JPS60203251A - Stentless artificial three-lobe valve - Google Patents

Stentless artificial three-lobe valve

Info

Publication number
JPS60203251A
JPS60203251A JP6032584A JP6032584A JPS60203251A JP S60203251 A JPS60203251 A JP S60203251A JP 6032584 A JP6032584 A JP 6032584A JP 6032584 A JP6032584 A JP 6032584A JP S60203251 A JPS60203251 A JP S60203251A
Authority
JP
Japan
Prior art keywords
valve
artificial
leaflet
present
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6032584A
Other languages
Japanese (ja)
Other versions
JPH0355136B2 (en
Inventor
筒井 達夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP6032584A priority Critical patent/JPS60203251A/en
Publication of JPS60203251A publication Critical patent/JPS60203251A/en
Publication of JPH0355136B2 publication Critical patent/JPH0355136B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はステンドレス人工三葉弁に関するものである。[Detailed description of the invention] The present invention relates to a stainless steel artificial trilobular valve.

近年、心臓外科領域においては、術式進歩と種々の人工
材料の開発により飛躍的な発展が認められている。人工
弁の分野においても機械的人工弁や生物人工弁で種々の
改良が加えられ、数多くの弁置換手術が行われている。
In recent years, rapid progress has been observed in the field of cardiac surgery due to advances in surgical techniques and the development of various artificial materials. In the field of artificial valves, various improvements have been made to mechanical and biological valves, and numerous valve replacement surgeries have been performed.

機械的人工弁は耐久性が優れ、構造や材質の改良により
かなり良好なものが得られているが、未だ、血行力学的
に問題があり、且つ血栓形成の課題は解決さnていない
Mechanical prosthetic valves have excellent durability, and improvements in structure and materials have made them quite good, but they still have hemodynamic problems and the problem of thrombus formation has not been solved.

一方生物人工弁では、弁置換後の石灰化、硬化、萎縮、
穿孔など耐久性面で問題がある。
On the other hand, with bioprosthetic valves, calcification, sclerosis, atrophy, and
There are durability issues such as perforation.

高分子材料を用いた生物弁類似の人工三葉弁に関しては
、既に米国特許明細書筒4.222.126号、第4.
265.694号、第4.364.126号、第4.3
64.127号、WP 8:(700617号公報等に
種々の形態が提案されているが、いずれも硬いフレーム
部分及びステント部分を有するために生体弁と同様の動
きをとらすことができなかった。
Regarding artificial three-leaflet valves similar to biological valves using polymeric materials, US Pat.
No. 265.694, No. 4.364.126, No. 4.3
No. 64.127, WP 8: (Various forms have been proposed in Publication No. 700617, etc., but all of them have a rigid frame part and a stent part, so they cannot have the same movement as a biological valve. .

本発明者はかかる問題点を解消すべく、鋭意研究の結果
、本発明に到達したのである。即ち、本発明は、球面又
は円柱を基本とした曲面を有する三葉弁の弁尖部と軟質
縫着部材とが一体化されていることを特徴とする人工三
葉弁である。
In order to solve this problem, the present inventor has arrived at the present invention as a result of intensive research. That is, the present invention is an artificial three-leaflet valve characterized in that the valve leaflets of the three-leaflet valve having a curved surface based on a spherical or cylindrical surface and a soft sewing member are integrated.

次に本発明のステンドレス人工三葉弁を図面を用いて説
明する。
Next, the stainless steel artificial trilobal valve of the present invention will be explained using the drawings.

第1図は本発明の人工弁の全体図、第2図はその平面図
、第3図はその側面図を示す。図中・1は軟質縫着部材
、2は弁尖部、6は縫着部材突出部である。
FIG. 1 is an overall view of the artificial valve of the present invention, FIG. 2 is a plan view thereof, and FIG. 3 is a side view thereof. In the figure, 1 is a soft sewing member, 2 is a valve leaflet, and 6 is a sewing member protrusion.

第4図は従来から提案されている人工弁の基本形体の全
体図で、図中、3は硬いステント部、4はバルキーな縫
着部材、5は弁尖部である。
FIG. 4 is an overall view of the basic configuration of a conventionally proposed artificial valve. In the figure, 3 is a hard stent, 4 is a bulky sewing member, and 5 is a valve leaflet.

