.0 88.2(繰返し実
験) 69.5 91.5 表4は、非恒温、一定加熱速度条件下ポリアミドー酸の
ポリイミドへの変換についての補助溶媒促進剤の効果を
証するために示す。これらの実験においては、試料はそ
れらを90〜300’C(200〜570°F)の温度
範囲を通して加熱しなからIRによって同時に分析した
。より極性の溶媒なしでは、エーテル溶媒中でのポリイ
ミドへの変換は約175℃(347丁)以下で遅い。全
試料が理論上限としての100%に近づくことから、試
料間の差は高温で本来小さくなる。迅速加熱での遅い変
換は、反応の速度に関し溶媒のより多い損失を反影して
いる。即ち反応についての可塑化効果の損失を反影して
いる。
Table 1 1 85℃ 20 minutes 00.0 2.02 155℃
24 minutes 24.0 20.23 155℃ 120 minutes
37.0 35.84 165℃ 12 minutes 31.7
26.05 165℃ 30 minutes 40.0 23.36
175℃ 6 minutes 43.4 41.27 175℃
15 minutes 53.4 48.4 Table 2 8 85℃ 20 minutes 00.0 2.09 155℃
24 minutes 61.5 65.310 155℃ 120 minutes 71.7 72.311 165℃ 12 minutes 67.
3 75.212 165℃ 30 minutes 73.4 79
.. 013 175℃ 6 minutes 69.0 74.714
175℃ 15 minutes 77.5 84.9Table 3 15 85℃ 20 minutes 00.0 2.016 155
℃ 24 minutes 56.4 73.617 155℃ 12
0 minutes 70.0 B6.218 165℃ 12 minutes 6
0.1 80.319 165℃ 30 minutes 68.0
85.520 175℃ 6 minutes 59.1 78.72
1 175°C 15 minutes 70.0 88.2 (repeated experiment) 69.5 91.5 Table 4 demonstrates the effectiveness of co-solvent promoters on the conversion of polyamic acid to polyimide under non-isothermal, constant heating rate conditions Show for. In these experiments, the samples were simultaneously analyzed by IR while they were heated through a temperature range of 90-300'C (200-570F). Without more polar solvents, conversion to polyimide in ether solvents is slow below about 175°C. Differences between samples naturally become smaller at higher temperatures, since all samples approach the theoretical upper limit of 100%. The slower conversion with rapid heating reflects a higher loss of solvent with respect to the rate of reaction. That is, it reflects the loss of plasticizing effect on the reaction.

非恒温、一定加熱速度実験において゛、CHPを用いぬ
フィルムは300℃に加熱後黄変したことが判った( 
DMAcを用いたものを含む、しかし特にエーテル溶媒
のみの形のフィルムを含む)CCHPを用いると、ポリ
マーにおける酸化劣化の指標である黄色が明確にな(、
殆んどフィルムは無色であった。CHPは、それが強力
に相互作用するため、加水分解それに続く酸化から未反
応アミド−酸基を保護すると考えられる。DMAcは、
多分その低揮発度のため有効性が劣る。
In a non-isostatic, constant heating rate experiment, it was found that the film without CHP turned yellow after being heated to 300°C.
With CCHP (including those with DMAc, but especially in the ether solvent only form), the yellow color, indicative of oxidative degradation in the polymer, becomes clear (
Most of the film was colorless. CHP is believed to protect unreacted amide-acid groups from hydrolysis and subsequent oxidation because of its strong interactions. DMAc is
Probably less effective due to its lower volatility.

CHPは重合体の反応水の拡散を助長し、これによって
加水分解を限定する。
CHP facilitates diffusion of the water of reaction in the polymer, thereby limiting hydrolysis.

