JPS60201859A - Adaptive control of feeding speed of machine tool - Google Patents

Adaptive control of feeding speed of machine tool

Info

Publication number
JPS60201859A
JPS60201859A JP5554884A JP5554884A JPS60201859A JP S60201859 A JPS60201859 A JP S60201859A JP 5554884 A JP5554884 A JP 5554884A JP 5554884 A JP5554884 A JP 5554884A JP S60201859 A JPS60201859 A JP S60201859A
Authority
JP
Japan
Prior art keywords
speed
spindle
machine tool
converter
fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5554884A
Other languages
Japanese (ja)
Inventor
Seido Koda
幸田 盛堂
Koji Ishibashi
幸治 石橋
Takayuki Tateishi
孝之 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Kiko Co Ltd
Original Assignee
Osaka Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Kiko Co Ltd filed Critical Osaka Kiko Co Ltd
Priority to JP5554884A priority Critical patent/JPS60201859A/en
Publication of JPS60201859A publication Critical patent/JPS60201859A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • G05B19/4163Adaptive control of feed or cutting velocity

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

PURPOSE:To achieve adaptive control of the feeding speed of machine tool by detecting the fluctuation of the cutting load torque on the spindle or the drive system rotary shaft as the fluctuation of rotary speed and employing a correction speed command produced through comparison between the detected level and the setting speed command. CONSTITUTION:Upon increase of the cutting load, torsional load is applied onto the spindle system to produce the flexure on the spindle or the tooth flank of gear while to cause resilient deformation of the rotary driving force transmission shaft through torsional force thus to apply periodic speed fluctuation through resilient displacement as well as constant rotary speed onto the rotary motion of spindle and to cause pulse width modulation of the rectangular output from the detector 12. Then the modulated rectangular wave is converted through F/V converter into the speed fluctuation analog voltage and removed of D.C. component through DC/AC converter while rectified through fullwave rectifier as a sinusoidal wave around the point O and converted through RMS/DC converter into D.C. voltage signal. Thereafter, the effective value of speed fluctuation is compared with the setting speed command VC in AGC circuit as the deceleration speed MV to perform acceleration/deceleration of the feeding speed of table 6 thus to perform adaptive control of the feeding speed.

Description

【発明の詳細な説明】 本発明は工作機械に於ける送り速度の適応制御方式に関
するものであり、更に詳しくは、ワーク切削トルクの増
大もしくは減少に応じて、自動的に送り速度を加減速す
る工作機械に於ける送り速度の自動制御方法および装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an adaptive control method for the feed rate in a machine tool, and more specifically, the present invention relates to an adaptive control method for the feed rate in a machine tool, and more specifically, the feed rate is automatically accelerated or decelerated in accordance with an increase or decrease in workpiece cutting torque. This invention relates to a method and device for automatically controlling the feed rate in a machine tool.

イ、従来技術 工作機械に於ける送り速度の自動制御方式としてこれま
で種々の適応制御方式が考案、試作されてきたが、現在
実用に供されている方法として、工作機械の主軸モータ
の負荷電流を検出し、この電流値の大小に応じて切削負
荷を推定し、これによって送り速度を制御する方法が知
られている。この方式はセンナとしての主軸負荷電流値
の検出が容易なため装置の全体的な構造が簡易となり、
その分だけ適応制御方式の信頼性を向上させることが可
能である。
B. Conventional technology Various adaptive control methods have been devised and prototyped as automatic feed rate control methods for machine tools, but the method currently in practical use is to control the load current of the machine tool's spindle motor. A known method is to detect the current value, estimate the cutting load according to the magnitude of this current value, and control the feed rate based on this. This method simplifies the overall structure of the device because it is easy to detect the spindle load current value as a sensor.
It is possible to improve the reliability of the adaptive control method by that much.