第5図は本発明の人工弁を生体に縫着する際の縫着部位
(a、b+c)を示す。第6図は本発明の人工弁を製作
する際に使用するモルト(弁製作用雄型〕の一例である
FIG. 5 shows the sewing site (a, b+c) when the artificial valve of the present invention is sewn onto a living body. FIG. 6 is an example of a mold (male mold for manufacturing a valve) used when manufacturing the artificial valve of the present invention.

縫着部材1は縫合により破損しない柔軟な高分子材料か
らなり、その表面は抗血栓性材料によって被覆されてい
るものである。縫着部材の素材としては例えば、ポリエ
ステル、ポリアミド、ポリプロピレン、ポリスルホン類
から得た織布・編布もしくは不織布を円筒状としたもの
やテフロンのようなフッ素系多孔質材料などから得られ
た円筒状物が用いられ、これらは生体との縫合時に破損
しない材質でおり、しかも、血圧変動に追従可能な程度
の柔軟性を有するものである必要がある。
The suture member 1 is made of a flexible polymeric material that will not be damaged by suturing, and its surface is coated with an antithrombotic material. Examples of materials for the sewing member include cylindrical woven or knitted fabrics or nonwoven fabrics made from polyester, polyamide, polypropylene, and polysulfones, and cylindrical cylindrical pieces made from fluorine-based porous materials such as Teflon. These materials need to be made of materials that will not break when sutured to a living body, and must also have enough flexibility to follow blood pressure fluctuations.

更に縫着部材の表面は抗血栓性材料によって被覆されて
いる。その際に被覆材として用いられる抗血栓性材料と
しては、特に限定はないが、弁尖部と一体になっている
ことの必要上、弁尖部の形成に用いられる材料と同一で
あることが好ましい。
Furthermore, the surface of the suture member is coated with an antithrombotic material. There are no particular limitations on the antithrombotic material used as the covering material in this case, but it is preferable that it be the same material used to form the valve leaflet, as it needs to be integrated with the valve leaflet. preferable.

また本発明の人工弁の特徴の1つとして縫着部材1の3
つの突出部6が血圧の変化に応じてその径を変化させる
ことから、被覆材として用いられる抗血栓性材料は弾性
体であることが好ましく、その1例としてセグメント化
ポリエーテルウレタン系材料が通常用いられる。
Further, as one of the features of the artificial valve of the present invention, 3 of the sewing members 1
Since the two protrusions 6 change their diameters in response to changes in blood pressure, the antithrombotic material used as the dressing is preferably an elastic material, and one example of this is usually a segmented polyether urethane material. used.

弁尖部2は球面又は円柱を基本型とした曲面を有する三
葉弁からなり、これは縫着部材1に接合部のない状態で
一体化されている。素材としては通常、柔軟な抗血栓性
材料であるセグメント化ポリエーテルウレタン系材料が
好ましく用いられる。
The valve leaflet portion 2 consists of a three-leaflet valve having a curved surface with a basic shape of a sphere or cylinder, and is integrated with the sewing member 1 without any joints. As the material, a segmented polyether urethane-based material, which is a flexible antithrombotic material, is usually preferably used.

次に本発明の三葉弁は以下の方法によって作られるが、
勿論これに限定されるものでない。即ち、予め高分子材
料からなる円筒状の編布、織布、不織布もしくは多孔質
体の内外表面全体を抗血栓性材料で被覆し、これを弁尖
部成形用の鋳型の円筒部にはめ込む。この際、縫着部材
に縫着部(h、b。
Next, the trilobed valve of the present invention is made by the following method,
Of course, it is not limited to this. That is, the entire inner and outer surfaces of a cylindrical knitted fabric, woven fabric, nonwoven fabric, or porous body made of a polymeric material are coated with an antithrombotic material in advance, and this is fitted into the cylindrical portion of a mold for molding the valve leaflet. At this time, the sewn parts (h, b) are attached to the sewn member.