上記実施例およびデータから判るように、本発明の極性
非プロトン補助溶媒は、低温でポリアミド−酸/エーテ
ル溶液の変換を促進する作用する。更に好ましい補助溶
媒は、低沸点エーテル溶媒を変換法中容易に除去できる
よう高沸点(即ち約250℃以上)を有する。極性非プ
ロトン補助溶媒は、主エーテル溶媒の沸点を越えてさえ
ポリエーテルイミドへの熱変換およびその除去を促進す
ることを続けることを理解すべきである〇 また本発明の高沸点補助溶媒を使用して、発泡またはブ
リスター形成なしに比較的早い加熱速度を使用できるこ
とも認めるべきである。補助溶媒促進剤は反応速度を使
用した個々の加熱速度を越えさせることも判った。従っ
て装置限定のみで得られる加熱速度を限定する。
As can be seen from the above examples and data, the polar aprotic cosolvents of the present invention act to promote conversion of polyamide-acid/ether solutions at low temperatures. More preferred cosolvents have high boiling points (ie, above about 250° C.) so that low boiling ether solvents can be easily removed during the conversion process. It should be understood that polar aprotic cosolvents continue to promote thermal conversion to polyetherimide and its removal even beyond the boiling point of the primary ether solvent; also using the high boiling cosolvents of the present invention. It should also be recognized that relatively fast heating rates can be used without foaming or blistering. Co-solvent promoters have also been found to increase reaction rates beyond the individual heating rates used. Therefore, the heating rate that can be obtained is limited only by equipment limitations.

好ましい例を示したが、本発明の範囲を逸脱することな
く種々の改変をなしうる。従って本発明例によって限定
されないことを理解すべきである。
Although preferred examples have been shown, various modifications can be made without departing from the scope of the invention. Therefore, it should be understood that the present invention is not limited by the examples.

特許出願人 ロジャース・コーポレイション 手続補正書 事件との関係 yIケc7fl大 4、代理人 頗−1 乙、補tn匍督 別セe呻フチAイ丁のAすて°゛プリリ、ロnセe者は
鋒i (y”lk救更!謳しりし寸ヒむn6リネ1− 7、郡イ奢類州と り70!市(Nlft−麻入彬灼ムヅ
Patent Applicant: Relationship with the Rogers Corporation Procedural Amendment Case The person is Feng i (Y”lk Salvation! Sing Him N6 Line 1-7, County I Luxury State Tori 70! City (Nlft-Mairi Bin Burning Muzu)

Claims (1)

【特許請求の範囲】 1、ポリアミド−酸エーテル溶液のポリイミドへの変換
を促進するためのポリアミド−酸エーテル溶液用補助溶
媒であって、上記補助溶媒が極性非プロトン溶媒である
ことを特徴とする補助溶媒。 2、 上記極性非プロトン溶媒がピロリドン基溶媒であ
る特許請求の範囲第1項記載の補助溶媒。 3、上記ピロリドン基溶媒をN−シクロヘキソルー2−
ピロリドンおよびN−メチルピロリドンからなる群から
選択する特許請求の範囲第2項記載の補助溶媒。 4、上記極性非プロトン溶媒がN、N−ジメチルアセト
アミドである特許請求の範囲141項記載の補助溶媒。 5、補助溶媒の存在量が約0.5〜約10重量%の量で
ある特許請求の範囲第1項記載の補助溶媒。 6、極性非プロトン溶媒をポリアミド−酸/エーテル溶
液と混合し、上記混合溶液を加熱することを特徴とする
ポリアミド−酸/エーテル溶液のポリイミドへの変換を
促進する方法。 7、上記極性非プロトン溶媒がピロリドン基溶媒である
特許請求の範囲第6項記載の方法。 8、 上記ピロリドン基溶媒をN−シクロへキシル−2
−ピロリドン右よびN−メチルピロリドンからなる群か
ら選択する特許請求の範囲第7項記載の方法。 9、上記極性非プロトン溶媒がN、14−ジメチルアセ
トアミドである特許請求の範囲第6項記載の方法。 】0.補助溶媒の存在量が約0.5〜約10重量%の量
である特許請求の範囲第6項記載の方法。
[Claims] 1. A co-solvent for a polyamide-acid ether solution for promoting the conversion of a polyamide-acid ether solution into polyimide, characterized in that the co-solvent is a polar aprotic solvent. Co-solvent. 2. The auxiliary solvent according to claim 1, wherein the polar aprotic solvent is a pyrrolidone-based solvent. 3. The above pyrrolidone-based solvent is replaced with N-cyclohexol-2-
A co-solvent according to claim 2 selected from the group consisting of pyrrolidone and N-methylpyrrolidone. 4. The auxiliary solvent according to claim 141, wherein the polar aprotic solvent is N,N-dimethylacetamide. 5. The co-solvent of claim 1, wherein the co-solvent is present in an amount of about 0.5 to about 10% by weight. 6. A method for promoting the conversion of a polyamide-acid/ether solution into polyimide, which comprises mixing a polar aprotic solvent with the polyamide-acid/ether solution and heating the mixed solution. 7. The method according to claim 6, wherein the polar aprotic solvent is a pyrrolidone-based solvent. 8. The above pyrrolidone-based solvent is replaced with N-cyclohexyl-2
8. The method according to claim 7, wherein the method is selected from the group consisting of -pyrrolidone and N-methylpyrrolidone. 9. The method according to claim 6, wherein the polar aprotic solvent is N,14-dimethylacetamide. ]0. 7. The method of claim 6, wherein the amount of co-solvent present is from about 0.5 to about 10% by weight.
JP4253185A 1984-03-05 1985-03-04 Supplementary solvent accelerator for converting polyamide-acid solution to polyimide Pending JPS60210628A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US58622184A 1984-03-05 1984-03-05
US586221 1984-03-05