しかしながら、主軸モータの負荷電流の測定は主軸に掛
かる切削トルクの変化を間接的に測定していることにな
るので、切削加工条件の如何によ′らては切削負荷を正
しく推定することが不可能な場合がある。例えば、15
KWの主軸モータを装着してなる工作機械に於いて数に
一程度の軽切削加工を行う場合、主軸モータの容量に対
する切削負荷の変動に起因する電流の変化が小さいため
、該電流値の変化から軽切削加工領域に於ける切削負荷
の大小を判別することは不可能である。即ち、センナと
しての主軸電流値検出の分解能が問題となり、この点が
在来の送り速度!11Jilllに於ける最大の欠点と
されてきた。このため、エンドミル加工等の軽切削負荷
に対し、送り速度を精度よく、適応制御するには電流値
の分解能上の制約を排除する必要があり、この制約乃至
は技術的な困難性に起因して、実用的な送り速度の適応
制御方式の確立に多くの課題が残されていた。以上の説
明から理解し得る如く、主軸電流値の検出による送り速
度の制御方式に於いては、主軸モータの容量に比較して
、切削負荷の小さい範囲に於いて検出精度が特に劣化す
るため、切削負荷の増減による工具系の撓み量の変化を
送り速度の制御因子として利用することには、ワーク加
工精度の維持上看過ごすことのできない難点が見受けら
れた。
However, since measuring the load current of the spindle motor indirectly measures the change in the cutting torque applied to the spindle, it may be difficult to estimate the cutting load correctly depending on the cutting conditions. It may be possible. For example, 15
When performing light cutting on a machine tool equipped with a KW spindle motor, changes in the current value due to changes in the cutting load relative to the spindle motor capacity are small. Therefore, it is impossible to determine the magnitude of the cutting load in the light cutting region. In other words, the resolution of the spindle current value detection as a sensor becomes a problem, and this point is the problem with the conventional feed rate! This has been considered the biggest drawback of 11Jill. Therefore, in order to accurately and adaptively control the feed rate for light cutting loads such as end milling, it is necessary to eliminate constraints on current value resolution. Therefore, many issues remained in establishing a practical adaptive control method for feed rate. As can be understood from the above explanation, in the feed rate control method by detecting the spindle current value, the detection accuracy deteriorates particularly in the range where the cutting load is small compared to the capacity of the spindle motor. Using changes in the amount of deflection of the tool system due to increases and decreases in the cutting load as a control factor for the feed rate has been found to have some drawbacks that cannot be overlooked in terms of maintaining workpiece machining accuracy.

口1発明の目的 本発明の主要な目的は、在来の送り速度の適応制御方式
に於いて不可避であった上記の如き制約を解消し得る工
作機械に於ける送り速度の適応制御方法および装置を提
供することにあるハ9発明の構成 本発明は、工作機械の主軸もしくは、該主軸と主軸駆動
系の回転軸に於ける切III負荷トルクの変動を回転速
度の変動として検出し、この検出値を実効値に変換し予
め設定されている速度指令と比較演算し、この比較演算
結果を修正速度指令として該工作機械の送り系の送り速
度を適応制御する工作機械に於ける送り速度の適応制御
方法を第一の要旨とするものである。
1. Object of the Invention The main object of the present invention is to provide a method and apparatus for adaptive feed rate control in a machine tool that can eliminate the above-mentioned limitations that are unavoidable in conventional feed rate adaptive control methods. The present invention detects fluctuations in cutting III load torque in the main shaft of a machine tool or the rotating shaft of the main shaft and the main shaft drive system as fluctuations in rotational speed, and Adaptation of feed speed in a machine tool where the value is converted into an effective value and compared with a preset speed command, and the result of this comparison calculation is used as a modified speed command to adaptively control the feed speed of the feed system of the machine tool. The first gist is the control method.