C)が形成されるように、鋳型の頭部より、円筒状の編
物、織物、不織布もしくは多孔質体を若干はみ出させて
おく。続いてそれを抗血栓性材料を溶解した溶液に浸し
、その後乾燥により溶剤を除去する、いわゆるディッピ
ング成形を繰返し行うことにより鋳型部上にフィルム状
弁尖部を形成していく。その場合ディッピング工程の回
数によって皮膜の厚さが決まる。皮膜の厚さは通常的0
.05〜0.5罪である。このように形成された弁尖部
は縫着部材と接合部分なく一体化される。続いて鋳型か
ら取外した成型品の弁尖部の先端?三葉となるように切
断して、本発明の三葉弁が得ら力る。
A cylindrical knitted fabric, woven fabric, nonwoven fabric, or porous material is slightly protruded from the head of the mold so that C) is formed. Next, a film-like valve leaflet is formed on the mold by repeatedly performing so-called dipping molding, in which the mold is soaked in a solution containing an antithrombotic material and then dried to remove the solvent. In that case, the number of dipping steps determines the thickness of the coating. The thickness of the film is usually 0.
.. 05 to 0.5 sin. The valve leaflet portion formed in this manner is integrated with the sewing member without any joints. Next, the tip of the valve leaflet of the molded product removed from the mold? The trefoil valve of the present invention is obtained by cutting it into three lobes.

ここで必要に応じて切断部+m剤もしくは抗血栓性材料
の稀釈溶液で処理することにより、円滑な面とすること
ができる。
If necessary, the cut portion can be treated with an m agent or a diluted solution of an antithrombotic material to provide a smooth surface.

本発明の人工三葉弁の大きさは特に限定けt・いが、通
常、弁の口径が13〜35 sit、縫着部材の長さが
7ws〜30111の範囲でめる。
The size of the artificial three-leaflet valve of the present invention is not particularly limited, but usually the diameter of the valve is 13 to 35 cm, and the length of the sewing member is 7 ws to 3011 cm.

本発明の人工弁は生体弁の弁童換用としてのみならず、
種々の形態の人工心臓用升としても有効に使用可能であ
る。本発明の人工3’P”r人工心臓用の弁として用い
る場合には、従来の機械弁において問題とされた血栓形
成が解消されることが最大の利点である。
The artificial valve of the present invention is not only useful for replacing biological valves, but also
It can also be effectively used as a box for various forms of artificial hearts. When used as a valve for an artificial 3'P''r artificial heart according to the present invention, the greatest advantage is that thrombus formation, which has been a problem with conventional mechanical valves, is eliminated.

大動脈弁置換用として本発明の人工弁を用いる際には、
第5図において(alの部分(点線部分)k縫着し、次
いで(b)の部分を大動脈壁に縫着する。
When using the artificial valve of the present invention for aortic valve replacement,
In FIG. 5, the part (al) (dotted line part) is sewn together, and then the part (b) is sewn to the aorta wall.

縫着部の3つの頂上部(C)は、プレジェット付マツト
レス縫合で大動脈壁の外で結紮する。
The three crests (C) of the sutures are ligated outside the aortic wall with pledgetted pine-tress sutures.

以上のように本発明の三葉弁は従来の硬いステン)?有
する三葉弁と異なり、生体弁C大動脈弁)と同様の機構
で開閉するステントレス三葉弁であるがために、小口径
においても大きな°反差を生じることがない。また本発
明の人工弁構造では血流のうつ滞の部分も少ないために
血栓形成面においても有利である。
As mentioned above, the trileaflet valve of the present invention is different from the conventional hard stainless steel. Unlike the three-leaflet valve with a stentless valve, the stentless three-leaflet valve opens and closes using the same mechanism as the bioprosthetic valve C (aortic valve), so it does not produce a large degree difference even in a small diameter. Furthermore, the artificial valve structure of the present invention has fewer areas where blood flow is stagnant, which is advantageous in terms of thrombus formation.

更に本発明の人工弁は大動脈壁の動きに追従して開閉す
るために頻脈応答性が良好で、材質の折れ曲りストレス
も少いものとなり、その結果として弁の耐久性向上が期
待される。
Furthermore, since the artificial valve of the present invention opens and closes following the movement of the aortic wall, it has good tachycardia response and has less bending stress on the material, which is expected to improve the durability of the valve. .