Publications (1)

Publication Number Publication Date
JPS60210628A true JPS60210628A (en) 1985-10-23

Family

ID=24344821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4253185A Pending JPS60210628A (en) 1984-03-05 1985-03-04 Supplementary solvent accelerator for converting polyamide-acid solution to polyimide

Country Status (4)

Country Link
JP (1) JPS60210628A (en)
DE (1) DE3507790A1 (en)
FR (1) FR2560601A1 (en)
GB (1) GB2157303A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317049A (en) * 1993-06-21 1994-05-31 Occidental Chemical Corporation Polyimidesiloxane solution and method of coating substrates

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH445846A (en) * 1959-04-01 1967-10-31 Du Pont Process for the production of polyimide molded articles
GB980274A (en) * 1962-01-26 1965-01-13 Du Pont Preparation of polyimides
US3242128A (en) * 1962-07-30 1966-03-22 Du Pont Coating compositions comprising aromatic polyamic acid and solvent therefor with viscosity stabilizing agent therefor
US3342774A (en) * 1964-01-20 1967-09-19 Du Pont Direct preparation of aromatic polyimides
GB1162203A (en) * 1966-04-06 1969-08-20 Nat Res Dev Production of Polyamic Acids and Polyimides
GB1207485A (en) * 1966-11-04 1970-10-07 Nat Res Dev Production of polyamic acids
US3496132A (en) * 1966-05-05 1970-02-17 Gen Electric Viscosity control additives in polyamide acid solutions
US3663510A (en) * 1969-05-08 1972-05-16 Gen Electric Process for producing polyamide coating materials
DE2357297C3 (en) * 1973-11-16 1978-09-21 Akzo Gmbh, 5600 Wuppertal Process for the production of polyamide carboxylic acids

Also Published As

Publication number Publication date
FR2560601A1 (en) 1985-09-06
GB2157303A (en) 1985-10-23
DE3507790A1 (en) 1985-09-12
GB8505493D0 (en) 1985-04-03

Similar Documents

Publication Publication Date Title
JP4957059B2 (en) Polyimide film laminate
JPH0320131B2 (en)
JP5110242B2 (en) Polyimide, polyimide film and laminate
JPH062828B2 (en) Method for manufacturing polyimide film
JPH04331143A (en) Laminate using adnesive that is possible to etch chemically
JPS6330143B2 (en)
JPH04261466A (en) Polyimide film and its manufacture
US5272194A (en) Process for preparing a strengthened polyimide film containing organometallic compounds for improving adhesion
JPH029866B2 (en)
JP2003335874A (en) Polyimide film
JPH0332919B2 (en)
JP2624724B2 (en) Polyimide siloxane composition
JPS60210628A (en) Supplementary solvent accelerator for converting polyamide-acid solution to polyimide
US4639485A (en) Co-solvent accelerator for conversion of polyamide-acid solution to polyimide
JP2005231051A (en) Flexible metal foil/polyimide laminated sheet and its manufacturing method
JPH04351634A (en) Adhesive capable of being chemically etched
JPH0673209A (en) Polyimide film coated with metal salt imoroving adhesive strength
JPS61264023A (en) Adhesive polyimide film
JP2006305966A (en) Laminate and printed wiring board
JPH0578483A (en) Polyimide copolymer
JP2002283369A (en) Method for manufacturing polyimide film
JP2004315601A (en) Polyimide film with improved adhesiveness, its preparation method, and its laminate
JPS6317092B2 (en)
TWI843190B (en) Polyimide film, method for manufacturing the same, multilayer film and electronic component including the same
JPH03177472A (en) Polyimide adhesive sheet and its production