本発明はまた、工作機械の主軸もしくは主軸駆動系の回
転軸の何れか一方に取付けられた回転速度検出器と、該
検出器による検出値を実効値として自動ゲイン調整回路
に伝達するため前記検出器と自動ゲイン調整回路の間に
順次配設された瘤波数/電圧変換器、直流/交流交換器
、全波整流回路、ならびに実効値/直流電圧変換器から
なる工作機械に於ける送り速度の適応制御装置を第二の
要旨とするものであり、更に、工作機械の主軸ならびに
主軸駆動系の回転軸にそれぞれ取付けられた回転速度検
出器と、前記2個の回転速度検出器による検出値の差を
実効値の差として自動ゲイン調整回路に伝達するため前
記検出器と自動ゲイン調整回路の間に順次配設された周
波数/電圧変換器、直流/交流変換器、全波整流回路、
実効値/直流電圧変換器、ならびに差動増幅器からなる
工作機械に於ける送り速度の適応制御装置を第三の要旨
とするものである。
The present invention also provides a rotational speed detector attached to either the spindle of the machine tool or the rotating shaft of the spindle drive system, and a rotational speed detector for transmitting the detected value by the detector as an effective value to the automatic gain adjustment circuit. The feed speed of machine tools consists of a wave number/voltage converter, a DC/AC exchanger, a full-wave rectifier circuit, and an effective value/DC voltage converter, which are arranged in sequence between the device and the automatic gain adjustment circuit. The second aspect of the system is an adaptive control system, and the system also includes rotation speed detectors attached to the main spindle of the machine tool and the rotating shaft of the main spindle drive system, and the detection values of the two rotation speed detectors. a frequency/voltage converter, a DC/AC converter, and a full-wave rectifier circuit, which are sequentially arranged between the detector and the automatic gain adjustment circuit to transmit the difference as an effective value difference to the automatic gain adjustment circuit;
The third subject is an adaptive control system for feed speed in machine tools that includes an effective value/DC voltage converter and a differential amplifier.

二、実施例 第1図は本発明に掛かる適応制御装置の構成を例示する
説明図である0本実施例に於いては、工作機械として、
立型フライス盤を使用する場合について説明する。
2. Embodiment FIG. 1 is an explanatory diagram illustrating the configuration of an adaptive control device according to the present invention. In this embodiment, as a machine tool,
The case of using a vertical milling machine will be explained.

立型フライス盤には切削工具に回転駆動力を伝達するた
めの主軸(1)が主軸頭(2)に回転自在に軸支されて
おり、主軸モータ(3)からの回転駆動力は数段の歯車
列(主軸a (2)内に内蔵、図示せず)を介して主軸
(1)に伝達される。
In a vertical milling machine, a main shaft (1) for transmitting rotational driving force to the cutting tool is rotatably supported by a main spindle head (2), and the rotational driving force from the main shaft motor (3) is transmitted through several stages. It is transmitted to the main shaft (1) via a gear train (built in the main shaft a (2), not shown).

立型フライス盤は、テーブル(6)をX軸方向(紙面に
対し鉛直方向)およびY軸方向(紙面に対し平行方向)
に動かし、且つ主軸(1)を2軸方向く紙面に対し上下
方向)に動かすための3組の送り機構を備えられている
。主軸頭(2)はコラム(4)に設けられたZ軸方向案
内面(5)に沿って上下動し、Z軸方向の直線運動を行
う0図示しないワークを固定されたテーブル(6)はサ
ドル(7)に設けられた案内に導かれて、X軸方向移動
用の送りサーボモータ(3)および該送りサーボモータ
に連結された送りネジ(図示せず)によりX軸方向(紙
面に対し垂直方向)に沿って直線運動を行う。同様にし
てサドル(7)はベッド(10)に設けられたY軸方向
案内面(9)に沿ってY軸方向の直線運動を行う(Y軸
方向移動用の第二の送りサーボモータは図示省略)。
The vertical milling machine rotates the table (6) in the X-axis direction (perpendicular to the page) and the Y-axis direction (parallel to the page).
It is equipped with three sets of feeding mechanisms for moving the main shaft (1) in two axial directions (in the vertical direction with respect to the plane of the paper). The spindle head (2) moves up and down along the Z-axis direction guide surface (5) provided on the column (4), and performs linear movement in the Z-axis direction.The table (6) to which a workpiece (not shown) is fixed is Guided by a guide provided in the saddle (7), a feed servo motor (3) for moving in the X-axis direction and a feed screw (not shown) connected to the feed servo motor perform a linear motion along the vertical direction). Similarly, the saddle (7) performs a linear movement in the Y-axis direction along the Y-axis guide surface (9) provided on the bed (10) (the second feed servo motor for Y-axis movement is not shown). omission).