以下に本発明の人工三葉弁の製作方法の例示ならびに流
体力学的機能評価結果を記述する。
Below, an example of the manufacturing method of the artificial three-leaflet valve of the present invention and the results of hydrodynamic function evaluation will be described.

人工弁の製作例 第7図に示したような数値制御施盤により製作したモル
ト(図中、単位は鰭、平面XYZに対し点Wは21°沈
み込んでいる)を用い、2%濃度のセグメント化ポリエ
ーテルウレタンウレア溶液で3回ディッピング、乾燥管
繰返した。乾燥はモーターによる回転を行いながら60
℃、40SRH下で各20分分間−て室温、40SRH
下で10分間行った。
Example of manufacturing an artificial valve Using a malt manufactured using a numerically controlled machine as shown in Figure 7 (in the figure, the unit is a fin, and point W is sunken at 21 degrees with respect to the plane XYZ), a segment with a 2% concentration was used. The dipping and drying tube were repeated three times with a polyether urethane urea solution. Drying is done for 60 minutes while rotating with a motor.
℃, 40 SRH for 20 minutes each. Room temperature, 40 SRH.
This was done for 10 minutes at the bottom.

次に、10%濃度のポリマー溶液で2回ディッピング、
乾燥?繰返した。乾燥は前の工程と同様にモルトを回転
させながら60℃、40SRH下で40分間、続いて室
温下で10分間行った。この段階で、予め2チ濃度のポ
リマー溶液で被覆を行っておいたテフロン製織布(厚さ
11111)からなる円筒状の縫着部材を上記モルトの
円筒部にかぶせた後、更に10%濃度のポリ1−溶液で
縫着部材とモルトの3頂点付近の側壁との接合が充分得
られるように注意しながら2回ディッピング、乾燥を繰
返した。続いて2%濃度のポリマー溶液を用い3回、弁
尖部および縫合部材全体のディッピング、乾燥を繰返し
た。充分に乾燥した後、全体をメタノールに浸漬し、モ
ルトかも人工弁を取りはずした後、更に充分乾燥を行い
最終的に弁の弁尖部の先縁部分を切離し三葉とした。
Next, dipping twice in a 10% concentration polymer solution,
Dry? repeated. Drying was carried out at 60° C. and 40 SRH for 40 minutes while rotating the malt as in the previous step, and then at room temperature for 10 minutes. At this stage, after covering the cylindrical part of the malt with a cylindrical sewing member made of Teflon woven cloth (thickness: 11111) that had been coated in advance with a polymer solution of 10% concentration, Dipping and drying were repeated twice with the Poly 1 solution, taking care to ensure sufficient bonding between the sewing member and the side wall near the three vertices of the malt. Subsequently, dipping and drying of the valve leaflet and the entire suture member were repeated three times using a 2% polymer solution. After sufficiently drying, the entire valve was immersed in methanol, and the malt artificial valve was removed, followed by further drying.Finally, the leading edge of the leaflet of the valve was cut off to form a three-lobed valve.

以上のようにして外径21m、弁尖部の厚み0.08m
、縫合部材の長さ1u11の三葉弁を用いて機能試験を
行った。
As above, the outer diameter is 21 m and the thickness of the valve leaflet is 0.08 m.
A functional test was conducted using a trilobal valve with a suture member length of 1u11.

人工弁の機能試験 ラテックスゴム製大動脈基部モデルを備えた人工弁試験
装置を用い、駆動圧0.2KP/csJ、収縮期・拡張
期比1:21拍動数80c、p、mのポンプ駆動条件下
で本発明の弁と従来弁との比較を行った。
Functional test of artificial valve Using an artificial valve testing device equipped with a latex rubber aortic root model, pump driving conditions were as follows: driving pressure 0.2 KP/csJ, systolic/diastolic ratio 1:21, and heart rate 80 c, p, m. Below, a comparison was made between the valve of the present invention and a conventional valve.