上記の如く構成された立型フライス盤に於いて、図示し
ない工作機械制御装置から主軸(1)の回転速度指令、
主軸頭(2)の2軸方向移動指令、サドル(7)のY軸
方向移動指令、ならびにテーブル(6)のX軸方向移動
指令を与えることにより、主軸(1)に装着された切削
工具(図示せず)およびテーブル(6)に固定されたワ
ーク(図示せず)は任意の移動軌跡を描き、所定の切削
加工が行われる。
In the vertical milling machine configured as described above, a rotation speed command of the main spindle (1) is given from a machine tool control device (not shown);
The cutting tool ( (not shown) and a work (not shown) fixed to the table (6) draw arbitrary movement trajectories, and a predetermined cutting process is performed.

本発明は以上の標準的な構成の工作機械例えば立型フラ
イス盤に於いて、主軸(1)の切削負荷による速度変動
、もしくは前記主軸と主軸駆動系の回転軸に於ける速度
変動量の差を測定することにより、切削負荷トルクの変
動をより精密に検出し、この回転速度の変動の検出値を
実効値として該工作機械の送り速度を適応制御するもの
である。
The present invention provides a machine tool with the above-mentioned standard configuration, such as a vertical milling machine, in which the speed fluctuation due to the cutting load on the main spindle (1) or the difference in the amount of speed fluctuation between the main spindle and the rotating shaft of the main spindle drive system is detected. By measuring this, fluctuations in the cutting load torque can be detected more precisely, and the feed rate of the machine tool can be adaptively controlled using the detected value of the rotational speed fluctuation as an effective value.

以下、第1図の例示に基づいて本発明を更に具体的に説
明する。
Hereinafter, the present invention will be explained in more detail based on the example shown in FIG.

主軸(1)の上端に円周上等間隔に***もしくはスリッ
トを設けた円板(11)が装着されており、該***もし
くはスリットの軸線方向に対向して検出器(12)が主
軸* (2)から延びるブラケット(図示せず)を介し
て固定されている。該検出器(12)は一種の回転速度
検出器であり、主軸にエンコーダもしくはタコメータを
直結した構成でも実施可能である。
A disk (11) with small holes or slits provided at equal intervals on the circumference is attached to the upper end of the main shaft (1), and a detector (12) is mounted on the main shaft* ( 2) is fixed via a bracket (not shown) extending from the base. The detector (12) is a type of rotational speed detector, and can also be implemented in a configuration in which an encoder or tachometer is directly connected to the main shaft.

切削負荷トルクが発生していない場合もしくは発生して
いても検知できない程度に小さい場合には、主軸(1)
は予め設定されている回転速度指令に対応した速度で回
転し、前記検出器(12)からは主軸の回転速度ならび
に円板(11)上の穴もしくはスリット数に対応した一
定周波数の矩形波が出力される。
If cutting load torque is not occurring, or if it is occurring but is too small to be detected, the main shaft (1)
rotates at a speed corresponding to a preset rotational speed command, and a rectangular wave with a constant frequency corresponding to the rotational speed of the main shaft and the number of holes or slits on the disk (11) is output from the detector (12). Output.

切削負荷が増大するにつれて、切削トルクによる捩り負
荷が主軸系に掛かり、主軸や歯車の山面に撓みを発生せ
しめ、且つ回転駆動力の伝導軸に捩り力による弾性変位
を生せしめる。この結果、主軸回転運動には、切削負荷
が零の場合の一定の回転速度に加えて弾性変位による周
期的な速度変動が重畳され、検出器(12)の矩形波出
力にパルス幅変調を生じる。
As the cutting load increases, a torsional load due to the cutting torque is applied to the main shaft system, causing deflection of the main shaft and the mountain surfaces of the gears, and causing elastic displacement due to the torsional force on the rotational driving force transmission shaft. As a result, in addition to the constant rotational speed when the cutting load is zero, periodic speed fluctuations due to elastic displacement are superimposed on the spindle rotational motion, causing pulse width modulation in the rectangular wave output of the detector (12). .

パルス幅をfi調された矩形波(第1図(A)に表示)
は周波数/電圧(F/V)変換器により第1図(B)に
示す如き速度変動アナログ電圧に変換される。この速度
変動アナログ電圧は、この後直流/交流電圧(D C/
A C)変換器により第1図(C)に示すように直流分
(オフセント)を除去され、零を中心とする正弦波とし
て全波整流(絶対値)回路に送られ、第1図(D)に見
られるように全波整流され、更に実効値/直流電圧(R
MS/DC)変換器により第1v11(E)に示すよう
な直流電圧信号に変換される。速度変動の実効値(二乗
平均平方根値; RMS値)は振幅の2乗に相当する減
速指令MVとして自動ゲイン調整(AGC)回路に入力
される。ここで減速指令MVは、予め設定されている速
度指令VCと比較演算され、速度指令VC減速指令MV
との差、即ち減速指令、MVの大小に応じたテーブル送
り速度の加減速が行われる。斯(して算出された修正送
り速度指令MVCは、送りサーボモータ(8)へ転送す
れテーブル(6)の送り速度を適応制御する。
Rectangular wave with pulse width adjusted to fi (shown in Figure 1 (A))
is converted into a speed fluctuation analog voltage as shown in FIG. 1(B) by a frequency/voltage (F/V) converter. This speed fluctuation analog voltage is then converted into a DC/AC voltage (DC/AC voltage).
A C) The converter removes the DC component (offcent) as shown in Figure 1 (C), and sends it to the full-wave rectifier (absolute value) circuit as a sine wave centered at zero, and as shown in Figure 1 (D ), it is full-wave rectified, and further the effective value/DC voltage (R
MS/DC) converter converts the signal into a DC voltage signal as shown in 1v11(E). The effective value (root mean square value; RMS value) of the speed fluctuation is input to an automatic gain adjustment (AGC) circuit as a deceleration command MV corresponding to the square of the amplitude. Here, the deceleration command MV is compared with a preset speed command VC, and the speed command VC deceleration command MV is calculated.
The table feed speed is accelerated or decelerated in accordance with the difference between the MV and the deceleration command, that is, the magnitude of the MV. The corrected feed speed command MVC calculated in this manner is transferred to the feed servo motor (8) to adaptively control the feed speed of the table (6).

無負荷の場合もしくは負荷が小さい場合には、主軸(1
)の回転速度の変動はなく、従ってMY−0となり、テ
ーブル(6)はVCの速度で移動する。
When there is no load or the load is small, the main shaft (1
) there is no variation in the rotational speed, therefore MY-0, and the table (6) moves at the speed of VC.

AGC回路は一種の関数発生器で、第2図に見られる如
(入力に対して直線的に減速をかける直線減速、もしく
は入力に対して指数関数的に減速をかける指数減速等の
採用が可能である。
The AGC circuit is a type of function generator, and as shown in Figure 2, it is possible to adopt linear deceleration that decelerates the input linearly, or exponential deceleration that decelerates the input exponentially. It is.

実用上、修正送り速度指令MVCもしくは減速指令MV
がある制限値(例えば第2図のVC。
In practice, modified feedrate command MVC or deceleration command MV
a certain limit value (e.g. VC in Figure 2).

、MVo)を越えた場合には何らかの異常が発生したも
のと見做し、工作機械を停止するための措置を講する必
要がある。
, MVo), it is assumed that some abnormality has occurred, and it is necessary to take measures to stop the machine tool.

第2図に於いては、速度変動に応じてアナログ的に減速
する過程が示されているが、ディジタル的(段階的)に
速度を修正することも可能で4ある。
Although FIG. 2 shows the process of analog deceleration in response to speed fluctuations, it is also possible to correct the speed digitally (in steps).

本発明の他の実施態様として、回転速度の変動を主軸モ
ータ(3)に直結した回転検出器(13) (例えばタ
コメータ、パルス・ジェネレータ)により検出すること
も可能である。但しこの実施態様に於いては、前述した
ように歯車列の捩り力による弾性変位の影響が顕著に現
れないため、前記の実施態様に比較して検出精度は幾分
低下する。然しなから、この実施態様によっても在来の
送り速度制御方法よりも精度を大幅に向上せしめた適応
制御手段が取得される。
As another embodiment of the present invention, it is also possible to detect variations in the rotational speed by a rotation detector (13) (for example, a tachometer, a pulse generator) directly connected to the spindle motor (3). However, in this embodiment, the influence of elastic displacement due to the torsional force of the gear train does not appear significantly as described above, so the detection accuracy is somewhat lower than in the above embodiment. However, this embodiment also provides an adaptive control means with significantly improved accuracy over conventional feed rate control methods.