第8図において、(a)は本発明の人工弁の圧力損失−
流量特性曲線である。伽)はBj’6rk−8hile
yデイスク弁、(C)は8.J、M パイロライトカー
ボン製二葉弁および(d)はHancockブタ弁でい
ずれも比較のために試験したも・のでめる。なお、“圧
力損失−流量特性曲線”(Valve 5tate P
lot )は、1心拍における圧損と流量とをプロット
したもので、第8図(e)の点線が生体本来の弁、実線
が人工弁のプロットt−あられす。図中、流量は1分間
当りのΔ 流量の瞬間値、4pは左室−大動脈圧較差を示す。
In FIG. 8, (a) shows the pressure loss of the artificial valve of the present invention -
This is a flow characteristic curve.佽)is Bj'6rk-8hile
y disk valve, (C) is 8. J, M pyrolite carbon bileaflet valve and (d) Hancock pig valve, both of which were tested for comparison. In addition, "Pressure loss-flow characteristic curve" (Valve 5tate P
8(e) is a plot of the pressure drop and flow rate in one heartbeat, and the dotted line in FIG. 8(e) is the original valve of the living body, and the solid line is the plot of the artificial valve. In the figure, the flow rate is the instantaneous value of Δ flow rate per minute, and 4p indicates the left ventricular-aortic pressure gradient.

ab−cは収縮期での前方流量、c、d−eは閉鎖期の
逆流量、e −aは拡張期のもれ量を示す。
ab-c indicates the forward flow rate in the systolic phase, c and de indicate the reflux flow rate in the occlusion phase, and e-a indicates the leakage amount in the diastolic phase.

第8図(a”e)より明らかなように、本発明の弁は従
来の何れの弁に比べても、開放時圧損が少く、最大流量
が大であった。
As is clear from FIG. 8(a''e), the valve of the present invention had a smaller pressure loss upon opening and a larger maximum flow rate than any of the conventional valves.

2、抽出流量特性試験 本発明の人工弁及び従来品の流量パターンの比較を行っ
た(第9図)。
2. Extraction flow rate characteristic test The flow patterns of the artificial valve of the present invention and a conventional valve were compared (Figure 9).

流量パターンはQF (前方流量〕、QR(閉鎖までの
逆流量]、QL(閉鎖後のもれ量)Kつき解析したもの
である。図中(a)は本発明の人工弁(ステントレス型
)、(b)はステントレス型と同じ形で、ポリプロピレ
ン類のステントを縫着部材と同じ形にして外側にとりつ
けたものである。(dはBjork −8hi l・y
ディスク弁、(d)はS、J、M、パイロライトカーボ
ン製二葉弁、(e)はHanaokブタ弁である。
The flow rate pattern is analyzed with QF (forward flow rate), QR (reverse flow rate until closure), and QL (leakage amount after closure) K. In the figure, (a) shows the artificial valve of the present invention (stentless type). ) and (b) have the same shape as the stentless type, with a polypropylene stent attached to the outside in the same shape as the sewing member. (d is Bjork -8hi l・y
Disc valves, (d) are S, J, M, bileaflet valves made of pyrolite carbon, (e) are Hanaok pig valves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の人工弁の全体図を示す。 第2図は本発明の人工弁の平面図を示す。 第3図は本発明の人工弁の側面図を示す。 第4図は従来の人工弁の基本形体の全体図を示す。 第5rgJは本発明の人工弁の全体図を示す。 第6図は本発明の人工弁を製作する際に使用するモルト
の一例を示す。 第7図は本発明の人工弁?製作“する際に使用するモル
トの一例を示す。 第8図は人工弁の圧力損失−流量特性臼i?示す。(a
3は本発明の人工弁、(b) iJ: Bjork −
Shi leyディスク弁、(C)はS、J、M、パイ
ロライトカーボン製二葉弁、(d)はHancockブ
タ弁の圧力損失−流量特性曲線を示す。(e)は生体本
来の弁の圧力損失−流量特性曲線を示す。 第9図は人工弁の流量パターンを示す。(a)は本発明
の人工弁、(blはステント型人工弁、(c)はBjo
rk−5hile7デイスク弁、(d)はS、J、M、
パイロライトカーボン製二葉弁、(e)はHa nc 
okブタ弁の流量パターンを示す・ 特許出願人 東洋紡績株式会社 第7図 第8図 (a) 第8図 (C) (d)
FIG. 1 shows an overall view of the artificial valve of the present invention. FIG. 2 shows a plan view of the artificial valve of the present invention. FIG. 3 shows a side view of the artificial valve of the present invention. FIG. 4 shows an overall view of the basic shape of a conventional artificial valve. No. 5rgJ shows an overall view of the artificial valve of the present invention. FIG. 6 shows an example of malt used in manufacturing the artificial valve of the present invention. Is Fig. 7 the artificial valve of the present invention? An example of the malt used in manufacturing is shown. Figure 8 shows the pressure loss-flow rate characteristics of the artificial valve. (a
3 is the artificial valve of the present invention, (b) iJ: Bjork −
The pressure loss-flow characteristic curves of the Shiley disc valve, (C) the S, J, M, pyrolite carbon bileaflet valve, and (d) the Hancock pig valve are shown. (e) shows the pressure loss-flow characteristic curve of the valve originally in a living body. FIG. 9 shows the flow pattern of the artificial valve. (a) is the artificial valve of the present invention, (bl is a stent-type artificial valve, (c) is Bjo
rk-5hile7 disc valve, (d) S, J, M,
Bilobed valve made of pyrolite carbon, (e) is Hanc
Showing the flow rate pattern of the OK pig valve Patent applicant: Toyobo Co., Ltd. Figure 7 Figure 8 (a) Figure 8 (C) (d)