前記第1および第2の実施例とは別に、以下に示す実施
例も有効である。
Apart from the first and second embodiments, the following embodiments are also effective.

第3図は第1図に示した主軸頭(2)ならびに該主軸頭
の内部に組み込まれた歯車列を模式的に図示したもので
ある。主軸モータ(3)による回転駆動力はモータ軸(
14) 、中間軸(15)を介して主軸(1)に伝達さ
れる。各軸には1乃至2対の歯車が固定され、これらの
歯車の噛合いにより回転駆動力が図示しない切削工具に
伝達される。
FIG. 3 schematically shows the spindle head (2) shown in FIG. 1 and the gear train built into the spindle head. The rotational driving force from the main shaft motor (3) is generated by the motor shaft (
14) is transmitted to the main shaft (1) via the intermediate shaft (15). One or two pairs of gears are fixed to each shaft, and rotational driving force is transmitted to a cutting tool (not shown) through meshing of these gears.

斯かる回転駆動力の伝達機構に於いて、主軸(1)の回
転速度を円板(11)と第一の回転速度検出器(12)
により、またモータ(3)もしくはモータ軸(14)の
回転速度を第二の回転速度検出器(13)で検出する場
合を考える。
In such a rotational driving force transmission mechanism, the rotational speed of the main shaft (1) is detected by a disk (11) and a first rotational speed detector (12).
Let us also consider the case where the rotational speed of the motor (3) or motor shaft (14) is detected by the second rotational speed detector (13).

この場合、回転駆動力の伝達経路ならびに回転速度検出
器で検出された電気的な信号の処理要領は第1図に示す
ものと本質的には同じくであるが、本実施例に於いては
、主軸モータ(3)の速度変動についても第1図に示す
ものと同様の信号処理を行って実効値を算出し、これら
2個の実効値の差によって送り速度を制御するものであ
る。即ち、第4図に於いて、主軸(1)の回転速度の変
動の検出値をMV、 、主軸モータ軸の回転速度変動の
検出値をMV2として、両信号を差動増幅器に入力する
。差動増幅器は一種の減算器として機部し、該差動増幅
器の出力MV= (MVI −MV2 )が減速指令と
して前記同様のAGC回路に入力される。
In this case, the transmission path of the rotational driving force and the processing procedure for the electrical signal detected by the rotational speed detector are essentially the same as those shown in FIG. 1, but in this embodiment, Regarding the speed fluctuation of the main shaft motor (3), the same signal processing as shown in FIG. 1 is performed to calculate an effective value, and the feed speed is controlled based on the difference between these two effective values. That is, in FIG. 4, the detected value of the rotational speed fluctuation of the main shaft (1) is set as MV, and the detected value of the rotational speed fluctuation of the main shaft motor shaft is set as MV2, and both signals are input to the differential amplifier. The differential amplifier functions as a type of subtracter, and the output MV=(MVI-MV2) of the differential amplifier is inputted as a deceleration command to the same AGC circuit as described above.

この方法によれば、主軸モータ固有の回転速度変動、い
わゆる回転ムラによる誤差16号が差動増幅器によりキ
ャンセルされ、検出精度がその分だけ向上する。
According to this method, error No. 16 due to rotational speed fluctuations specific to the spindle motor, so-called rotational unevenness, is canceled by the differential amplifier, and detection accuracy is improved accordingly.

ホ9発明の効果 以上の説明から理解し得るように本発明は工作機械主軸
の回転速度の変動を検出する装置そのものが極めて簡易
な構造を有し、送り速度の制御因子として切削負荷トル
クの変動による回転速度の変動分を利用しているため、
主軸モータの容量等には無関係に高精度の検出が可能で
ある。
9. Effects of the Invention As can be understood from the above explanation, the device itself for detecting fluctuations in the rotational speed of a machine tool spindle has an extremely simple structure, and the fluctuation of cutting load torque is used as a control factor for the feed rate. Since it uses the variation in rotational speed due to
Highly accurate detection is possible regardless of the capacity of the spindle motor.