Claims (1)

【特許請求の範囲】 fil 球面又は円柱を基本とした曲面を有する三葉弁
の弁尖部と円筒状の軟質縫着部材とが一体化されている
こと全特徴とするステンドレス人工三葉弁。 (2)弁尖部が抗血栓性弾性体で成形され、且つ軟質縫
着部とがシームレスに一体化されていることを特徴とす
る特許請求の範囲第1項記載のステントレス人工三葉弁
。 (3)軟質縫着部が高分子素材からなる円筒状の織布、
編布、不織布もしくは多孔質物からなり、その表面が抗
血栓性材料で被覆されていること全特徴とする特許請求
の範囲第1項記載のステンドレス人工三葉弁。 (4)弁尖部および軟質縫着部の表面被覆層がセグメン
ト化ポリエーテルウレタン系材料からなること全特徴と
する特許請求の範囲第1項記載のステントレス人工三葉
弁。
[Scope of Claims] fil A stainless steel artificial trileaflet valve, characterized in that the valve leaflet of the trileaflet valve having a curved surface based on a spherical or cylindrical surface and a cylindrical soft sewing member are integrated. . (2) The stentless artificial trilobular valve according to claim 1, characterized in that the valve leaflet portion is molded with an antithrombotic elastic material and is seamlessly integrated with the soft sewn portion. . (3) A cylindrical woven fabric in which the soft sewn portion is made of a polymeric material;
The stainless steel artificial trilobular valve according to claim 1, characterized in that it is made of a knitted fabric, a nonwoven fabric, or a porous material, and its surface is coated with an antithrombotic material. (4) The stentless artificial three-leaflet valve according to claim 1, wherein the surface coating layer of the valve leaflet portion and the soft suture portion is made of a segmented polyether urethane material.
JP6032584A 1984-03-28 1984-03-28 Stentless artificial three-lobe valve Granted JPS60203251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6032584A JPS60203251A (en) 1984-03-28 1984-03-28 Stentless artificial three-lobe valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6032584A JPS60203251A (en) 1984-03-28 1984-03-28 Stentless artificial three-lobe valve

Publications (2)

Publication Number Publication Date
JPS60203251A true JPS60203251A (en) 1985-10-14
JPH0355136B2 JPH0355136B2 (en) 1991-08-22

Family

ID=13138900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6032584A Granted JPS60203251A (en) 1984-03-28 1984-03-28 Stentless artificial three-lobe valve

Country Status (1)

Country Link
JP (1) JPS60203251A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174760A (en) * 1984-09-13 1986-04-17 アリゲニー ラドラム ステイール コーポレーシヨン Method and device for directly casting crystalline strip in non-oxidizing atmosphere
JPS6174758A (en) * 1984-09-13 1986-04-17 アリゲニー ラドラム ステイール コーポレーシヨン Method and device for directly casting crystalline strip by radiational cooling
JPS61255656A (en) * 1985-05-08 1986-11-13 東洋紡績株式会社 Tube internal mount type heart valve
JP2005527283A (en) * 2002-04-23 2005-09-15 イー・テイ・アイ・シー・エイ−エンジニアリング・アンド・テクノロジカル・イノベーシヨンズ・イン・カーデイオ・バスキユラー・アプリケーシヨンズ Method for manufacturing an aortic or mitral valve prosthetic heart valve and the resulting aortic or mitral valve
JP2010505532A (en) * 2006-10-06 2010-02-25 ハート, インコーポレイテッド Intra-annular mounting frame for aortic valve repair

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416886A (en) * 1977-05-25 1979-02-07 Biocoating Aps Artificial heart valve
JPS56152645A (en) * 1980-02-27 1981-11-26 Albany Int Corp Elastomer sheet material for heart valve and other prosthetic grafting article

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416886A (en) * 1977-05-25 1979-02-07 Biocoating Aps Artificial heart valve
JPS56152645A (en) * 1980-02-27 1981-11-26 Albany Int Corp Elastomer sheet material for heart valve and other prosthetic grafting article

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174760A (en) * 1984-09-13 1986-04-17 アリゲニー ラドラム ステイール コーポレーシヨン Method and device for directly casting crystalline strip in non-oxidizing atmosphere
JPS6174758A (en) * 1984-09-13 1986-04-17 アリゲニー ラドラム ステイール コーポレーシヨン Method and device for directly casting crystalline strip by radiational cooling
JPS61255656A (en) * 1985-05-08 1986-11-13 東洋紡績株式会社 Tube internal mount type heart valve
JP2005527283A (en) * 2002-04-23 2005-09-15 イー・テイ・アイ・シー・エイ−エンジニアリング・アンド・テクノロジカル・イノベーシヨンズ・イン・カーデイオ・バスキユラー・アプリケーシヨンズ Method for manufacturing an aortic or mitral valve prosthetic heart valve and the resulting aortic or mitral valve
JP2010505532A (en) * 2006-10-06 2010-02-25 ハート, インコーポレイテッド Intra-annular mounting frame for aortic valve repair

Also Published As

Publication number Publication date
JPH0355136B2 (en) 1991-08-22

Similar Documents

Publication Publication Date Title
Bezuidenhout et al. Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices
US20220313425A1 (en) Flow optimized polymeric heart valve
JP4202131B2 (en) Polymer valve prosthesis with dip coating
EP0778755B1 (en) Manufactoring method of a natural tissue valve prosthesis
US6916338B2 (en) Synthetic leaflets for heart valve repair or replacement
US6562069B2 (en) Polymer leaflet designs for medical devices
US5545215A (en) External sigmoid valve complex frame and valved conduit supported by the same
US6328763B1 (en) Optimized geometry of a tissue pattern for semilunar heart valve reconstruction
JP2990363B2 (en) Method of manufacturing closure member
Carpentier et al. Continuing improvements in valvular bioprostheses
US5258021A (en) Sigmoid valve annuloplasty ring
CA2521896C (en) Reed valve for implantation into mammalian blood vessels and heart with temporary or permanent support by two stents
JP2004510471A (en) Valve prostheses with enhanced polymer leaflets
Kheradvar et al. Emerging trends in heart valve engineering: Part III. Novel technologies for mitral valve repair and replacement
JP2005527283A5 (en)
JPS62227352A (en) Living body prosthetic heart valve and method and apparatus for producing the same
JPS60203251A (en) Stentless artificial three-lobe valve
JP2010527249A (en) Individual aortic prosthetic leaflets and templates for manufacturing the same
Pierce Polymers in biomedical devices: Materials for artificial heart and circulatory assist devices
RU2747362C2 (en) Method of prosthetic repair of all structures of right ventricular outlet, pulmonary valve, pulmonary trunk
ANTUNES Technique of Implantation of the Medtronic‐Hall Valve and Other Modern Tilting‐Disc Prostheses
JPS62240049A (en) Medical artificial valva tricuspidalis
CN109893299A (en) A kind of intervention pulmonary valve and its manufacturing method
Yoganathan et al. PROSTHETIC HEART VALVES: WHAT HAVE WE LEARNED FROM OUR CLINICAL PATHOLOGIC EXPERIENCE
McKinley Development of a Synthetic Tri leaflet Aortic