また、回転速度の変動、を送り速度の制御因子としてい
るため、無負荷時の消費動力の影響を受けない安定した
検出系を構成することができる。即ち、在来の主軸電流
値検出の場合、非切削時に於いても歯車の摩擦、潤滑油
の攪拌抵抗等により動力を消費し、しかも主軸の回転速
度によっても無負荷消費電流値が変化する。このため、
切削時に於ける正味消費電流を検出するには前記無負荷
消費電流を差し引(必要があり、電流値検出装置の構成
に実用上かなりの制約が与えられていた。本発明に於い
ては上記の如き制約が全く認められず、簡易な構成で精
度のよい検出系を形成することができる。更に本発明に
より工具とワークとの接触開始時期の検出が可能となり
、これにより空切削時の送り速度を上げることができる
から、加工時間の短縮、加工能率の向上が図れる。
In addition, since fluctuations in the rotational speed are used as a control factor for the feed rate, a stable detection system that is not affected by power consumption during no-load conditions can be constructed. That is, in the case of conventional spindle current value detection, power is consumed due to gear friction, lubricating oil stirring resistance, etc. even during non-cutting, and the no-load consumption current value changes depending on the rotational speed of the spindle. For this reason,
In order to detect the net current consumption during cutting, it is necessary to subtract the no-load current consumption, which imposes considerable practical restrictions on the configuration of the current value detection device. Such restrictions are not recognized at all, and a highly accurate detection system can be formed with a simple configuration.Furthermore, the present invention makes it possible to detect the timing at which contact between the tool and the workpiece begins, which allows the feed rate during idle cutting to be reduced. Since the speed can be increased, machining time can be shortened and machining efficiency can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の全体的な構成を示すブロック線図であ
り、第2図はAGC回路に於ける減速機能を説明する直
交座標線図である。また第3図は本発明の異なれる実施
態様を例示する主軸頭要部の説明図であり、第4図は第
3図に示す実施例に於ける回転速度実効値の比較要領の
説明図である。 (1) −主軸、(2)−・主軸頭、(3) −主軸モ
ータ、(6) −テーブル、(8) −・送りサーボモ
ータ、(12)、(13)・一回転速度検出器。
FIG. 1 is a block diagram showing the overall configuration of the present invention, and FIG. 2 is an orthogonal coordinate diagram illustrating the deceleration function in the AGC circuit. Furthermore, FIG. 3 is an explanatory diagram of the main part of the spindle head illustrating different embodiments of the present invention, and FIG. be. (1) - Spindle, (2) - Spindle head, (3) - Spindle motor, (6) - Table, (8) - Feed servo motor, (12), (13) - Single rotation speed detector.

Claims (3)

【特許請求の範囲】[Claims] (1) 工作機械の主軸もしくは該主軸と主軸駆動系の
回転軸に於ける切削負荷゛トルクの変動を回転速度の変
動として検出し、この検出値を実効値に変換し予め設定
されている速度指令と比較演算し、この比較演算結果を
修正速度指令として該工作機械の送り系の送り速度を適
応制御することを特徴とする工作機械に於ける送り速度
の適応制御方法。
(1) Changes in the cutting load/torque in the main spindle of the machine tool or the rotating shaft of the main spindle and the main spindle drive system are detected as changes in rotational speed, and this detected value is converted into an effective value and set at a preset speed. A method for adaptively controlling a feed rate in a machine tool, comprising performing a comparison operation with a command, and using the result of the comparison operation as a modified speed command to adaptively control the feed rate of a feed system of the machine tool.
(2) 工作機械の1苧もしくは主軸駆動系の回転軸の
何れか一方に取付けられた回転速度検出器と、該検出器
による検出値を実効値として自動ゲイン調整回路に伝達
するため前記検出器と自動ゲイン調整回路の間に順次配
設された周波数/電圧変換器、直流/交流変換器、全波
整流回路、ならびに実効値/直流電圧変換器からなる工
作機械に於ける送り速度の適応制御装置。
(2) A rotational speed detector attached to either one of the rotary shafts of the machine tool or the spindle drive system, and the detector for transmitting the detected value by the detector as an effective value to the automatic gain adjustment circuit. Adaptive control of feed rate in machine tools consisting of a frequency/voltage converter, a DC/AC converter, a full-wave rectifier circuit, and an effective value/DC voltage converter, which are arranged in sequence between the automatic gain adjustment circuit and the automatic gain adjustment circuit. Device.
(3) 工作機械の主軸ならびに主軸駆動系の回転軸に
それぞれ取付けられた回転速度検出器と、前記2個の回
転速度検出器による検出値の差を実効値の差として自動
ゲイン調整回路に伝達するため前記検出器と自動ゲイン
回路の間に順次配設された周波数7電圧変換器、直流/
交流変換器、全波整流回路、実効値/直流電圧変換器、
ならびに差動増幅器からなる工作機械に於ける送り速度
の適応制御装置。
(3) The difference between the detected values by the rotational speed detectors attached to the spindle of the machine tool and the rotating shaft of the spindle drive system, and the two rotational speed detectors is transmitted as the difference in effective values to the automatic gain adjustment circuit. A frequency 7 voltage converter, DC/
AC converter, full wave rectifier circuit, RMS/DC voltage converter,
and an adaptive control device for feed rate in machine tools consisting of a differential amplifier.
JP5554884A 1984-03-22 1984-03-22 Adaptive control of feeding speed of machine tool Pending JPS60201859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5554884A JPS60201859A (en) 1984-03-22 1984-03-22 Adaptive control of feeding speed of machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5554884A JPS60201859A (en) 1984-03-22 1984-03-22 Adaptive control of feeding speed of machine tool

Publications (1)

Publication Number Publication Date
JPS60201859A true JPS60201859A (en) 1985-10-12

Family

ID=13001756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5554884A Pending JPS60201859A (en) 1984-03-22 1984-03-22 Adaptive control of feeding speed of machine tool

Country Status (1)

Country Link
JP (1) JPS60201859A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104520066A (en) * 2012-08-06 2015-04-15 三菱电机株式会社 Torque control device
JP2016531926A (en) * 2013-09-10 2016-10-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Oxime ester photoinitiator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104520066A (en) * 2012-08-06 2015-04-15 三菱电机株式会社 Torque control device
JP2016531926A (en) * 2013-09-10 2016-10-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Oxime ester photoinitiator

Similar Documents

Publication Publication Date Title
JP3389417B2 (en) How to compensate for lost motion
Altintas et al. Sliding mode controller design for high speed feed drives
KR900002366B1 (en) Automatic error compensator for position adjustor
US9304504B2 (en) Servo controller for reducing interference between axes in machining
US20010012973A1 (en) Method and device for disturbance sensing, especially collision sensing, in the drive system of a numerically controlled machine tool
JP2637578B2 (en) Machine tool position control device
US20180238419A1 (en) Apparatus and method for workpiece machining on a gear cutting machine
US20160370786A1 (en) Trajectory measuring device, numerical control device, and trajectory measuring method
US4498335A (en) Control arrangement for a gear testing machine
JPS60201859A (en) Adaptive control of feeding speed of machine tool
US4803409A (en) Acceleration signal corrected motor speed control system
CN114235358A (en) Device and method for processing rotation-dependent measured values
US4708544A (en) Machine tool controller
US5162716A (en) Tracking control method between two servo systems
CN113798919B (en) Cutting force measuring method and device, electronic equipment and storage medium
JPS60201858A (en) Adaptive control of feeding speed of machine tool
US4859918A (en) Method and apparatus for producing a speed control voltage for direct current motors in typewriters or similar office machines
JP2000005977A (en) Controller for machine tool
CN113093647B (en) Method and device for identifying reverse gap based on response data of numerical control machine tool
CN221170625U (en) Screw rod synchronous control system
JPH01321272A (en) Speed detector
CN117605792A (en) Vibration suppression method, system, device, electronic equipment and storage medium
JPH01234136A (en) Shaft driving method for numerically controlled machine tool
JP2706743B2 (en) Control method of belt transmission mechanism
JPH0740195A (en) Nc device